

Evolution of Binding Sites

Thomas D. Schneider, Ph.D.

Frederick National Laboratory for Cancer Research Gene Regulation and Chromosome Biology Laboratory

Molecular Information Theory Group

132 p53 binding sites

El Duomo, Florence, Italy

number of number of symbols bits example

M B

2
1

4
2

83

$M=2^{B} \quad B=\log _{2} M$

Information Theory: One-Minute Lesson

number of number of symbols bits example

M B

2
1

4
2

83

$M=2^{B} \quad B=\log _{2} M$

number of number of symbols B

2
1

4

M	B
2	1
4	2
8	3
$M=2^{B}$	$B=\log _{2} M$

Information Theory: One-Minute Lesson

number of number of symbols bits example

number of number of symbols

M B

2
1
bits
example

4
2

8
3
$M=2^{B} \quad B=\log _{2} M$

Sequence Logo

Bacteriophage T7 RNA polymerase binding sites

1 ttattaatacaactcactataaggagag
2 aaatcaatacgactcactatagagggac
3 cggttaatacgactcactataggagaac
4 gaagtaatacgactcagtatagggacaa
5 taattaattgaactcactaaagggagac
6 cgcttaatacgactcactaaaggagaca
6 of 17 sites
Schneider \& Stephens Nucl. Acids Res. 18: 6097-6100 1990

Sequence Logo

Bacteriophage T7 RNA polymerase binding sites

1 ttattaatacaactcactataaggagag
2 aaatcaatacgactcactatagagggac
3 cggttaatacgactcactataggagaac
4 gaagtaatacgactcagtatagggacaa
5 taattaattgaactcactaaagggagac
6 cgcttaatacgactcactaaaggagaca
6 of 17 sites
Schneider \& Stephens Nucl. Acids Res. 18: 6097-6100 1990

Sequence Logo

Bacteriophage T7 RNA polymerase binding sites

Bacteriophage T7 RNA polymerase binding sites

More Information Theory - 1

An Intuitive Approach

Information to chose one symbol from M symbols:

$$
\begin{equation*}
\log _{2} M \tag{1}
\end{equation*}
$$

An Intuitive Approach

Information to chose one symbol from M symbols:

$$
\begin{align*}
\log _{2} M & =-\log _{2} 1 / M . \tag{1}
\end{align*}
$$

$1 / M$ is like the probability of a symbol.

More Information Theory - 1

An Intuitive Approach

Information to chose one symbol from M symbols:

$$
\begin{align*}
\log _{2} M & =-\log _{2} 1 / M . \tag{1}
\end{align*}
$$

$1 / M$ is like the probability of a symbol.
If the probabilities P_{i} of different symbols, i, are not equal, then the surprisal is:

$$
\begin{equation*}
u_{i} \equiv-\log _{2} P_{i} . \tag{2}
\end{equation*}
$$

how surprised one is to see a symbol

EXAMPLE

A phone rings once every 1024 seconds.

$$
\begin{align*}
P_{\text {ring }} & =1 / 1024 \tag{3}\\
P_{\text {silent }} & =1023 / 1024 \tag{4}
\end{align*}
$$

More Information Theory - 2

EXAMPLE

A phone rings once every 1024 seconds.

$$
\begin{align*}
P_{\text {ring }} & =1 / 1024 \tag{3}\\
P_{\text {silent }} & =1023 / 1024 \tag{4}
\end{align*}
$$

Surprisal:

$$
\begin{align*}
\text { surprisal }_{\text {ring }} & =-\log _{2}(1 / 1024)=10 \text { bits } \tag{5}\\
\text { surprisal }_{\text {silent }} & =-\log _{2}(1023 / 1024) \approx 0 \text { bits } \tag{6}
\end{align*}
$$

More Information Theory - 2

EXAMPLE

A phone rings once every 1024 seconds.

$$
\begin{align*}
P_{\text {ring }} & =1 / 1024 \tag{3}\\
P_{\text {silent }} & =1023 / 1024 \tag{4}
\end{align*}
$$

Surprisal:

$$
\begin{align*}
\text { surprisal }_{\text {ring }} & =-\log _{2}(1 / 1024)=10 \text { bits } \tag{5}\\
\text { surprisal }_{\text {silent }} & =-\log _{2}(1023 / 1024) \approx 0 \text { bits } \tag{6}
\end{align*}
$$

The average surprisal is called the uncertainty, H :

$$
H=P_{\text {ring }} \times \text { surprisal }_{\text {ring }}
$$

More Information Theory - 2

EXAMPLE

A phone rings once every 1024 seconds.

$$
\begin{align*}
P_{\text {ring }} & =1 / 1024 \tag{3}\\
P_{\text {silent }} & =1023 / 1024 \tag{4}
\end{align*}
$$

Surprisal:

$$
\begin{align*}
\text { surprisal }_{\text {ring }} & =-\log _{2}(1 / 1024)=10 \text { bits } \tag{5}\\
\text { surprisal }_{\text {silent }} & =-\log _{2}(1023 / 1024) \approx 0 \text { bits } \tag{6}
\end{align*}
$$

The average surprisal is called the uncertainty, H :

$$
\begin{equation*}
H=P_{\text {ring }} \times \text { surprisal }_{\text {ring }}+P_{\text {silent }} \times \text { surprisal }_{\text {silent }} \tag{7}
\end{equation*}
$$

More Information Theory - 2

EXAMPLE

A phone rings once every 1024 seconds.

$$
\begin{align*}
P_{\text {ring }} & =1 / 1024 \tag{3}\\
P_{\text {silent }} & =1023 / 1024 \tag{4}
\end{align*}
$$

Surprisal:

$$
\begin{align*}
\text { surprisal }_{\text {ring }} & =-\log _{2}(1 / 1024)=10 \text { bits } \tag{5}\\
\text { surprisal }_{\text {silent }} & =-\log _{2}(1023 / 1024) \approx 0 \text { bits } \tag{6}
\end{align*}
$$

The average surprisal is called the uncertainty, H :

$$
\begin{gather*}
H=P_{\text {ring }} \times \text { surprisal }_{\text {ring }}+P_{\text {silent }} \times \text { surprisal }_{\text {silent }} \tag{7}\\
H=P_{\text {ring }} \times\left(-\log _{2}\left(P_{\text {ring }}\right)\right)+P_{\text {silent }} \times\left(-\log _{2}\left(P_{\text {silent }}\right)\right) \tag{8}
\end{gather*}
$$

For M symbols use the sum $\left(\sum\right)$ notation:

$$
H=\sum_{i=1}^{M} P_{i} \times\left(\text { surprisal for } P_{i}\right)
$$

For M symbols use the sum $\left(\sum\right)$ notation:

$$
\begin{align*}
H & =\sum_{i=1}^{M} P_{i} \times\left(\text { surprisal for } P_{i}\right) \tag{9}\\
& =\sum_{i=1}^{M} P_{i} \times\left(-\log _{2} P_{i}\right)
\end{align*}
$$

For M symbols use the sum $\left(\sum\right)$ notation:

$$
\begin{align*}
H & =\sum_{i=1}^{M} P_{i} \times\left(\text { surprisal for } P_{i}\right) \tag{9}\\
& =\sum_{i=1}^{M} P_{i} \times\left(-\log _{2} P_{i}\right) \tag{10}\\
& =-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol }
\end{align*}
$$

More Information Theory - 4

Information is a decrease in uncertainty

$$
\begin{equation*}
R=H_{\text {before }}-H_{\text {after }} \tag{12}
\end{equation*}
$$

More Information Theory - 4

Information is a decrease in uncertainty

$$
\begin{equation*}
R=H_{\text {before }}-H_{\text {after }} \tag{12}
\end{equation*}
$$

Example a sequence logo is computed from equiprobable bases before:

$$
\begin{equation*}
H_{\text {before }}=2 \text { bits } / \text { base } \tag{13}
\end{equation*}
$$

132 p53 binding sites

More Information Theory - 4

Information is a decrease in uncertainty

$$
\begin{equation*}
R=H_{\text {before }}-H_{\text {after }} \tag{12}
\end{equation*}
$$

Example a sequence logo is computed from equiprobable bases before:

$$
\begin{equation*}
H_{\text {before }}=2 \text { bits } / \text { base } \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
H_{\text {after }} & =\text { uncertainty of bases } \\
& =-\sum_{\text {base }=A}^{T} P_{\text {base }} \log _{2} P_{\text {base }} \tag{14}
\end{align*}
$$

More Information Theory - 4

Information is a decrease in uncertainty

$$
\begin{equation*}
R=H_{\text {before }}-H_{\text {after }} \tag{12}
\end{equation*}
$$

Example a sequence logo is computed from equiprobable bases before:

$$
\begin{equation*}
H_{\text {before }}=2 \text { bits } / \text { base } \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
H_{\text {after }} & =\text { uncertainty of bases } \\
& =-\sum_{\text {base }=A}^{T} P_{\text {base }} \log _{2} P_{\text {base }} \tag{14}
\end{align*}
$$

Note: with only one base, $H_{\text {after }}=0$ so $R=2$ bits/base.

Information required to find a set of binding sites

$G=\#$ of potential binding sites

Information required to find a set of binding sites

$G=\#$ of potential binding sites
$=$ genome size in some cases

Information required to find a set of binding sites

$G=\#$ of potential binding sites
$=$ genome size in some cases
$\gamma=$ number of binding sites on genome

Information required to find a set of binding sites

$G=\#$ of potential binding sites
$=$ genome size in some cases
$\gamma=$ number of binding sites on genome

$$
R_{\text {frequency }}=H_{\text {before }}-H_{a f t e r}
$$

Information required to find a set of binding sites

$G=\#$ of potential binding sites
$=$ genome size in some cases
$\gamma=$ number of binding sites on genome

$$
\begin{aligned}
R_{\text {frequency }} & =H_{\text {before }}-H_{a f t e r} \\
& =\log _{2} G-\log _{2} \gamma
\end{aligned}
$$

Information required to find a set of binding sites

$G=\#$ of potential binding sites
$=$ genome size in some cases
$\gamma=$ number of binding sites on genome

$$
\begin{aligned}
R_{\text {frequency }} & =H_{\text {before }}-H_{a f t e r} \\
& =\log _{2} G-\log _{2} \gamma \\
& =-\log _{2} \gamma / G
\end{aligned}
$$

Rfrequency

Information required to find a set of binding sites in a genome

16 positions
1 site
$\log _{2} 16 / 1=4$ bits

16 positions
2 sites
$\log _{2} 16 / 2=3$ bits

Donor and acceptor logos

donor

Rsequence and Rfrequency for Splice Acceptors

$R_{\text {sequence }}$

- Information at binding site sequences (area under sequence logo)
- from: binding site sequences
- 9.4 bits per site

Rsequence and Rfrequency for Splice Acceptors

$R_{\text {sequence }}$

- Information at binding site sequences (area under sequence logo)
- from: binding site sequences
- 9.4 bits per site
$R_{\text {frequency }}$

- Information needed to locate the sites
- from: size of genome and number of sites (length of intron+exon)
- 9.7 bits per site

$$
R_{\text {frequency }} / R_{\text {sequence }}=0.97
$$

Rsequence $=$ Rfrequency Hypothesis

> Hypothesis:
> The information in binding site patterns is just sufficient for the sites to be found in the genome

Binding Site Recognizer			
	Total Pattern Information $=\mathbf{R}_{\text {sequence }}$ (bits)	Information needed to Locate $=\mathbf{R}_{\text {frequency }}$ (bits)	$\frac{\text { Pattern Info }}{\text { Location Info }}$ $=\frac{\mathbf{R}_{\text {sequence }}}{\mathbf{R}_{\text {frequency }}}$
Spliceosome acceptor 2	$\mathbf{9 . 3 5} \pm \mathbf{0 . 1 2}$	$\mathbf{9 . 6 6}$	$\mathbf{0 . 9 7} \pm \mathbf{0 . 0 1}$
Spliceosome donor	$\mathbf{7 . 9 2} \pm \mathbf{0 . 0 9}$	$\mathbf{9 . 6 6}$	$\mathbf{0 . 8 2} \pm \mathbf{0 . 0 1}$
Ribosome	$\mathbf{1 1 . 0}$	$\mathbf{1 0 . 6}$	$\mathbf{1 . 0}$
λ cl/cro	$\mathbf{1 7 . 7} \pm \mathbf{1 . 6}$	$\mathbf{1 9 . 3}$	$\mathbf{0 . 9} \pm \mathbf{0 . 1}$
LexA	$\mathbf{2 1 . 5} \pm \mathbf{1 . 7}$	$\mathbf{1 8 . 4}$	$\mathbf{1 . 2} \pm \mathbf{0 . 1}$
TrpR	$\mathbf{2 3 . 4} \pm \mathbf{1 . 9}$	$\mathbf{2 0 . 3}$	$\mathbf{1 . 2} \pm \mathbf{0 . 1}$
Lacl	$\mathbf{1 9 . 2} \pm \mathbf{2 . 8}$	$\mathbf{2 1 . 9}$	$\mathbf{0 . 9} \pm \mathbf{0 . 1}$
ArgR	$\mathbf{1 6 . 4}$	$\mathbf{1 8 . 4}$	$\mathbf{0 . 9}$
O $(\lambda$ Origin)	$\mathbf{2 0 . 9}$	$\mathbf{1 9 . 9}$	$\mathbf{1 . 0}$
AraC	$\mathbf{1 9 . 3}$	$\mathbf{1 9 . 3}$	$\mathbf{1 . 0}$
Transcription at TATA ${ }^{3}$	$\mathbf{3 . 3}$	$\sim \mathbf{3}$	$\sim \mathbf{1}$
T7 Promoter	$\mathbf{3 5 . 4}$	$\mathbf{1 6 . 5}$	$\mathbf{2 . 1}$

[^0]
$R_{\text {sequence }}$ versus $R_{\text {frequency }}$-meaning

The information in the binding site pattern ($R_{\text {sequence }}$) is close to
The information needed to find the binding sites ($R_{\text {frequency }}$)

$R_{\text {sequence }}$ versus $R_{\text {frequency }}$ - meaning

The information in the binding site pattern ($R_{\text {sequence }}$) is close to
The information needed to find the binding sites ($R_{\text {frequency }}$)
But for a species in a stable environment:

- size of genome (G) is fixed (e. g. E. coli has 4.7×10^{6} bp)
- number of binding sites (γ) is fixed (e. g. there are ~ 50 E. coli LexA sites) so $R_{\text {frequency }}=\log _{2} G / \gamma$ is fixed

$R_{\text {sequence }}$ versus $R_{\text {frequency }}$ - meaning

The information in the binding site pattern $\left(R_{\text {sequence }}\right)$ is close to
The information needed to find the binding sites ($R_{\text {frequency }}$)
But for a species in a stable environment:

- size of genome (G) is fixed (e. g. E. coli has 4.7×10^{6} bp)
- number of binding sites (γ) is fixed (e. g. there are ~ 50 E. coli LexA sites) so $R_{\text {frequency }}=\log _{2} G / \gamma$ is fixed

Rsequence must evolve towards Rfrequency!

Evolution of Binding Sites

- $\quad R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$

Evolution of Binding Sites

- $\quad R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency }}$?
- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- genomes containing 4 bases (A, C, G, T)
- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- genomes containing 4 bases (A, C, G, T)
- a defined genome size (G)
- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- genomes containing 4 bases (A, C, G, T)
- a defined genome size (G)
- predetermined binding site locations (γ) (to fix the frequency of sites)
- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- genomes containing 4 bases (A, C, G, T)
- a defined genome size (G)
- predetermined binding site locations (γ) (to fix the frequency of sites)
$R_{\text {frequency }}$ is fixed
- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- genomes containing 4 bases (A, C, G, T)
- a defined genome size (G)
- predetermined binding site locations (γ) (to fix the frequency of sites)
$R_{\text {frequency }}$ is fixed
- a recognizer gene encoded in the sequence: use a weight matrix

How A Weight Matrix Works

Sequence matrix, $s(b, l, j)$ for sequence j

base b	position 1									
	C	A	G	G	T	C	T	G	C	A
	-3	-2	-1	0	1	2	3	4	5	6
A	0	1	0	0	0	0	0	0	0	1
C	1	0	0	0	0	1	0	0	1	0
G	0	0	1	1	0	0	0	1	0	0
T	0	0	0	0	1	0	1	0	0	0

Individual information weight matrix, $R_{i w}(b, l)$

base b	position 1									
	-3	-2	-1	0	1	2	3	4	5	6
A	+0.4	+1.3	-1.4	-8.8	-5.8	+1.1	+1.5	-1.8	-0.7	+0.0
C	+0.6	-0.8	-2.4	-7.8	-5.5	-3.7	-1.6	-2.2	-0.5	-0.2
G	-0.6	-1.0	+1.6	$\boxed{+2.0}$	-6.2	+0.7	-1.1	+1.7	-0.3	+0.4
T	-1.0	-0.9	-1.7	-5.8	+2.0	-3.4	-1.6	-2.2	+0.9	-0.5

How A Weight Matrix Works

Sequence matrix, $s(b, l, j)$ for sequence j

Individual information weight matrix, $R_{i w}(b, l)$

| base b | position 1 | | | | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| A | +0.4 | +1.3 | -1.4 | -8.8 | -5.8 | +1.1 | +1.5 | -1.8 | -0.7 | +0.0 |
| C | +0.6 | -0.8 | -2.4 | -7.8 | -5.5 | -3.7 | -1.6 | -2.2 | -0.5 | -0.2 |
| G | -0.6 | -1.0 | +1.6 | -2.0 | -6.2 | +0.7 | -1.1 | +1.7 | -0.3 | +0.4 |
| T | -1.0 | -0.9 | -1.7 | -5.8 | $\boxed{+2.0}$ | -3.4 | -1.6 | -2.2 | +0.9 | -0.5 |

Sequence Walker

Unevolved Ev Creature

Unevolved Ev Creature

Unevolved Ev Creature

Unevolved Ev Creature

Genome positions available $G=256$ bases $R_{\text {frequency }}=\log _{2} 256 / 16=4$ bits

Unevolved Ev Creature

Unevolved Ev Creature

Genome positions available $G=256$ bases $R_{\text {frequency }}=\log _{2} 256 / 16=4$ bits

Unevolved Ev Creature

- EVALUATE each creature

- EVALUATE each creature
- translate the recognizer gene into a weight matrix

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:
\square missing a site at a right place

Evolution Cycle

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:
\square missing a site at a right place
\square finding a site at a wrong place

Evolution Cycle

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:
\square missing a site at a right place
\square finding a site at a wrong place
- Sort the creatures by their mistakes

Evolution Cycle

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:
\square missing a site at a right place
\square finding a site at a wrong place
- Sort the creatures by their mistakes
- REPLICATE: the best creatures are duplicated and replace the worst ones

Evolution Cycle

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:
\square missing a site at a right place
\square finding a site at a wrong place
- Sort the creatures by their mistakes
- REPLICATE: the best creatures are duplicated and replace the worst ones
- MUTATE all genomes randomly


```
C A A T T T G T A C A A A C T G A AlGA C A G G
```


Evolution of Binding Sites

Evolution of Binding Sites

Evolution of Binding Sites

Mathematics of Evolution 1

Shannon Information Measure of Binding Site Patterns

Information is measured as a decrease in uncertainty:

$$
R=H_{\text {before }}-H_{\text {after }} \quad \text { (bits per symbol) }
$$

Before binding there are 4 possible bases at each position l, so the uncertainty is:

$$
\begin{aligned}
H_{\text {before }}(l) & =\log _{2} 4 \quad(\text { bits per base }) \quad(16) \\
& \approx 2
\end{aligned}
$$

Mathematics of Evolution 2

Before binding there are 4 possible bases at each position l, so the uncertainty is:

$$
\begin{aligned}
H_{\text {before }}(l) & =\log _{2} 4 \quad \text { (bits per base) } \\
& \approx 2
\end{aligned}
$$

After binding the uncertainty depends on the frequencies of bases b at positions l in a binding site, $f(b, l)$:

$$
\begin{aligned}
H_{a f t e r}(l)= & -\sum_{b \in\{A, C, G, T\}} f(b, l) \log _{2} f(b, l) \quad(17) \\
& (\text { bits per base })
\end{aligned}
$$

The information at a position l is:

$$
\begin{aligned}
R_{\text {sequence }}(l) & =H_{\text {before }}(l)-H_{\text {after }}(l) \\
& \approx 2-H_{\text {after }}(l) \quad \text { (bits per base) }
\end{aligned}
$$

Mathematics of Evolution 3

The information at a position l is:

$$
\begin{align*}
R_{\text {sequence }}(l) & =H_{\text {before }}(l)-H_{\text {after }}(l) \tag{18}\\
& \approx 2-H_{\text {after }}(l) \quad \text { (bits per base) }
\end{align*}
$$

The total site information is:

$$
\begin{aligned}
R_{\text {sequence }} & =\sum_{l}\left(H_{\text {before }}(l)-H_{\text {after }}(l)\right) \\
& \approx 2 l-H_{\text {after }} \quad(\text { bits per site })(19)
\end{aligned}
$$

During evolution, as $H_{\text {after }} \downarrow, R_{\text {sequence }} \uparrow$

Acknowledgements

- Larry Gold
- Gary Stormo
- Andrzej Ehrenfeucht
- Paul Anagnostopoulos

Version

version $=1.20$ of evtalk.tex 2012 Mar 15

[^0]: ${ }^{1}$ T. D. Schneider, G. D. Stormo, L. Gold, and A. Ehrenfeucht. J. Mol. Biol., 188:415-431, 1986.
 ${ }^{2}$ R. M. Stephens and T. D. Schneider. J. Mol. Biol., 228:1124-1136, 1992.
 ${ }^{3}$ F. E. Penotti. J Mol Biol, 213:37-52, 1990.

