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A brief personal history is given about how information theory can be applied to binding
sites of genetic control molecules on nucleic acids. The primary example used is ribosome
binding sites in Escherichia coli. Once the sites are aligned, the information needed to de-
scribe the sites can be computed using Claude Shannon’s method. This is displayed by a
computer graphic called a sequence logo. The logo represents an average binding site, and
the mathematics easily allows one to determine the components of this average. That is, given
a set of binding sites, the information for individual binding sites can also be computed. One
can go further and predict the information of sites that are not in the original data set. Infor-
mation theory also allows one to model the flexibility of ribosome binding sites, and this led
us to a simple model for ribosome translational initiation in which the molecular components
fit together only when the ribosome is at a good ribosome binding site. Since information the-
ory is general, the same mathematics applies to human splicejunctions, where we can predict
the effect of sequence changes that cause human genetic diseases and cancer. The second ex-
ample given is the Pribnow ‘box’ which, when viewed by the information theory method,
reveals a mechanism for initiation of both transcription and DNA replication. Replication,
transcription, splicing, and translation into protein rep resent the central dogma, so these
examples show how molecular information theory is contributing to our knowledge of basic
biology.
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In 1978 I went to graduate school with the explicit intentionof finding a mathematics that de-
scribes living things. Living things are too beautiful for them not to be described by mathematics.
In the University of Colorado, it is the practice for students to do rotations in various labs before
setting down in one lab. At the same time we all took a ‘core’ course covering the fields of the
Department of Molecular, Cellular and Developmental Biology. In his lectures, Larry Gold pre-
sented translational initiation which he was elegantly dissecting by using the powerfulrII genetics
of bacteriophage T4.

By 1961 therII region had been used in remarkable genetic experiments by Francis Crick,
Sydney Brenner and their colleagues to prove that the genetic code is read in steps of three
[Crick et al., 1961]. David Pribnow, who had identified the−10 region of bacterial promoters
while at Harvard [Pribnow, 1975], was hard at work with Sid Shinedling and others in Larry
Gold’s lab sequencing the old T4 mutations and showing in molecular detail what had only
been inferred by elegant genetics before. Many cute molecular puzzles were revealed about
translational initiation [Singeret al., 1981, Shinedlinget al., 1987]. Larry presented to my class
the Shine and Dalgarno (SD) region which is about 10 bases in front of the initiation codon
[Shine & Dalgarno, 1974]. The SD is similar to Pribnow’s ‘box’ as both are about 10 bases up-
stream of the initiation point of translation and transcription, respectively. It was known that the 3′

end of the 16S rRNA, which forms the main skeleton of the 30S subunit of the ribosome, bound
to the SD. The initiation codon is the first codon translated and it is usually AUG but sometimes
GUG, rarely UUG and perhaps one CUG inE. coli. The SD is a pattern in the mRNA and so
one challenge was to characterize the pattern since it is notalways a perfect complementary match
to the 16S rRNA. However, the problem that intrigued me was tolook for other SD-like patterns
around the initiation codon. I never found anything, but it launched my career.

Working on this problem meant that we had to gather sequencessince GenBank—the in-
ternational repository of genetic sequences at the National Library of Medicine in Bethesda,
Maryland—did not exist yet. So we typed the sequences of known E. coli genes into the com-
puter.

I immediately realized that I had a problem. If I typed only those parts that I was interested
in—the regions just around the ribosome binding site (RBS)—and later decided that I wanted a
bigger or different region, then I would have lots of detailed and tricky editing to do. With only
4 letters, DNA is hard to read and errors would abound! So we decided to enter entire published
sequences. But this led to another problem: how to extract just the sequences I needed for a
particular problem? From this need was born Delila—DEoxyribonucleic acid LIbrary LAnguage.
Delila is a small computer language specifically developed for extracting a set of sequences from a
library of sequences [Schneideret al., 1982, Schneideret al., 1984, Schneider, 2002a]. With this
tool in hand, we could investigate ribosome binding sites and, of course, work on many other
problems.

By this time Gary Stormo and Jeff Haemer had joined the effort. Jeff, a brilliant geneti-
cist, slowly transformed himself into a computer scientist. From Jeff I learned the powerful
Unix idea of building good tools that each do one job well. Forexample, Jeff’s elegant trans-
lation of the atchange program into Perl made atchange into agenerally useful automation tool
[Schneider, 2002b]. Together Jeff and I realized that the output of Delila should have the same
format as its input. This allowed us to gather allE. coli DNA sequences into one database and
then to extract just those sequences that represented mRNA.Then we used Delila a second time
to extract the regions around ribosome binding sites, thus guaranteeing that our analysis was only
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with sequences that the ribosome could come in contact with.
Jon McCabe and Stephen O’Haire of the computer science department wrote a searching pro-

gram, and Gary Stormo set out to determine ‘rules’ (regular expressions) for finding the Shine-
Dalgarno. He discovered that no single set of rules would work [Stormoet al., 1982b]. This
lesson is still not understood by most molecular biologiststoday! The lesson is: don’t use rules
and don’t use consensus sequences. Consensus sequences area model of the binding site usually
created by taking the most frequent base at each position of the site. At that time, it was not clear
how to replace consensus sequences or rules with better models of binding sites. In this paper I
will briefly describe how neural nets and later information theory elegantly filled that niche.

Fortunately Andrzej Ehrenfeucht, a computer scientist, suggested to us to try a simple neural
network—the perceptron. This worked beautifully, and, using Delila and other programs that he
built, Gary was able to find weight matrices that separated the known 124 ribosome binding sites
from the 78,000 possible ribosome binding sites in our mRNA library [Stormoet al., 1982a]. To
my knowledge, this was the first use of a neural net in what became the field of bioinformatics,
though we didn’t call it that at the time.

So the perceptron replaced rules and we could identify ribosome binding sites. For example,
translational fusions oflacZ to theuncB gene had the odd property of giving a high signal if the
fusion was early in the gene, but after a certain point further downstream the signal dropped. I
thought that there might be an internal ribosome binding site, and found one by using the percep-
tron. We then confirmed this experimentally [Mattenet al., 1998].

Two lessons came from results like this. First, we could learn from the physicists the idea of
doing both theory and experiments. At that time, and to a goodextent this is still true today, most
molecular biology is entirely experimental. However, theory allows one to guide experiments and
to identify anomalies. Physicists have come to accept the two approaches, and to appreciate the
tension between them that spurs further work. This has yet tooccur in molecular biology. If one
makes a prediction in a submitted paper, one may get the complaint from a reviewer that it should
be tested by experiment before publication. If an experiment is done, then the complaint is that one
doesn’t need theory! Yet when theory and experiment go hand-in-hand, we often discover things
that go unnoticed by others [Schneideret al., 1986, Schneider & Stormo, 1989, Pappet al., 1993,
Lyakhovet al., 2001, Schneider, 2001]. The second lesson is that one should be careful not to
look under the lamppost all the time. Everybody ‘knows’ thatribosome binding sites are at gene
starts, but they could be in other places too. If one builds search tools that are too rigid, the others
won’t be found. This is quite common these days with ‘gene finding’ programs that do not identify
alternative splice junctions. We frequently find good splice junctions in places that ‘they shouldn’t
be’ and sometimes we can demonstrate that these cryptic sites have interesting effects which can
explain genetic diseases [Roganet al., 1998].

Being able to find binding sites did not help me to understand what the sites are like. I wanted
to see more than just strings of letters, as shown in Fig. 1; I wanted to get an intuitive feeling for⇐Fig 1
their characteristics. Although one can easily see the ATG at the initiation codon in the figure at
positions 0 to 2, the SD—in the region of−9—is difficult to pick out unambiguously. We had
realized by this time that one could count the number of each base at each positionl in the sites,
and these could be normalized to give the frequencies of bases at each position. I presented my
work about the frequencies of bases around ribosome bindingsites to Andrzej Ehrenfeucht’s group.
Afterwards, when everyone else had left, he asked in his wonderful thick accent “Why don’t you
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try the information transform?” “What’s that?” I asked. He (probably!) wrote:

−∑ p ln p (1)

on the blackboard. “What does that mean?” I inquired. “Go look it up!” So, like a good Zen
master, he gave me a virtual kick in the pants and launched my career.

Three quarters of a year later I was working on a program and atone point in the code I had
access to the number of each base at each position around the ribosome binding sites. I decided
to try the ‘information transform’ and soon recognized thatI had to compute information as a
difference. In modern terms (which took years to understandand develop!), I had to compute
two uncertainties and subtract them to get the information.The first uncertainty is what bases a
ribosome sees as it scans the mRNAbefore binding. There are four bases and the ribosome does
not know which will be available next as it moves by random Brownian motion along an mRNA
before it finds a ribosome binding site where it can start translation into protein. Indeed, it must
be prepared for anything. So the ribosome is ‘uncertain’ by one possibility in four for each base it
encounters.

To pick one thing out of two equally likely events takes 1 bit of information. Following earlier
work by Hartley, Claude Shannon, father of information theory, argued that information should
be additive and so must be based on the logarithm of the numberof possibilities [Shannon, 1948,
Pierce, 1980, Schneider, 1995]. That is, log22 = 1 bit. It takes one yes-no question and an answer
of either ‘heads’ or ‘tails’ to specify the state of a coin. Likewise, to pick one base out of the four
in DNA takes log24= 2 bits. For example, if the bases are arranged in a square, then two questions
will pick out one of them: ‘Is it on the top?’ and ‘Is it on the right?’

Why did Shannon use the logarithm? Suppose that we have two independent communication
channels, one with symbolsh andt (a coin) and the other withA, C, G, andT (DNA). Together
these channels can send 2×4 = 8 possible symbol pairs—hA, hC, hG, hT, tA , tC, tG, andtT .
Each symbol pair would carry log28 = 3 bits of information. The information is additive since
log22+ log24 = log2(2×4) = log28.

So before a ribosome binds to a binding site, it sees all four bases and isuncertain by log24= 2
bits. After binding the ribosome sees various frequencies of bases. The initiation codon AUG,
GUG, and rarely UUG or CUG, always has a U in the second and a G inthe third position. (When
DNA is copied—transcribed—into RNA, U replaces T.) There isonly one possibility for the second
position, so log21 = 0 bits. The information that the ribosome gains is the difference between its
uncertainty before (2 bits) and its uncertainty after (0 bits), which is 2 bits.

I cannot overemphasize the important concept that information must always be computed as a
difference. This was the way Shannon did it, but the literature is littered with failed attempts to use
information theory in molecular biology because authors did not realize this.

Sometimes the uncertaintyafter is not zero and so the information is lower. This correspondsto
noise in a communications channel, and Shannon called it theequivocation. It represents sequence
variations that the ribosome does not care about. If a DNA binding protein accepted two possible
bases, T or C in its binding sites, the uncertainty after would be 1 bit and the information at that
position would be 2−1 = 1 bit. In the extreme, if the ribosome doesn’t care about a position, as
when it is outside the binding site, then all four bases are allowed and the uncertainty after is 2
bits. So the information is 2−2 = 0 bits.

A more complicated example is the first base of the initiationcodon, which has the frequencies:
A: 3551, C: 1, G: 298, and T: 50. How can the uncertainty be computed? Shannon recognized that
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theaverage is the important quantity to compute:

uncertainty= H = −
M

∑
i=1

pi log2 pi bits/symbol. (2)

See my information theory primer for how this can be derived intuitively [Schneider, 1995].pi is
the probability of theith symbol out ofM possible symbols. For ribosomes we know the frequencies
of basesb ∈ {A,C,G,T} of each position (l), which we can write asf (b, l). The frequencies are
an estimate of the probability of the bases, so plugging thisinto (2) gives:

Ha f ter(l) = − ∑
b∈{A,C,G,T}

f (b, l) log2 f (b, l) bits/base. (3)

Frequencies are only anestimate of the probabilities and a correction (not shown) must be made
to account for this, especially when there are few sequences[Schneideret al., 1986].

Before binding, for simplicity, we will assume all bases areequally likely. This is true forE.
coli, but see reference [Schneider, 1999] for a discussion. ForM = 4 equally likely bases, equation
(2) collapses to

Hbe f ore = log24 = 2 bits/base. (4)

Showing that this is indeed the case is a worthy exercise for the reader.
The information atl is the decrease of uncertainty that the ribosome experiences:

Rsequence(l) = Hbe f ore −Ha f ter(l) bits/base. (5)

Following Shannon,R stands for the rate of information transmission, bits per base in this case. The
perceptive reader will notice that the uncertainty (equation (2)) corresponds to the entropy and that
the information represents a decrease of the entropy. The relationship between entropy, uncertainty
and information has been discussed in reference [Schneider, 1991b], but that fascinating topic is
beyond the scope of this paper.

Fig. 2 shows the information curve for ribosome binding sites inE. coli. Note that the initiation ⇐Fig 2
codon shows up as a peak at positions 0, 1 and 2. Since information is additive for independent
systems, and since the positions of ribosomes are independent by our measurement of correlations
[Stephens & Schneider, 1992], one can compute the total information as:

Rsequence = ∑
l

Rsequence(l) bits/site. (6)

The total information is a nice additive measure of sequenceconservation for biology. The implica-
tions of this important number are beyond the scope of this paper. Briefly, however, one can use the
size of the genome and the number of sites to predict how much information is needed to find the
binding sites. This is often close toRsequence [Schneideret al., 1986, Schneider & Stormo, 1989,
Herman & Schneider, 1992, Schneider, 2000].

Ten years after starting this work, in 1990, Mike Stephens (ahigh school student at that time)
and I invented a way to show the patterns [Schneider & Stephens, 1990]. Fig. 3 shows the sequence⇐Fig 3
logo for the curve of Fig. 2. The logo consists of stacks of letters representing the DNA bases. The
height of each stack is the information in bits. The height ofeach letter is proportional to the
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frequency of the corresponding base, and the bases are sorted to put the most frequent one on top.
With sequence logos, one can finally see the patterns in binding sites.

How can we see what individual binding sites look like? Again, the approach begins with
Shannon’s uncertainty equation, (2), which we can rewrite as

H =
M

∑
i=1

pi(− log2 pi) bits/symbol. (7)

From this viewpoint, the uncertainty can be seen as the average of the function

ui = − log2 pi bits/symbol. (8)

This quantity was recognized by Tribus in 1961 and called thesurprisal [Tribus, 1961]. With this
in mind, we can look at the sequence logo (Fig. 3) and recognize that it is representing theaverage
of many ribosome binding sites.

We know that the ‘area’ under the logo,Rsequence, is the average sequence conservation. Sup-
pose that we could assign to each ribosome binding site an individual information, so that the aver-
age of these isRsequence. It turns out that this is easy [Schneider, 1997a, Schneider & Rogan, 1999].
The state change is from being anywhere on the sequence to being at a specific location, so we
compute the difference between the averagebefore surprisal (the uncertainty) andafter surprisal:

Ri(b, l) = 2− (− log2 f (b, l)) bits/base. (9)

This forms a matrix of 4 byl numbers, as shown in Fig. 4. A specific sequence will pick out one ⇐Fig 4
number at each of thel positions [Stormoet al., 1982a, Schneider, 1997a]. Add these together to
get the individual information of the sequence,Ri. It can be shown that the average of these over all
of the input sequences is indeed the totalRsequence. John Spouge proved that formula (9) is unique;
there is no other way to compute the individual information [Schneider, 1997a].

Using this method, we can represent individual binding sites with a computer graphic called
a sequence walker (Fig. 5). These walkers correspond to the 10 sequences in Fig. 1. Unlike⇐Fig 5
the logo, a walker consists of only one letter per position, because it is an evaluation of a single
sequence by an individual information weight matrix. The height of each letter in a walker gives the
information weight of the base according to equation (9). Positive values represent good binding
(∆G < 0) while negative values represent bases that are not favored (∆G > 0) [Schneider, 1997a,
Schneider, 1991b].

With the advent of the sequence logo, individual information, and sequence walker techniques
we can finally avoid using neural networks. The advantage is that there is no training process
to compute the information, and one can build a model directly from sequences known to bind.
In neural net training one needs examples of sequences that do not bind to the recognizer and,
generally, good data are not available. Often people will assume that there are no sites near to the
known ones, which experience has shown us is a bad assumptionbecause there are often important
sites near by [Schneider, 1997b, Hengenet al., 1997], or worse, they make up data for training!
With information theory we can gain a theoretical understanding of the data.

From the logo (Fig. 3) we can immediately see that the SD is notvery big. It is only a small
lump to the left of the initiation codon. The SD does not show up well in the walkers either
(Fig. 5). Since we aligned the sequences by the initiation codon, the SD are not well aligned and
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their patterns are spread out, making the picture of the SD blurred. The reason is that in different
genes the 3′ end of 16S rRNA binds at different distances from the initiation codon. We have
recently shown that this variable distance can be nicely accounted for by using information theory
[Shultzabergeret al., 2001].

To dissect the ribosome binding sites into their SD and initiation region (IR) parts, we need to
align the SD region. An extremely clean way to do this is to maximize the information content. The
method is simple [Schneider & Mastronarde, 1996]. The SD regions are first isolated away from
the IR by embedding them in random sequences. Then the SD sequences are shuffled back and
forth while the total information contentRsequence is computed. With a few tricks, such as making a
look-up table for computing− f (b, l) log2 f (b, l) because there are a finite number of frequencies,
this method is very fast. Fortunately binding sites are tight enough that we can avoid introducing
gaps, which would make the alignment problem explode exponentially in the number of sequences
and number of allowed gaps. To our delight this multiple alignment process converged nicely. The
left side of Fig. 6 shows the sequence logo for the aligned SD [Shultzabergeret al., 2001]. The ⇐Fig 6
pattern that appears matches the 3′ end of the 16S rRNA. This is remarkable because we did not
use the 16S sequence to do the alignment. The correlation is astrong confirmation that the SD
exists and is bound by the 16S. Thus, for the first time, we wereable to create an unbiased picture
of what the SD ‘looks like’.

The right side of Fig. 6 is the initiation region where the first tRNA delivers the N-
formylmethionine to initiate translation. The middle of the figure shows the relative distribution
of distances between the SD and the IR. How can we take this into account when computing the
individual information?

Using information theory, the solution is, again, quite simple. We have a distribution of dis-
tances produced during the multiple alignment process. This forms the probability distribution
shown in Fig. 6. The uncertainty of any probability distribution can be computed from equation
(2). Therefore, the surprisal for each individual distancecan be computed from equation (8). The
total information for a single ribosome binding site can be computed by adding the individual infor-
mation of the SD and IR and subtracting the spacing surprisal. With this parameter-free approach,
we were able to model the majority of ribosome binding sites in E. coli [Shultzabergeret al., 2001].

How can we see what one site looks like with this flexible model? Fig. 7 shows examples
of flexible sequence walkers. The model is searched across a sequence, with all SD-IR distances
allowed and the ones with the highest information content are displayed. In most cases the SD
shows up as a distinct lump of information at various distances from the initiation codon.

The SD lump is about 10 or 11 bases away from the initiation codon, which suggested to
us a simple model for translational initiation [Shultzabergeret al., 2001]. Since 11 bases is a
single twist of double helical RNA, the idea is that the double helix formed by the SD and the
mRNA and the interaction of the initiation fMet-tRNAMet

f with the first codon may form a sin-
gle structure that nestles onto the surface of the 30S subunit. The sinusoidal shape of the logo
suggested that the SD helix is bound on one side, as we had observed for DNA-protein interac-
tions [Pappet al., 1993, Schneider, 2001]. Since the 30S and 50S ribosomal subunits are compact
objects [Nissenet al., 2000, Banet al., 2000, Wimberlyet al., 2000], we proposed that the recog-
nition of the SD might occur by the double helix fitting into a slot on the 30S subunit surface. If
the SD in the mRNA does not match the 16S 3′ end well, then the helix would not fit into the slot.
When there is a good fit, all the parts come together compactlyand this would be the initiation con-
figuration. Three-dimensional X-ray crystals with and without the mRNA were obtained by Harry
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Noller’s laboratory [Yusupovaet al., 2001]. They observed that the SD helix is indeed enclosed in
a cleft, with the N terminus of protein S8 pointing into the major groove. These results account for
the sequence logo and support the idea that initiation occurs by via a compact bound state.

I’d like to end this essay by returning to the Pribnow ‘box’, which resembles the SD in that
it is also 10 bases upstream of the point of initiation, but for transcription instead of translation.
The sequence that David Pribnow observed is often called a TATAAT consensus [Lewin, 1997]
since those are the most frequent bases. But the logo revealssomething very different (Fig. 8)⇐Fig 8
[Schneider, 2001]. What’s going on here? The logo shows thatthree of the middle bases are far less
conserved than conventionally understood. The highly conserved T on the right side at position−7
is in the region opened by RNA polymerases during transcriptional initiation (shown by the solid
and dashed boxes). The bases to the left of position−9 are outside the opened region. We propose
that after sigma factor binding, the initiation is accomplished by swinging the T at position−7
out of the DNA. This ‘base flipping’ has been observed in X-raycrystal structures of protein-DNA
complexes [Roberts, 1995, Roberts & Cheng, 1998] and we havemade similar observations with
sequence logos in several other systems which are known to open DNA [Schneider, 2001].

These observations led us to perform experiments and the results indicate that bacteriophage
P1 probably uses base flipping to initiate its DNA replication [Lyakhovet al., 2001]. It is likely
that base flipping is a general mechanism used to open DNA to initiate both RNA transcription and
DNA replication, as predicted by Rich Roberts [Roberts, 1995]. This discovery was possible only
because sequence logos give such a clear picture of binding sites.

This paper is a brief introduction to the field I call Molecular Information Theory. I have
mentioned only a few of the results. Notably missing is our work with human splice junctions,
which has led to a form of medical diagnosis [Roganet al., 1998]. What does the future hold?
Shannon not only worked out how to measure information, but he also derived an equation for the
maximum information that can be transmitted over a channel.This channel capacity can be linked
to fundamental thermodynamics and molecular biology [Schneider, 1991a, Schneider, 1991b] and
from this connection many new discoveries are coming.

Acknowledgments. I thank Ryan Shultzaberger for creating Fig. 6; Krishnamachari Annan-
garachari, Brent Jewett, Jerry Chandler, Ryan Shultzaberger, and Jim Ellis for comments on the
manuscript.
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                   ------------                   +++++
                   221111111111--------- +++++++++11111
                   109876543210987654321012345678901234
                   ....................................
 U00096  3734 +  1 gcacgagtactggaaaactaaatgaaactctacaat
 U00096  8238 +  2 tgtttaaagagaaatactatcatgacggacaaattg
 U00096 12163 +  3 atatatagtggagacgtttagatgggtaaaataatt
 U00096 14168 +  4 tctaggggcaatttaaaaaagatggctaagcaagat
 U00096 17489 +  5 cacctgaaagagaaataaaaagtgaaacatctgcat
 U00096 22391 +  6 aaatacggaaccgagaatctgatgagtgactataaa
 U00096 25826 +  7 taaatataagagcaaacctgcatgtctgaatctgta
 U00096 29651 +  8 gaatattctctggagggtgttttgattaagtcagcg
 U00096 30817 +  9 gtaatcaggagtaaaagagccatgccaaaacgtaca
 U00096 49823 + 10 tttttttatcgggaaatctcaatgatcagtctgatt

Figure 1: Some proven ribosome binding sites.
The first 10 experimentally proven (‘verified’) ribosome binding sites in the EcoGene 12 dataset
[Rudd, 2000] are shown aligned by the initiation codon, which covers positions 0 to 2. The se-
quences are written 5′ on the left to 3′ on the right and translation is to the right. The sequences
come from the completeE. coli genome, GenBank Accession U00096 [Blattneret al., 1997].
These particular example gene sequences are oriented clockwise (+) on the genome, but about
half of all genes have the other orientation. Above the sequences are coordinate positions,l, writ-
ten vertically. Color coding (or shading) helps one to see patterns.
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   l    a    c    g    t  Rs(l)

Rs(l) = Rsequence(l), Information in bits
0.0 1.0 2.0

 -21  175  115   96  183   0.05
 -20  186  120  117  146   0.02
 -19  201  121   88  159   0.06
 -18  209  109   87  164   0.08
 -17  215   99   90  165   0.09
 -16  207  112   87  163   0.07
 -15  189  105  109  166   0.04
 -14  204   96  143  126   0.05
 -13  229   84  138  118   0.09
 -12  215   74  183   97   0.12
 -11  198   48  269   54   0.33
 -10  180   32  308   49   0.45
  -9  189   16  313   51   0.54
  -8  235   40  232   62   0.32
  -7  210   57  189  113   0.14
  -6  216   70  132  151   0.10
  -5  196   97  118  158   0.05
  -4  214  108   96  151   0.07
  -3  255  100  127   87   0.14
  -2  163  162   63  181   0.09
  -1  162  177   86  144   0.04
   0  509    0   48   12   1.43
   1    0    0    0  569   2.00
   2    0    0  568    1   1.98
   3  251   71  159   88   0.17
   4  171  238   84   76   0.15
   5  184  106   64  215   0.13
   6  238  128  139   64   0.13
   7  262  111   59  137   0.19
   8  173  104  132  160   0.02
   9  210  126  126  107   0.05
  10  194  131   57  187   0.12
  11  192  100   93  184   0.07
  12  207  128  148   86   0.06
  13  211  111   59  188   0.14
  14  158  142   86  183   0.04
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baseb positionl
0 1 2

A +1.84 −7.16 −7.16
C −7.16 −7.16 −7.16
G −1.57 −7.16 +1.99
T −3.57 +2.00 −7.16

Figure 4: Initiation codon information weight matrix,Ri(b, l).
The weights for the sequence 5′ ATG 3′ are boxed. The value−7.16 represents positions where
that base was not observed. Sincef (b, l) = 0 at these positions, equation (9) shows that such
weights could be set to−∞, but since there is only a finite sample of sequences, an estimate based
on the probability of observing that base is substituted [Schneider, 1997a]. This prevents the model
from being overly reactive to new data.
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Figure 5: Sequence walkers for individual ribosome bindingsites (rbs).
These are the first 10 verified sites used in Fig. 1 evaluated bythe individual information model
corresponding to Figures 2 and 3. The green (lightly shaded when black and white) box indicates
the scale, which runs from−3 to +2 bits. A purple (dark shaded when black and white) box
indicates that the information is less than−3 bits. The information content of each site is given
followed by the coordinates on theE. coli genome [Blattneret al., 1997].
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Figure 6: Flexible ribosome binding site model: sequence logos for the SD and IR, and the distance
distribution between them.
Note how the SD sequence logo nicely complements the 3′ end of the 16S rRNA, although
the 16S sequence was not used to align the SD. This demonstrates that the SD pattern ex-
ists independently of models for 16S binding. The smooth shape of the information curve
indicates that not all positions are equally important. Also, this sinusoidal shape is char-
acteristic of interactions in which nucleic acids are recognized while in double helical form
[Pappet al., 1993, Schneider, 2001]. The peak of the spacing representsa distance of−9 bases
between the peak of the SD and the first base of the initiation codon, with larger distances to the
left of the histogram [Shultzabergeret al., 2001]. The number of ribosome binding sites at each
spacing is given above the distance numbers.
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Figure 7: Flexible ribosome binding site model: sequence walkers.
The first 5 sequences in Fig. 1 were analyzed by a flexible sequence walker for ribosome binding
sites. Each flexible walker consists of two sequence walkersconnected by a linking bar that in-
dicates which SD is connected to which IR. (In this figure, there is only one case per sequence.)
After the bar the distance between the walkers and the coordinate of the IR walker are shown,
along with the total information.
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PROKARYOTIC BACTERIAL PROMOTER:
291 -10 regions of E. coli promoters
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Figure 8: Sequence logo for the Pribnow ‘box’.
The arrow indicates start points for transcription. The circles and triangles are data that localize
the site [Schneider, 2001].
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