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ABSTRACT

The relationship between information and energy
is key to understanding biological systems. We
can display the information in DNA sequences
specifically bound by proteins by using sequence
logos, and we can measure the corresponding
binding energy. These can be compared by
noting that one of the forms of the second law
of thermodynamics defines the minimum energy
dissipation required to gain one bit of information.
Under the isothermal conditions that molecular
machines function this is Emin = kBT ln2 joules
per bit ( kB is Boltzmann’s constant and T is the
absolute temperature). Then an efficiency of binding
can be computed by dividing the information in
a logo by the free energy of binding after it has
been converted to bits. The isothermal efficiencies
of not only genetic control systems, but also
visual pigments are near 70%. From information
and coding theory, the theoretical efficiency limit
for bistate molecular machines is ln2 = 0.6931.
Evolutionary convergence to maximum efficiency is
limited by the constraint that molecular states must
be distinct from each other. The result indicates
that natural molecular machines operate close to
their information processing maximum (the channel
capacity), and implies that nanotechnology can
attain this goal.
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INTRODUCTION

Measuring information and energy in biological
systems

To address the relationship between information and
energy in biological systems requires first being able
to measure each one. Standard methods for measuring
the energy dissipation of molecular interactions are well
established (1, 2), but the corresponding measure of
information (3) is rarely determined. To make a measure
of information that can be compared to an energy
difference, that measure must express a state change
corresponding to the binding interaction. The easiest
systems to work with are DNA binding proteins since
the patterns to which they bind can be readily determined
by sequencing technologies, and from these data one can
compute the information gained in the process (3). The
state change that can be measured for both information
and energy is between the molecule being anywhere
on the DNA (but already non-specifically bound to the
DNA, thebeforestate), and molecules bound to specific
functional sites (theafter state). To make a comparison,
not only must the state changes be the same but also the
number of molecules involved must be equivalent. In this
paper measurements for both energy and information are
reported on a per-molecule basis.

Information is displayed by sequence logos

For the information measure, sequence logos are
a widely used graphical representation of aligned
biological sequences such as DNA or RNA binding sites
or protein motifs (4, 5). In a conventional logo, the
symbols of the polymer alphabet are stacked one on
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Figure 1. Sequence logo for RepA binding sites from bacteriophage
P1 (GenBank Accession K02380.1). The height of each letter is
proportional to the corresponding base frequency at that position in
the binding sites. The height of the entire stack is the sequence
conservation in bits (with error from the small sample size shown)
(12, 13, 14). This often varies according to a sine wave. Where the
DNA faces the binding protein the information can be up to 2 bits (fully
conserved, closed triangles), while in the minor groove notmore than
1 bit can be conserved in B-form DNA (open triangles). The variation
between these two because of the twist of the DNA helix is shown by
the sine wave (7, 8). Comparing the logo to the sine wave, anomalous
positions having more than 1 bit in the minor groove are revealed to
be in positions+7 and+8 (blue box), suggesting that the sites are not
B-form DNA when bound by RepA.

top of another, with their heights made proportional to
their frequency at that position. The symbols are sorted
by frequency so that the most common letter is on top.
The utility of logos is that the sequence conservation is
indicated by scaling the entire stack of letters to represent
the information at that position in the binding site.
For example, because of the structure of DNA, protein
contacts into the major groove can be fully conserved
at 2 bits of information but the minor groove has half
the maximum sequence conservation (6) and so cannot
exceed 1 bit of information. Many logos show this effect
(7, 8). However, the sequence logo for bacteriophage
P1 RepA binding sites (Fig. 1) has, between two well
conserved major groove contact regions (0 to+3 and
+11 to +13), a striking anomaly in the minor groove
at +7 where conservation is near 2 bits (7, 9). Similar
anomalies are observed in other proteins that bind DNA
replication origins (8, 10) and these imply that the
DNA is not B-form. Indeed, further experimental work
revealed that after binding to a DNA replication origin,
RepA probably flips the conserved T out of the helix
to initiate DNA replication (11). In information theory,
as with any other well-established theory, anomalies can
lead to new biological understanding.

The vertical scale of a sequence logo is given in bits of
information. A bit is the amount of information needed
to choose between two equally likely possibilities. In
the case of nucleic acids, there are four possible bases.
These can be arranged into two sets, for example the
purines (A and G) and the pyrimidines (C and T). One
bit of information is sufficient to choose between the
purines and pyrimidines and a second bit of information
distinguishes the exact base. Thus sequence logos for
binding sites have a scale from 0 to 2 bits.

Comparing information to binding energy

Sequence logos provide a precise, quantitative
measurement of the information in binding sites.
How is this related to the binding energy? Previous work
(15, 16) assumed that the binding energy determines
the sequence conservation in a one-to-one function
so that for each binding site there would be only one
energy that is proportional to one number of bits.
However, a protein could evolve to bind to the same
sequence with either more or less energy, just as a
coin flipped to different heights still supplies no more
than 1 bit of information, so the relationship between
information and energy is an inequality. The lower
bound of energy dissipation can be determined from
the second law of thermodynamics to bekBT ln2 joules
per bit wherekB is Boltzmann’s constant andT is the
absolute temperature (17, 18, 19). In this paper we
recognize that this second law relationship can be used
as an ideal conversion factor to express binding energy
dissipation as the maximum number of bits that could
be gained. By comparing this potential maximum bits
to the actual information observed in a logo, we form
an efficiency. However, it is important to clarify the
relationship between this new thermodynamic definition
of efficiency and the previously defined thermodynamic
efficiency.

Classical thermodynamic efficiency

In an automobile, burning fuel expands to drive the
engine. Because it operates between two temperatures
Thot andTcold such a heat engine has the classical Carnot
efficiency of

ηCarnot=
Thot−Tcold

Thot
(1)

(20, 21). Jaynes noted that when one uses the Carnot
formula for a biological system having 70% efficiency,
one gets an anomalous result: at the temperature of a
warm day,Tcold = 300 K, and equation (1) givesThot =

1000 K, which would burn tissue (22). This absurd
result indicates that this thermodynamic formula does
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not apply to most biological systems since molecules
inside cells function at a single temperature (22, 23). For
example, in the retina of the eye the protein rhodopsin
detects light (24). Thermal equilibrium is attained within
picoseconds after rhodopsin absorbs a photon (25, 26).
Likewise, a DNA binding protein such as the restriction
enzyme EcoRI, when bound nonspecifically to DNA,
rapidly comes to local equilibrium with the surrounding
solution (21). Once EcoRI has moved by Brownian
motion to its specific binding sequence, 5′ GAATTC 3′,
it binds and releases heat. The heat dissipates, leaving the
DNA and protein again at local equilibrium. Since the
final temperature is the same as the initial temperature,
the Carnot efficiency is zero. Hence it cannot be used in
molecular biology.

Communications efficiency

Yet a precisely defined, practical measure of efficiency
is essential to characterize and understand biological
processes. In this paper we show how an efficiency
derived from both the second law of thermodynamics
and information theory can be applied to isothermal
biological processes. The key pieces of information
theory needed to do this were published by Claude
Shannon in 1948 (12) and 1949 (27). Then, in 1959
Pierce and Cutler used information theory to define an
efficiency measure for satellite communications (28, 29),

ǫ =
ln

(

P
N +1

)

P
N

(2)

where P/N is the ‘signal-to-noise ratio’, the powerP
dissipated at the receiver in joules per second, versus
the thermal noise powerN interfering with the signal
there. This formula was derived from Claude Shannon’s
famous channel capacity equation,

C =W log2

( P
N
+1

)

(bits per second) (3)

in which the bandwidthW defines the range of
frequencies used in the communications as, for example,
by a radio station (12, 13, 27). The channel capacity
theorem states that as long as the data rateR (also in bits
per second) is less than or equal to the channel capacity
C, communication can be established with as few errors
as desired. To reach this ideal requires that the messages
be coded to protect them against noise. For example,
Morse code can replace verbal communications in noisy
situations. Likewise, the 8th bit of an ASCII computer
character (byte) (30), which is known as a ‘parity bit’,
can be set so that the total number of 1’s is even. If an
odd number of 1’s is received, an error is detected. Sixty
years of developing sophisticated codes and computer
chips to implement them has led to reliable modern

communications, including cell phones, the internet
and interplanetary data transmissions. In this paper we
demonstrate the application of information theory to an
equally broad range of molecular machines.

Molecular machine capacity

We have previously shown that a formula equivalent to
the channel capacity, equation (3), can be developed for
molecular machine states:

Cy= dspacelog2

(

Py

Ny
+1

)

(bits per operation) (4)

wheredspace is the number of independent parts of the
molecular machine (23),Py is the energy dissipation
from the machine per operation andNy is the thermal
noise power interfering with the machine during an
operation. The subscripty indicates that the coding space
is for mechanical potentials instead of voltage potentials.
That is, the model is for a physical object such as a
weight on a spring instead of an electrical oscillator built
from capacitors and inductors (31).

The units in equation (4) are ‘bits per operation’,
in which an ‘operation’ is, for example, moving from
nonspecific to specific DNA binding by EcoRI so
operations in equation (4) replace seconds in equation
(3). Both capacity equations only apply to living things
because the key concept used to derive them is that
messages and molecular states can be distinct (32). This
additional constraint does not derive from physics or
thermodynamics; having discrete molecular states is a
biological criterion imposed by natural selection.

Rhodopsin, for example, has two biologically
important physical states: not having seen a photon and
having seen one. If these states were not stable and
distinct, the molecule would rapidly switch between
them because of thermal impacts, giving an animal
the impression that there is light when in the dark.
These animals will be eliminated by natural selection,
leaving only those who have evolved sufficiently distinct
states. Likewise, if EcoRI in the bacteriumEscherichia
coli were to bind to incorrect positions on the DNA
other than GAATTC, the genomic DNA would be
destroyed because only that sequence is protected
from EcoRI digestion by the corresponding DNA
methylase (33). The extreme precision of restriction
enzymes (34, 35, 36, 37, 38) and the thermal stability
of rhodopsin (39) are well known but the underlying
fundamental reason has not been widely appreciated.
Shannon’s channel capacity theorem, as applied to
molecules (23), guarantees that by appropriate coding
it is possible for a molecular machine to evolve distinct
states, and once it has done so, it can operate at
its capacity with as few errors as is necessary for
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survival. It is important to note that the channel capacity
is an ideal upper bound that cannot be exceeded
because thermal noise cannot be avoided by molecules.
However, unless there are additional constraints, we
might anticipate that biological systems can evolve to
this limit.

RESULTS AND DISCUSSION

Molecular machine isothermal efficiency

Since the capacity equation and theorem can be extended
from communications systems to states of molecules
(23), the efficiency can also be extended, and the
resulting formula is equivalent to equation (2). The
derivation is as follows. Consider a coin. Neglecting the
unstable condition of balancing on the edge, a coin can
have two states, heads up and tails up. When a coin has
kinetic energy it rapidly switches between these states
as when, for example, it bounces around in a box. For
the coin to settle down to one state or the other, it
must dissipate energy to the surroundings. The minimum
energy dissipation, derived from the channel capacity or
the second law of thermodynamics (with the constraint
that the temperature is constant) (17, 18), is

Emin = kBT ln2 (joules per bit) (5)

wherekB is Boltzmann’s constant (joules per kelvin),
T is the absolute temperature (kelvin) and ln2 gives
the units of ‘per bit’. Obviously a coin will dissipate
much more energy than this minimum because it is an
inefficient macroscopic device. How much more can be
defined by the relationship between the dissipated energy
Py and the informationCy:

E ≡
Py

Cy
(joules per bit). (6)

In the limit asPy→ 0,E→ Emin, soE ≥ Emin (18).

The efficiency of the coin or molecular machine is
then defined as the minimum possible energy dissipation
divided by the actual dissipation (usingNy = dspacekBT
(18)):

ǫt ≡
Emin

E
=

ln
(

Py
Ny
+1

)

Py
Ny

(joules per bit)
(joules per bit)

. (7)

Notably, the isothermal efficiency is exclusively a
function of the power-to-noise ratio,Py/Ny. Using
the channel capacity theorem, it can be shown that
the efficiency of a real measurable system,ǫr , cannot

�t
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Figure 2. Efficiency curve for isothermal molecular machines.
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exceed the theoretical limit defined byǫt, as shown in
Fig. 2. Both the Carnot efficiency [equation (1)] and
the efficiency developed here [equation (7)] are derived
using the second law of thermodynamics (22), but only
the latter applies to isothermal processes.

Computations of the isothermal efficiency

We now show how to apply this theory to biological
processes, using EcoRI as an example. This molecule
precisely selects GAATTC from all possible hexamers
on DNA. To choose a single base, such as the first
G, requires 2 bits (3, 13). For example, one may ask
“Is it a purine (A or G)?” (a single bit will answer
this question) and “Is it in the set A or T?” (a second
one-bit answer). Because bits are additive (12) the total
information needed to specify GAATTC is 6× 2 = 12
bits and EcoRI ‘gains’ 12 bits when it binds by reducing
its positional entropy along the DNA string by that
amount (3, 40). This can be displayed graphically with a
sequence logo, as shown in Fig. 3.

Binding, however, requires that the molecules stick
together and to do so some energy must be dissipated
(46), as in the example of the bouncing coin. This energy
dissipation can be measured by electromobility shift
assays (1) or directly by microcalorimetry (2), and it is
expressed as the specific binding constantKspec, the ratio
of specific binding at GAATTC (Ks for theafterstate) to
nonspecific binding anywhere on the DNA (Kn for the
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Figure 3. Sequence logo (4) of the 5′ GAATTC 3′ sequences bound
by the restriction enzyme EcoRI (41). As can be seen by summing
the information of 2 bits over 6 positions, the total information is 12
bits per site. In most binding sites on DNA the information varies with
position in the site (Fig. 1) (3, 7, 42), but since information is additive
when positions are independent (12), the total informationcan also
be computed in those cases (43). If the positions are not independent,
the correlations can be accounted for by the appropriate computation
(44, 45). In this case since there is no variation in the EcoRIsite, the
positions are independent and the total 12 bits is obtained by a simple
sum (12).

beforestate):

Kspec= Ks/Kn (8)

For EcoRI,Ks andKn have been measured, andKspec

is 1.6× 105 ± 1.4× 104 on theλ srI 2 site (47). The
specific binding energy is

∆G◦spec= −kBT lnKspec (joules per binding) (9)

where we have chosenkB so as to give results on a
per-molecule basis, instead of the gas constantR which
gives joules per mole.∆G◦spec represents the maximum
energy available for the selection process (48, 49). Since
Emin is the ideal minimum energy dissipation per bit,
equation (5), we introduce the use ofEmin as an ideal
conversion factor to determine the maximum number of
bits corresponding to a given energy dissipation:

Renergy≡ −∆G◦/Emin= log2 Kspec (10)

(bits per binding)

which is a remarkably simple equation. In the case
of EcoRI, Renergy = 17.3± 0.1 bits/binding. That is,

the molecule could have, by the second law of
thermodynamics, made an average of 17.3 discrete yes-
no selections for the given energy dissipation. But from
the sequence GAATTC we know that it only selects
Rsequence= 12 bits per binding. This must be less than
the capacity,

Rsequence≤Cy (11)

so in parallel with equation (6) we can define

Er = −∆G◦/Rsequence (joules per bit). (12)

Er must exceedEmin (18). The observed efficiency
measures the discrepancy between the information and
the energy as

ǫr = Emin/Er (13)

= Rsequence/Renergy (14)

= 12/17.3±0.1

= 69.4±0.4%

by substituting equations (12) and (10) into (13).
Other binding sites for EcoRI give similar but slightly
different efficiencies:λ srI 5 is 73.7± 0.6% and pBR
is 66.7±1.4%, suggesting unaccounted for experimental
variation or some influence of the surrounding sequence
that was not used in the information measure. However,
EcoRI is used here as an example because it is a
well-characterized DNA binding protein that has both
non-specific binding data and reported errors.

As a more general example, let’s calculate the
isothermal efficiency of the RepA protein binding to
its DNA sites. The sum of the varying sequence
conservation in Fig. 1 for the range from−1 to
+16 is Rsequence= 24.52± 1.17 bits/site (reporting the
standard error of the mean for the individual information
distribution (50)). The non-specific binding energy is not
known so we will (tentatively) assume it is zero (i.e.
log2 Kn = 0). The binding constantKs has been reported
as KD = 0.10(±0.09) nM (51). Taking log2 we find
Renergy= log2 Ks− log2 Kn = 33.22±1.30 (bits per site).
So from equation (14) the efficiency isǫr = 0.74±0.05. If
there is non-specific binding, it would lowerRenergyand
raise the efficiency.

Including EcoRI and RepA, the information used
by DNA binding proteins for a variety of genetic
control systems has been measured (3, 4, 52) and
18 of 19 of them also have efficiencies near 70%
(manuscript in preparation). Strikingly, the quantum
efficiency of rhodopsin (66± 2% for 12 species) (53),
bacteriorhodopsin (67±4%) (54) and photoactive yellow
protein (64%) (55) are also around 70%. Why are all
these molecular machines∼70% efficient?
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Evolution of isothermal efficiency up to 70%

Each of the molecular machines having 70% efficiency
functions isothermally and all of them select a discrete
state from amongst several possible states. EcoRI and
other genetic recognizers select patterns on DNA (3),
while the rhodopsin protein and its retinal chromophore
selects the stable bathorhodopsin (metarhodopsin II)
configuration which triggers reactions leading to a nerve
impulse (24, 56).

As Tribus and McIrvine have shown (57), energy
dissipation from human activities and machines such
as computers is orders of magnitude higher than the
thermodynamic limit [equation (5)]. The corresponding
efficiencies of human activities are on the order of
10−21, while computers (in 1997) had reached 10−6

(58). Using equation (2), Pierce and Cutler reported that
for amplitude modulation (AM) radio signals, “good
quality speech or television is a factor of several hundred
times less efficient than the ideal”, while for frequency
modulation (FM) the efficiency can be at most 5%
(28). The biological efficiencies near 70% are high
by human technology standards. However, this means
that for every 100 photons absorbed by rhodopsin,
30 are wasted as heat (25, 56). It would be a great
evolutionary advantage to see those lost 30 photons.
Any DNA-protein contacts that dissipate extra energy
while not contributing information to help locate sites
of EcoRI, would be lost by mutations. Because the
information needed to locate binding sites is fixed
(3, 40), this atrophy drives the efficiency up for nucleic
acid recognizers. Something must be preventing these
molecular machines from exceeding 70% efficiency.

A power to noise ratio exceeding 1 explains 70%
efficiencies

The observation that many molecular machines are 70%
efficient can be understood by using the isothermal
efficiency given by equation (7). In Fig. 2, the second
law corresponds to the horizontal dashed line at 100%.
Shannon’s channel capacity theorem can be used to
demonstrate that the region between the second law
bound and the isothermal efficiency curve cannot be
reached by any system. The curve shows that an
efficiency of 70% corresponds to aPy/Ny ratio of 1.
Because the curve defines an upper bound, an upper limit
on the efficiency corresponds to a lower limit onPy/Ny.
So the efficiencies of 70% can be explained by proposing
thatPy > Ny.

x

yr

Figure 4. Geometry for combining two Gaussian distributions.

Communications coding spaces

The reason that the energy dissipationPy barely
exceeds the thermal noiseNy can be understood by
considering the elegant geometrical derivation of the
channel capacity by Shannon in 1949 (27), in which he
represented messages as points in a high dimensional
coding space. A complex message, such as a song, can
be sampled and digitized to produce a stream of bits
represented by voltage pulses in a wire. The amplitude
of the first pulse is independent of that of the second
pulse and, more importantly, the thermal noise which
interferes with both affects each independently. There
are four possible combinations for two pulses and these
may be represented in two dimensions as a square. If
we introduce a third pulse, the possible combinations
are represented by the corners of a cube. A message
consisting of 100 pulses is then expressed as a point
on the corner of a 100 dimensional hypercube. These
points representing messages can be placed into other
arrangements besides cubic spacing to form different
lattices (59).

Thermal noise interferes with the pulses, smearing
them out to a Gaussian distribution in each dimension.
The combination of several independent Gaussian
distributions forms a spherical distribution (23, 27), as
discussed in reference (32). To see this, we note that
since the noise of two pulses is independent, we can
graph the magnitude noise of the first pulse on thex axis
and the second on they axis to form a ‘noise vector’
in the direction to the point (x,y) as shown in Fig. 4.
Because the noise is Gaussian, the probability of having
a disturbancex has the form

P(x) = e−x2
(15)
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(ignoring the constants, which will drop out in a
moment) and for the second pulse,

P(y) = e−y2
. (16)

The probability of being at a point (x,y) on thex-y plane
is

P(x,y) = P(x)P(y) (17)

since x and y are independent. Combining these three
equations gives

P(x,y) = e−(x2
+y2)
= e−r2

. (18)

Geometrically,x and y are the legs of a triangle with
hypotenuser. If the joint probabilityP(x,y) is a constant,
then by equation (18) r is a constant and the possible
solutions trace out a circle. Furthermore, this is true
for every joint probability, so the overall distribution
is circularly symmetric at every radius (27, 32). This
argument extends to a third pulse, so the noise is
represented by a sphere around the original signal point
in three dimensional space. In general, when two or
more independent Gaussian distributions are combined
orthogonally in one space they form a fuzzy spherical
shell, and at higher dimensions the sphere is hollow
and well defined because no matter which direction the
thermal noise vector is pointing in the high dimensional
space, its magnitude is approximately constant over
many pulses (21, 23, 27, 60).

A transmitted message is received as a point
somewhere on this sphere around the original message
point (23, 27, 32). Given the point on the sphere,
the receiver merely needs to choose the closest sphere
center to remove the noise. This is possible as long as
the spheres do not intersect significantly. The channel
capacity formula [equation (3)] was derived by counting
how many nonoverlapping thermal noise spheres can be
packed together into the larger sphere defined by the
power dissipation and the thermal noise. Coding of the
messages is defined by the sphere locations in the lattice
packing (27).

Molecular coding spaces

To model the coding space of molecules, we replace the
voltage pulses with a mechanical equivalent; ‘pins’ in a
lock make a good analogy (23). Each pin is a cluster of
atoms of a molecule that moves as a unit independently
of the motion of other pins. To the degree that the pins
are not independent, the effectiveness of the lock is
reduced and, correspondingly, a molecular machine will
function below capacity. (Alternatively, a pin could be

represented by a vibrational mode of the molecule. By
definition these normal modes are independent.) As in a
lock, the independently moving pins cooperate to change
the state of the molecule.

Since the thermal noise impacting on the molecule is
Gaussian and there are many pins, the energetic state of a
molecular machine such as EcoRI or rhodopsin can also
be represented as a sphere in a high dimensional coding
spaceY and an equivalent capacity can be derived for
these molecules [equation (4)] (19, 23, 32). For example,
when rhodopsin is in the dark, the thermal noise
impacting on it from all directions can be represented by
a sphere. The direction of this energy changes randomly
by Brownian motion (19). As long as two thermal noise
spheres do not intersect significantly, the molecule will
only rarely switch between the states and there will be
few errors. Upon absorbing a photon the radius of the
sphere expands.

The before, forward and degeneratecoding states

Different frequencies of light have different energies, but
over most of the spectrum the efficiency of rhodopsin
is constant (61). The reason for this effect is that after
absorption, the excess photon energy is lost, leaving
rhodopsin in a high energy metastable state (21, 54)
encompassing several possible lower energy molecular
states. It is from this ‘before’ state that the molecule
must choose a new ‘forward’ configuration (23) or it
will collapse back to its original state, which we coin the
‘degenerate’ state. Fig. 5 shows these three state spheres.

In Fig. 5, both theforwardand thedegeneratespheres
have radii determined by thermal noise, and both are
enclosed by thebefore sphere. However, there is one
unusual feature of high dimensional space that must be
handled to correctly draw a diagram of the relationships
between the three spheres. Because it represents the
same thermal noise energy as thedegeneratesphere,
the forward state sphere is represented by a straight
line segment having a length the same as the diameter
of the degeneratesphere. This flattened representation,
which Shannon used in his proof of the channel capacity
theorem (27), can be understood by considering an
analogy for noise, the effect of winds on an airplane
in a turbulent storm. As the plane flies forward it
is buffeted in three dimensions. Two of these throw
it off course while the third advances or retards it.
Likewise, if the plane were flying in a 100 dimensional
space, 99% of the buffeting wind would throw it off
course, while only 1% would affect its progress. Thermal
noise affects molecular decisions in a similar way.
Thus, with respect to the direction of motion between
molecular states, thermal noise can be represented as a
flat disc at 90◦ to that motion; as engineers (following
Shannon) we can neglect the 1%. However, if 1%
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sphere
degenerate after

sphere
forward after

Ny

Py+Ny

Py

sphere
before

Figure 5. Velocity-potential state diagram for bistate molecular
machines. See (23) for more details about this space and these spheres.
Three spheres in a high dimensional space are represented astwo
concentric circles and a line segment. The outer circle represents the
before sphere with radius

√

Py+Ny; the inner circle represents the
degenerate aftersphere and the horizontal line segment represents
the forward after sphere. Bistate molecular machines have these two
after spheres, both of which have a radius determined by thermal
noise,

√

Ny. The vertical arrow indicates the direction and magnitude
of the velocity,

√

Py, that the molecular machine moves at to escape
from thedegeneratesphere state. Note that the Pythagorean theorem
defines the relationship between the three labeled line segments which
form a triangle since the direction of motion is perpendicular to the
forward sphere line segment (23). The diagram is derived from Fig.
5 of Shannon’s 1949 paper (23, 27). For an alternative diagram and
proof, see the Appendix.

leads to too much error (by state switching from the
forward back to thedegeneratestate andvice versa),
the errors may be reduced further by evolving a higher
dimensionality. Many molecular machines are likely to
operate in this realm of high dimensions because the
potential dimensionality of a molecule is the number of
degrees of freedom, and this depends on the number
of atoms, n, according to 3n − 6 (3 dimensions of
motion for each atom, less 3 translational motions and 3
rotations of the whole molecule, as measured in infrared
spectroscopy). Only some of the atoms can be involved
in the recognition process required to define states, but
large molecules such as EcoRI on DNA [n= 9106 (62)]
and rhodopsin [n = 5511 (63)] could be operating in
many dimensions. So for these examples the error could
be negligible, and in Fig. 5, theforward aftersphere is
drawn as a straight line segment.

If the forward sphere intersected thedegenerate
sphere, then rhodopsin could switch between these states
merely by thermal noise. Thus theforward state must
be sufficiently displaced from thedegeneratestate.
The degeneratesphere is exactly in the center of the
beforesphere because the photon excitation causes high

energy vibrations of the entire molecule in no particular
direction so these two spheres are drawn as concentric
circles. Having absorbed a photon, rhodopsin is in the
beforestate ready to ‘choose’ between thedegenerate
and theforward state.

Coding space explanation ofPy/Ny > 1

For a molecular machine, the time unit is defined
by the operation which selects theafter states, so
power is equal to the energy dissipated during one
state selection. Furthermore, the kinetic energy of each
thermally vibrating pin is proportional to the square of
its maximum velocity when the potential energy is zero.
Combining these two ideas, we see that the maximum
pin velocity is proportional to the square root of the
power. So, given the available energyPy, the maximum
velocity that the molecule can attain to escape the
degeneratesphere state is

√

Py (23). This is shown as
an arrow connecting the centers of thedegenerateand
forward states in Fig. 5.

Likewise, the unavoidable thermal noise energy
Ny that flows into and through the molecule during
a molecular machine operation interferes with the
corresponding power dissipation vector and has a
magnitude of

√

Ny (23). In the high dimensional space,
most of the noise is at right angles to the power, so
together these two orthogonal vectors define the radius
of the beforesphere to be

√

Py+Ny. From thebefore
state rhodopsin will dissipate energy and select either
the forward or the degenerate afterstate. These two
states will be distinct from each other only if they do
not intersect, which means that

√

Py must exceed the
radius of thedegeneratethermal noise sphere,

√

Ny,
and soPy/Ny > 1 and the efficiency cannot be higher
than ln(2)= 69.3% by equation (7). Fig. 6 shows the
geometrical configuration whenPy = Ny. This diagram
and the efficiency equation explain why many molecular
machines have efficiencies near 70%.

Why is the degeneratesphere avoided as much as
possible by molecular machines? For every point on
the beforesphere there is a corresponding point on the
degeneratesphere. They represent the same motions
except that thebeforesphere motions have more energy.
Yet in the before sphere all possible substates are
available to choose from since it encloses manyafter
spheres, while in thedegeneratesphere the energy has
been dissipated so there is no possibility of making
choices anymore. If the molecular machine enters the
degeneratesphere it would have wasted its energy. For
rhodopsin, it would return to its original state and fail
to detect a photon. Worse, if thedegeneratesphere
intersected theforward sphere for rhodopsin, rhodopsin
could switch between the two and one would see flashes
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Figure 6. Velocity-potential state diagram for optimal bistate
molecular machines in whichPy = Ny. In this condition a molecular
machine cannot have an efficiency higher than ln(2)≈ 70%. Spectral
coloring suggests increasing energy with radius.

of light while in the dark, which would effectively
render one blind. For EcoRI thedegeneratesphere
represents binding to and cutting any DNA sequence,
which would be fatal to the bacterium. So in both
cases significant intersection between thedegenerateand
forwardspheres is eliminated by natural selection. In the
high dimensional coding space, this leads toPy > Ny and
ln(2) as the maximum efficiency.

Generality of coding spaces

The astute reader may have noticed that the coding
spaces for rhodopsin and EcoRI appear to be constructed
from different physical bases. The coding space
for rhodopsin appears to be about the motion of
atoms in physical space for distinguishing its coding
spheres, while EcoRI has specific DNA sequences that
correspond to distinct states and hence to different
coding spheres. That is, there appear to be two different
ways to measure the efficiency of molecular machines:
successful switching to total attempts at switching
(‘yes/no’ by rhodopsin) and information gained to
energy dissipated (‘info/energy’ by EcoRI). While these
are indeed different, the commonalities between the
two systems lead to the same theoretical picture in
coding space (Fig. 5 and Fig. 6), consistent with
the general nature of information theory (13). First,
both molecular machines, as defined previously (23),
function under thermal noise and thus their parts
(pins) move by approximately Gaussian distributions.
Second, these parts are or can evolve to be moving
independently. Since the channel capacity is reduced
if there are dependencies (27), by making the parts
more independent the capacity can be maximized during
evolution [dspaceincreases in (4)].

At this point, given Gaussianicity and independence,
the thermal motions of an ideal resting molecule are
modeled as a sphere in a high dimensional space in both
cases (23). For rhodopsin, intersecting spheres means
switching states. Thermal noise could switch the state
of rhodopsin so that the animal would see light when
there was no photon. For EcoRI, intersecting spheres
means confusion of sequences. For example instead of
only binding GAATTC, thermal noise could flexibly
distort the EcoRI protein so that it might also bind
AAATTC, leading to inappropriate digestion of the
genome [‘star activity’ (64)]. The coding space must
map to the physical molecule, but the mapping can
be different in different cases, just as an IF statement
in a computer language may be supported by relays,
vacuum tubes, transistors, or proteins and DNA in a
genetic control circuit (65). That is, software must be
supported by some physical mechanism, the hardware,
but one usually cannot tell from the running software
what that underlying mechanism is. Shannon’s channel
capacity theorem implies that both EcoRI and rhodopsin
can evolve to avoid sphere intersection (confusion of
states), thereby maximizing the capacity and increasing
the efficiency. Any biological system having distinct
states that function under thermal noise—and they all
must according to the third law of thermodynamics—
will have these properties. If having two distinct resting
after states gives an advantage to the organism, then in
the simplest cases the molecular machine efficiency will
be maximized, evolving up to the bound of the curve
shown in Fig. 2, according to equation (7), with the
energy dissipationPy decreasing until it just exceeds
Ny. At this point the efficiency will have evolved to
ln(2)≈ 70%, as is observed.

An implication of this result is that the molecular
machines must have indeed evolved to have the highest
possible efficiency, as predicted by Lotka in 1922 (66).
Further, since the efficiency is directly related to the
channel capacity [see equation (7)], they must also
be operating close to the maximum possible capacity.
As Shannon pointed out (27) to do so they must not
only have codes, but they also must be using nearly
optimal codes. Recent experimental work suggests that
the DNA binding protein Fis has a coding system
(67) because it shows the high dimensional threshold
effect predicted by Shannon (27). The observed sharp
transition from binding to non-specific binding as the
individual information of Fis binding sites is decreased
below zero bits is apparently caused by the distinct edge
of the DNA binding site recognition sphere. Similar
threshold effects have been observed in restriction
enzymes and other DNA recognition proteins (68). A
major challenge in biology and nanotechnology is to
understand what the codes of molecular machines are
such that they can create sharp recognition effects and
how the codes lead to the optimal efficiency of 70%.
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SUMMARY

The area under a sequence logo represents the
information conserved at a binding site (Rsequence). In
contrast, the information needed to find the binding sites
is fixed by the size of the genome and the number
of binding sites required for physiological functions
(Rf requency). Generally, the logo information evolves to
match this required value (Rsequence→Rf requency) (3, 40).

If the information in a binding site is indirectly
determined by physiological functions, then how does
that determine the corresponding binding energy? We
can express the binding energy as the number of bits
that could be gained for that energy dissipation by
using a version of the second law of thermodynamics
that applies when the temperature does not change,
which is the case for molecular binding. This allows
us to compare the actual number of bits gained by
binding (Rsequence) to the maximum bits possible for the
given energy dissipation (Renergy) to form an efficiency
(ǫr = Rsequence/Renergy) that, unlike the Carnot efficiency,
applies at constant temperature. Because the energy
dissipated during binding may decrease by loss of
unnecessary contacts, we anticipate that most molecular
systems will have evolved to a maximum efficiency. This
turns out to be near 70% for a number of systems.

Following the footsteps of Bell Labs satellite
engineers in 1959 (28, 29), we can use the mechanical
equivalent of Shannon’s channel capacity [equation (4)]
(27) to define an equation for the isothermal efficiency
[equation (7)] which relates it to the binding energy
normalized by the thermal noise. Using the isothermal
efficiency curve, we find that to explain the observed
70% efficiencies, the energy dissipated during binding
must exceed the thermal noise flowing through the
molecular machine at the same time.

The reason for this effect can be understood by
considering a high dimension coding space. In this space
the instantaneous velocity and potential energy of a
molecule is represented by a point on a sphere that
corresponds to the state of the molecule. The point
moves by Brownian motion across the sphere and if
the sphere significantly intersects another sphere, then
the molecule can readily switch states. Physiology and
the environment set an acceptable error rate at which
inappropriate switching can occur. Inspection of the
geometry of the space shows that to attain sufficient state
separation only requires that the energy dissipated just
exceed the thermal noise. Using the efficiency equation,
this predicts a maximum efficiency of ln2= 0.69, which
is close to observed values.

When he developed information theory, Claude
Shannon included a criterion which cannot be found
anywhere in classical thermodynamics nor physics,

namely that messages should be, and can be, chosen to
be distinct (32). The equivalent concept for biological
molecular machines is that molecular states can evolve
to be distinct. This idea can be developed by noting
that since the mechanical equivalent of voltage is
the maximum potential energy (or maximum velocity)
of harmonic oscillators, we can reappoint Shannon’s
geometrical conception of communications into the
molecular situation. From that comes the important
concept that it is possible to attain distinct molecular
states (with a given switching error rate) if the molecules
use a high enough dimension. They can do this by
evolving many independent parts (pins) that vibrate as
harmonic oscillators under thermal noise, which means
that their velocities have Gaussian distributions (23).
A combination of independent Gaussian distributions
is spherical, so Shannon’s message spheres correspond
to distinct molecular states, also represented by
spheres. Separation of states becomes easier in a high
dimensional space because the surfaces of the spheres
become more distinct (21, 23, 27, 60). To get from one
state to another requires a velocity in a certain direction,
and that corresponds to a particular rearrangement of the
molecule’s structure.

The concept of multiple distinct molecular states
represented by spheres allowed us to steal the key prize
of information theory for use in molecular biology,
namely the channel capacity theorem (23). Restating
the channel capacity theorem as a ‘molecular machine
capacity theorem’, we see that because they are able
to change and adapt through Darwinian evolution,
biological states of molecules may become as distinct
as necessary to reduce error to a level acceptable
for robust survival. The molecular machine capacity
theorem implies that if a system is to approach capacity
it must do so by creating appropriate codes (27). So
the discovery reported in this paper of 70% efficiencies
leads to the additional discovery that molecular states not
only can (by the molecular machine capacity theorem)
but actually do evolve codes to become as distinct as
necessary for survival.
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APPENDIX

In this Appendix we present an alternative geometric
diagram that leads to a simple proof for whyPy/Ny > 1.
The derivation depends on several observations about
the high dimensional spheres used to model molecular
states.

To recapitulate, in Shannon’s 1949 model for a
communications system, a series of voltage pulses
are sent over a wire to form a message (27). While
the transmitted pulses may be either 0 or 1 volts
(for example), the received pulses vary by Gaussian
distributions around each of these values because
of thermal noise (23). Since the noise affects each
pulse independently, the pulses can be represented
by geometrically orthogonal vectors in a space with
dimensions of volts. Although the transmitted message
is a single point in this high dimensional space, the
received message is dislocated by the thermal noise to
a nearby location in the space. If a single message, given
by particular pulse train, were repeated many times the
received points for that message would form a sphere
in the space. The assigned locations of the spheres for
different messages is called the coding. Given a received
set of noisy voltage pulses, represented by a single point
in the space, the nearest sphere center is chosen so as
to remove the noise. This process is called decoding.
The challenge for designing a communications system
is to place the spheres so that they do not overlap and
as a consequence decoding will frequently produce the
original signal. This is the key concept underlying all
modern communications systems and it explains why
their error rates are so low.

A similar model was developed to represent the states
of molecular machines (19, 23, 32). The current state of a
molecular machine is represented by the set of maximum
velocities of independently moving components (pins)
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Figure 7. Molecular machine coding space configuration.
Relationships between dissipated energy from a molecular machine,
Py, the thermal noise in the molecular machineNy and the coding
states are shown. PointsD (degeneratesphere) andF (forward sphere)
represent the attractor centers of spheres in a high dimensional coding
space.M is the midpoint between the spheres. The distance between
the sphere centers isu and the radius of each sphere is

√

Ny. Starting
from the attractor centered atD, a molecular machine moves a distance
√

Py towards theforward sphereF to place the sphere center atB, but
the molecule itself is deflected orthogonally by thermal noise

√

Ny to
the pointA. The distance fromA to B is

√

Ny, the distance fromA to
D is d0 and the distance fromA to F is d1.

of the molecule. (The square root of the energy is
proportional to the maximum velocity of an oscillator
in a thermal bath.) As with the voltage model, the pins
are disturbed by thermal noise and so their maximum
velocities have a Gaussian distribution, which means that
all of the possible movements of the molecule can be
represented by a sphere in a ‘velocity space’,Y (23).
Distances in this space represent changes in the shape
of the molecule in a particular way, in other words,
conformational rearrangements. These rearrangements
can occur spontaneously if two spheres intersect.

In Shannon’s model the dimensionality is presumed
to be extremely large so the spherical shells are thin.
Since molecules are finite, the velocity space will have
a finite dimensionality so the sphere shells will have a
distinct thickness (23). To avoid intersections the sphere
centers may have to be separated further than twice the
sphere radii. A buffer zone between the spheres reduces
errors, especially in the lower dimensional spaces that
biological systems may be forced to evolve in.

These considerations lay the groundwork for
constructing a simple geometric diagram representing
the initial (‘degenerate’) state of a molecule, placed at
the origin of the velocity space and a single ‘forward’
sphere placed some distance away (Fig. 7). Both spheres
have radii

√

Ny and the lattice spacing of the coding
space isu, following standard conventions (59) [p. 26].
Creating a buffer zone by setting

u> 2
√

Ny (19)

ensures that the fuzzy spheres have reduced intersection.
The factor of 2 represents the minimum separation of the
circles shown in Fig. 7, but a larger value could be used
without substantially altering the proof.

The maximum velocity (potential) that the molecule
has available to switch states is

√

Py (23). Suppose
that the velocity

√

Py is in the direction of theforward
sphere and sufficient to place the sphere center at point
B, which can be inside theforward sphere or to the
right of the midpointM between the spheres. In the
high dimensional space, thermal noise added to this
displacement will, for the most part, be at right angles
to the direction of the powerPy. (In a 100 dimensional
space 99% of the noise will be at right angles to the
power direction.) Thus the instantaneous state of the
molecule is represented by a pointA shown in the figure.
[In Shannon’s Figure 5,A is the ‘received’ point (27).]

Decoding in Shannon’s voltage model consists of
choosing the closest sphere center. Correspondingly,
decoding in this molecular machine velocity model
consists of selecting the closest sphere center by the
means of an attractor around which the molecule
performs noisy damped oscillation according to a multi-
dimensional Ornstein-Uhlenbeck process (69). Which
sphere will probably become the attractor center?
Assuming that the closest sphere center will become
the attractor, we can determine this by comparing two
distances,d0 the distance fromA to D, the center of the
degeneratesphere andd1 the distance fromA to F, the
center of theforward sphere. By inspection:

d2
0 =

√

Py
2
+

√

Ny
2 (20)

= Py+Ny (21)

and

d2
1 = (u−

√

Py)
2
+

√

Ny
2. (22)

Decoding to theforward sphere occurs when

d1 < d0 (23)

from which we quickly obtain

√

Py > u/2 (24)

by substituting equations (21) and (22) into the square of
(23). Finally, from equations (19) and (24) we find:

√

Py >
√

Ny (25)
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or

Py > Ny (26)

from which a maximum efficiency of ln(2) follows
directly using equation (7). WhenPy/Ny > 1, decoding
will usually return the molecular machine to the same
state, so in the absence of powerPy the molecular
machine will be stable around one attractor at a time.

All points B to the right of midpointM decode to
F. In the limit as the buffer zone is reduced at higher
dimensions,

√

Py → u/2 =
√

Ny and B→ M. The line
segmentAB can then represent the points that decode
to the forward sphere. This corresponds to Figures 5
and 6, in which theforward sphere is represented by
a straight line segment perpendicular to the power. As
the dimension of the space increases, effectivelyF →
B, because the noise in the direction of the power is
negligible, and sod1 →

√

Ny, giving the ‘classical’
Shannon triangle with sides

√

Ny,
√

Py and
√

Py+Ny
(27). All points of theforward sphere are outside the
degeneratesphere whenPy > Ny. Thus it does not
matter which representation of the high dimensional
space geometry is used. However, the representation of
the forward sphere as a straight line is more appropriate
when determining the radius of the volume in which
point A can reside since it must be within a sphere of
radiusd0 =

√

Py+Ny (23, 27). Thisbeforevolume and
the volume of theafter spheres are used to compute the
machine capacity (23).


