Claude Shannon: Biologist

The Founder of Information Theory Used Biology to Formulate the Channel Capacity
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Claude Shannon founded information theory in the 1940s. The theory has long been
known to be closely related to thermodynamics and physics through the similarity of Shan-
non’s uncertainty measure to the entropy function. Recent work using information theory
to understand molecular biology has unearthed a curious fact: Shannon’s channel capacity
theorem only applies to living organisms and their products, such as communications chan-
nels and molecular machines that make choices amongst several possibilities. Information
theory is therefore a theory about biology, and Shannon was a biologist.

The late Claude Shannon (30 April 1916 - 24 February 2001) is heralded for his major con-
tributions to the fundamentals of computers and communications systems [1, 2, 3, 4]. His Mas-
sachusetts Institute of Technology (MIT) master’s thesis is famous because in it he showed that
digital circuits can be expressed by Boolean logic. Thus one can transform a circuit diagram into
an equation, rearrange the equation algebraically, and then draw a new circuit diagram that has the
same function. By this means one can, for example, reduce the number of transistors needed to
accomplish a particular function.

Shannon’s work at Bell Labs in the 1940s led to the publication of the famous paper “A Math-
ematical Theory of Communication” in 1948 [5] and to the lesser known but equally important
“Communication in the Presence of Noise” in 1949 [6]. In these groundbreaking papers Shannon
established information theory. It applies not only to human and animal communications, but also
to the states and patterns of molecules in biological systems [7, 8, 9]. At the time, Bell Labs was
the research and development part of the American Telephone and Telegraph Company (AT&T),
which was in the business of selling the ability to communicate information. How can information
be defined precisely? Shannon, a mathematician, set down several criteria for a useful, rigorous
definition of information and then he showed that only one formula satisfied these criteria. The
definition, which has withstood the test of more than 50 years, precisely answered the question
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“What is AT&T selling?” The answer was “information transmission, in bits per second”. Of
course this immediately raised another question: “How much information can we send over exist-
ing equipment, our phone lines?”” To answer this, Shannon developed a mathematical theory of the
channel capacity. Before delving into how he arrived at this concept, which explains why Shannon
was a biologist, it is necessary to understand the surprising (Shannon’s word) channel capacity
theorem and how it was developed.

The channel capacity, C, in bits per second, depends on only three factors: the power, P, of
the signal at the receiver, the noise, N, disturbing the signal at the receiver and the bandwidth, W,
which is the span of frequencies used in the communication:

P
C =Wlog, (ﬁ + 1) bits per second. (1)

Suppose one wishes to transmit some information at a rate R, also in bits per second. First Shannon
showed that when the rate exceeds the capacity (R > C), the communication will fail and at most
C bits per second will get through. A rough analogy is putting water through a pipe. There is an
upper limit for how fast water can flow; at some point the resistance in the pipe will prevent further
increases or the pipe will burst.

The surprise comes when the rate is less than or equal to the capacity (R < C). Shannon
discovered—and proved mathematically—that in this case one may transmit the information with
as few errors as desired! Error is the number of wrong symbols received per second. The proba-
bility of errors can be made small, but cannot be eliminated. Shannon pointed out that the way to
reduce errors is to encode the messages at the transmitter to protect them against noise, and then
to decode them at the receiver to remove the noise. The clarity of modern telecommunications,
CDs, MP3s, DVDs, wireless, cellular phones, efc. came about because engineers have learned
how to make electrical circuits and computer programs that do this coding and decoding. Because
they approach the Shannon limits, the recently developed Turbo codes promise to revolutionize
communications again by providing more data transmission over the same channels [10, 11].

What made all this possible? It is a key idea buried in a beautiful geometrical derivation of the
channel capacity in Shannon’s 1949 paper [6]. Suppose that you and I decide to set up a simple
communications system (Fig. 1). On my end I have a 1 volt battery and a switch. We run two wires
over to you, and install a volt meter on your end. When I close the switch, you see the meter jump
from O to 1 volt. If I set the switch every second, you receive up to 1 bit of information per second.
But on closer inspection, you notice that the meter doesn’t always read exactly 1 volt. Sometimes
it reads 0.98, other times 1.05 and so on. The distribution of values is bell shaped (Gaussian),
because the wire is hot (300K). From a thermodynamic viewpoint, the heat is atomic motions and
they disturb the signal, making it noisy. You can hear this as the static hiss on a radio or see it as
snow on a television screen.

Shannon realized that the noise added to one digital pulse would generally make the overall
amplitude be different from that of another, otherwise identical, pulse. Further, the noise ampli-
tudes for two pulses are independent. When two quantities are independent, one can represent this
geometrically by graphing them at 90° to each other (orthogonal). Shannon recognized that for two
pulses, the individual Gaussians combined to make a little circular smudge on a two dimensional
graph of the voltage of the first pulse plotted against the voltage of the second pulse, as shown in
Fig. 1. If three digital pulses are sent, the possible combinations can be plotted as corners of a cube
in three dimensions. The receiver, however, does not see the pristine corners of the cube. Instead,
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Figure 1: Representing a Message as a Hypersphere
(a) A simple electrical communications system consists of a battery, a switch and a volt meter
connected by wires.
(b) The voltage of one pulse sent down the transmission line is disturbed, as in a drunken walk,
by the motion of atoms in the hot wire, so the voltage received will vary according to a Gaussian
distribution. For a first voltage pulse, x, the probability of the voltage variation is p(x) o< e .
A second voltage pulse, y, has a distribution p(y) o< ¢, Since noise is independent for the two

pulses, the probabilities of the distributions are independent and the overall probability multiplies:
2

p(x,y) = p(x) - p(y) e e e = e (TR =",
(c) Plotting the voltage variation of x against the voltage variation of y, one finds that r is the
hypotenuse of a triangle with x and y as the legs.

To see the shape of the distribution, set the probability p(x,y) to be constant. This fixes r as the
radius of a circle. So the distribution is circularly symmetric. With three pulses, p(z) o< e~% and

p(x,y,z) o< e”"" again, so the distribution is a sphere in higher dimensions.



surrounding each corner are fuzzy spheres that represent the probabilities of how much the signal
can be distorted.

With four pulses the graph has to be made in 4 dimensional space, and the cube becomes a
hypercube (tesseract), but the spheres are still there at each corner.

Shannon realized that when one looks at many pulses — a message — they correspond to a
single point in a high dimensional space. “Essentially, we have replaced a complex entity (say, a
television signal) in a simple environment (the signal requires only a plane for its representation as
f(t)) by a simple entity (a point) in a complex environment (2TW dimensional space)” [6]. (T is
the message time and W is the bandwidth.) The transmitter picks the point and the receiver receives
a point located in a fuzzy sphere around the transmitted point. This would not be remarkable except
for an interesting property of high dimensional spheres. As the dimension goes up, almost all the
received points of the sphere condense onto the surface at radius r, as shown by Brillouin and
Callen [12, 13, 7]. At high dimension, the sphere density function becomes a sharply pointed
distribution [7]. Shannon called these spheres ‘sharply defined billiard balls’ but I prefer ‘ping-
pong balls’ as an analogy because they are hollow and have thin shells.

The sharp definition of the sphere surface at high dimension has a dramatic consequence. Sup-
pose that I want to send you two messages. I represent these as two points in a high dimensional
space. During transmission the signal encounters thermal noise and is degraded in all possible
ways, so that you receive results somewhere in two spheres. If the spheres are far enough apart,
you can easily determine the nearest sphere center because we agree beforehand where I will place
my points. That is, you can decode the noisy signal and remove the noise! Of course this only
works if the spheres do not overlap. If the spheres overlap, then sometimes you could not determine
which message I sent.

The total power of the received signal allows me (at the transmitter) to pick only a limited num-
ber of messages, and they all must be within some distance from the origin of the high dimensional
space. That is, there is a larger sphere around all the smaller thermal spheres that represent possi-
ble received messages. Shannon recognized this, and then he computed how many little message
spheres could fit into the big sphere provided by the power and also the thermal noise, which ex-
tends the big sphere radius. By dividing the volume of the big sphere by the volume of a little one,
he determined the maximum number of messages just as one can estimate the number of gumballs
in a gumball machine (Fig. 2). Taking the logarithm (base 2) gave the result in bits. This gave him
the channel capacity formula (1), and, using the geometry of the situation, he proved the channel
capacity theorem [6].

We can see now that this theorem relies on two important facts. First, by using long messages
one gets high dimensions and so the spheres have sharply defined surfaces. This allows for as few
errors in communication as one desires. Second, if one packs the spheres together in a smart way,
one can send more data, all the way up to the channel capacity. The sphere packing arrangement
is called the coding, and for more than 50 years mathematicians have been figuring out good ways
to pack spheres in high dimensions. This results in the low error rates of modern communications
systems.

Even when they are far apart, the spheres always intersect by some amount because Gaussian
distributions have infinite tails. That is why one can’t avoid error entirely. On the other hand, if the
distance between two sphere centers is too small, then the two spheres intersect strongly. When
random thermal noise places the received point into the intersection region, the two corresponding
messages will be confused by the receiver. The consequences of this could be disastrous for the
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Figure 2: A gumball machine represents a communications system, as seen by a receiver. Each
gumball represents the volume of coding space a single transmitted message (a point in the
space) could be moved to after thermal noise has distorted the message during communica-
tion. The entire space accessible to the receiver, represented by the outer glass shell, is de-
termined by the power received, the thermal noise and the bandwidth. The number of gum-
balls determines the capacity of the machine and is estimated by dividing the volume enclosed
by the outer glass shell by the volume of each gumball. A similar computation gives the
channel capacity of a communications system [6]. The painting is by Wayne Thiebaud (b.
1920) Three Machines (1963) Oil on canvas, Fine Arts Museums of San Francisco. (c¢) Wayne
Thiebaud/Licensed by VAGA, New York, NY., reproduced with permission. The image was ob-
tained from http://www.artnet.com/magazine/news/newthismonth/walrobinson2-1-16.asp



sender or the recipient, who could even die from a misunderstanding.

Because a communications failure can have serious consequences for a living organism, Dar-
winian selection will prevent significant sphere overlap. It can also go to work to sharpen the
spheres and to pack them together optimally. For example, a metallic key in a lock is a multi-
dimensional device because the lock has many independent pins that allow a degree of security.
When one duplicates the key it is often reproduced incorrectly and one will have to reject the bad
one (select against it). If one’s home is broken into because the lock was picked, one might replace
the lock with a better one that is harder to pick (has higher dimension). Indeed, key dimension has
increased over time. The Romans and middle-ages monks used to carry simple keys for wooden
door locks with one or two pins, while the key to my lab seems to have about 12 dimensions.

All communications systems have the property that they are important to living organisms.
That is, too much sphere overlap is detrimental. In contrast, although the continuously chang-
ing microstates of a physical system, such as a rock on the moon or a solar prominence, can be
represented by one or more thermal noise spheres, these spheres may overlap, and there is no
consequence because there is no reproduction and there are no future generations. A living organ-
ism with a nonfunctional communication system is unlikely to have progeny, so its genome may
disappear.

Shannon’s crucial concept was that the spheres must not intersect in a communications system,
and from this he built the channel capacity formula and theorem. But, at its root, the concept that
the spheres must be separated is a biological criterion that does not apply to physical systems in
general. Although it is well known that Shannon’s uncertainty measure is similar to the entropy
function, the channel capacity and its theorem are rarely, if ever, mentioned in thermodynamics
or physics perhaps because these aspects of information theory are about biology, so no direct
application could be found in those fields. Since he used a property of biology to formulate his
mathematics, I conclude that Claude Shannon was doing biology and was therefore, effectively, a
biologist—although he was probably unaware of it.

It is not surprising that Shannon’s mathematics can be fruitfully applied to understanding bio-
logical systems [14, 9, 7, 8]. Models built with information theory methods can be used to charac-
terize the patterns in DNA or RNA to which proteins and other molecules bind [15, 16, 17, 18, 19]
and even can be used to predict if a change to the DNA will cause a genetic disease in humans
[20, 21]. Further information about molecular information theory is available at the web site
http://www.ccrnp.ncifcrf.gov/toms/.

What are the implications of the idea that Shannon was doing biology? First, it means that
communications systems and molecular biology are headed on a collision course. As electrical
circuits approach molecular sizes, the results of molecular biologists can be used to guide designs
[22, 23]. We might envision a day when communications and biology are treated as a single field.
Second, codes discovered for communications potentially teach us new biology if we find the same
codes in a biological system. Finally, the reverse is also to be anticipated: discoveries in molecular
biology about systems that have been refined by evolution for billions of years should tell us how
to build new and more efficient communications systems.
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