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Related genetic sequences having a common function can be described by
Shannon’s information measure and depicted graphically by a sequence logo.
Though useful for many purposes, sequence logos only show the average se-
quence conservation, and inferring the conservation for individual sequences is
difficult. This limitation is overcome by the individual information (Ri) tech-
nique described here. The method begins by generating a weight matrix from
the frequencies of each nucleotide or amino acid at each position of the aligned
sequences. This matrix is then applied to the sequences themselves to determine
the sequence conservation of each individual sequence. The matrix is unique be-
cause the average of these assignments is the total sequence conservation, and
there is only one way to construct such a matrix. For binding sites on polynu-
cleotides, the weight matrix has a natural cutoff that distinguishes functional
sequences from other sequences. Ri values are on an absolute scale measured in
bits of information so the conservation of different biological functions can be
compared to one another. The matrix can be used to rank-order the sequences,
to search for new sequences, to compare sequences to other quantitative data
such as binding energy or distance between binding sites, to distinguish muta-
tions from polymorphisms, to design sequences of a given strength, and to detect
errors in databases. The Ri method has been used to identify previously unde-
scribed but experimentally verified DNA binding sites. The individual informa-
tion distribution was determined for E. coli ribosome binding sites, bacterial
Fis binding sites, and human donor and acceptor splice junctions, among oth-
ers. The distributions demonstrate clearly that the consensus sequence is highly
unusual, and hence is a poor method to describe naturally occurring binding
sites.

Introduction

A flood of sequence data is appearing in the nucleotide sequence databases. To analyze
these data, mathematical methods and computer algorithms are needed that are simple,
logical and self-consistent. A mathematics that fits these requirements and also connects
directly to the physics underlying molecular binding interactions was created by Shannon
with the introduction of information theory (Shannon, 1948; Pierce, 1980; Sloane & Wyner,
1993). Information theory has been successfully used to quantify the sequence conservation
in nucleotide and protein sequences (Schneider et al., 1986; Schneider & Stormo, 1989;
Eiglmeier et al., 1989; Penotti, 1990; Penotti, 1991; Schneider & Stephens, 1990; Herman &
Schneider, 1992; Gutell et al., 1992; Stephens & Schneider, 1992; Papp et al., 1993; Schneider,
1996; Schneider, 1993; Pietrokovski, 1996; Blom et al., 1996). The sequence conservation is
given by the average number of bits needed to define a set of aligned sequences. Although
this average is useful for understanding the structure of DNA/protein interactions, it does
not allow investigation of individual sequences.
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This paper describes how the information content of individual sequences can be deter-
mined. The method allows direct comparison between the information of particular binding
sites to that of other binding sites on the same sequence, to distances between features of
the sequence, and to their measured binding energies. It can also be used to search for and
to design new binding sites.

Individual information also lends itself to quantitative visualization of complex genetic
structures. Previously, only the average picture of a set of binding sites could be depicted
graphically by using the sequence logo technique (Schneider & Stephens, 1990). The indi-
vidual information method described here is the basis of a new graphic method that shows
the information contributed by individual bases in a binding site (Schneider, 1997).

With these tools information theory now provides a common framework for investigating
many aspects of genetic sequences.

Theory

Individual information of binding sites

The information contained in a set of binding sites can be computed by summing the
information content across the base positions of the binding sites (Schneider et al., 1986). But
information is an average (Shannon, 1948; Pierce, 1980; Sloane & Wyner, 1993; Schneider,
2010), which suggests that it should be possible to express the average by adding together the
information contents of complete individual sequences and then dividing by the number of
sequences. This can be done by first creating a weight matrix (Stormo et al., 1982; Schneider
et al., 1984; Staden, 1984; Schneider et al., 1986; Stormo, 1990) that assigns an information
content to each individual binding site sequence. The matrix is defined so that the average
of these values over the entire set of sites is the average information content, as shown below.

The individual information weight matrix is:

Riw(b, l) = 2− (− log2 f(b, l) + e(n(l)))

= E(Hn(l)) + log2 f(b, l) (bits per base) (1)

where f(b, l) is the frequency of each base b at position l in the aligned binding site sequences
and e(n(l)) is a sample size correction factor for the n sequences at position l used to create
f(b, l) (Schneider et al., 1986; Penotti, 1990). To simplify the notation, the factor e(n(l))
was separated from log2 f(b, l) and joined to ‘2’ to create E(Hn(l)). The reason for writing
the double negative will be explained later. Following Shannon’s convention, Riw stands for
“Rate of information transmission, Individual Weight”. Bits per base is a rate like bits per
second, especially if we consider the average binding rate in bases per second.

In a set of sequences we represent the jth sequence by a matrix s(b, l, j) that contains
only 0’s and 1’s. For example, the sequence 5′ CAGGTCTGCA 3′ is represented as shown in
Fig. 1A. Likewise, an Riw(b, l) matrix for human donor splice junctions is shown in Fig. 1B. ⇐Fig 1



Schneider, Information of Individual Sequences 4

The individual information of a sequence is the dot product between the sequence and
the weight matrix:

Ri(j) =
∑

l

t
∑

b=a

s(b, l, j)Riw(b, l) (bits per site). (2)

For the donor splicing weight matrix given in the figure, the sequence 5′ CAGGTCTGCA 3′

is assigned 0.58+1.25+1.64+1.99+1.98+(−3.68)+(−1.59)+1.71+(−0.51)+0.05 = 3.42
bits per site. Essentially, each base of the sequence “picks out” a particular entry from a
column of the Riw(b, l) matrix, and these weights are added together to produce the total
Ri.

The average information of the n individual sequences that were used to create the
frequency matrix f(b, l) is the expectation (i.e. mean) of Ri:

E(Ri) =
1

n

n
∑

j=1

Ri(j). (3)

Now substitute equation (1) into (2) and then substitute equation (2) into (3). By using the
definition of the frequency matrix:

f(b, l) =
1

n

n
∑

j=1

s(b, l, j) (4)

and since the frequencies sum to 1:

t
∑

b=a

f(b, l) = 1 (5)

some manipulation gives:

E(Ri) =
∑

l

(

E(Hn(l))−
(

−
t
∑

b=a

f(b, l) log2 f(b, l)

))

. (6)

The right hand side is exactly the definition of Rsequence (Schneider et al., 1986). This
demonstrates that the average of individual information contents is the average information
content of the sites. There is only one function that has this property, as shown in Appendix
1.

Relationship between individual information and the roots of information
theory: surprisal of bases

By expressing formula (6) as a subtraction, we emphasize that information is a state
function defined as a difference of uncertainties (Shannon, 1948; Tribus & McIrvine, 1971;
Schneider et al., 1986; Penotti, 1990; Penotti, 1991; Schneider, 1991a; Schneider, 1991b;
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Schneider, 1994). The individual information method is consistent with early work on infor-
mation theory. Selecting one symbol from a set of M symbols, requires no more than log2M
binary decisions (Shannon, 1948). Rearranging the formula gives:

log2M = − log2 P (7)

where P = 1/M is the probability of the equally likely symbols. In general the symbols are
not equally likely, as is the case for frequencies of bases in binding sites. To handle this,
Tribus (Tribus, 1961) proposed the concept of “surprisal”, hi as the negative logarithm of a
symbol’s probability in the midst of a stream of symbols:

hi = − log2 pi (8)

where pi is the ith symbol’s probability so that (8) is an extension of the form given in
equation (7). The advantage of using this definition becomes clear when we consider the
average surprisal for the entire stream of symbols. To find this, take the individual surprisals
and weight them by their occurrence, pi, and find the total:

H =
∑

i

pihi = −
∑

i

pi log2 pi (bits per symbol). (9)

This is the Shannon uncertainty measure, so H is an average of surprisals (Schneider, 2010).
The recognition process can be modeled by the change an individual recognition “finger”

sees when it goes from non-specific binding (the before state) to specific binding (the after

state) (Schneider, 1991a; Schneider, 1994). In the before state the average surprisal is 2 bits
since there are 4 bases, while afterwards it will depend on the frequency of the bases f(b, l)
in the binding sites. The decrease in surprisal is:

Riw(b, l) = 2− (− log2 f(b, l)) (bits per base). (10)

This is equation (1) except for the sampling correction. The 2 in equation (10) represents the
2 bits of uncertainty that a recognizer has before it binds to a binding site. Alternatively, the
uncertainty associated with binding anywhere on a particular genome (Hg ≤ 2 (Schneider
et al., 1986)) could be used. However, since the recognizer does not make physical contact
with the nucleic acid bases in the before state the composition of the genome should not mat-
ter, so the value 2 seems more appropriate (Schneider, 1991a; Schneider, 1991b; Schneider,
1994).

Since the individual information is the sum of Riw(b, l) across a binding site, it is the
total surprisal decrease from the viewpoint of a particular recognizer binding to a particular
sequence. This model allows a recognizer to have different responses to different sequences.
Different recognizers have different surprisals for the same sequence because they have dif-
ferent molecular recognition surfaces.

Properties of the individual information distribution
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The Riw(b, l) matrix can be applied to each sequence that was used to generate the
Riw(b, l) itself. A histogram of the number of sites with a given information versus the
information displays the Ri distribution (Fig. 2). The expectation of this distribution is by ⇐Fig 2
definition Rsequence, the total sequence conservation represented by the area under a sequence
logo (Schneider & Stephens, 1990).

According to equation (1), by picking out the most frequent base at each position of
the weight matrix, the consensus sequence is assigned the largest Ri value, so the upper
bound of the Ri distribution is at the consensus. Likewise, choosing the least frequent base
at each position gives the lower bound of the distribution, at the “anti-consensus”. Since
Ri is the sum of a number of small components, its distribution tends to be Gaussian, as
dictated by the central limit theorem (Breiman, 1969), assuming that there is only one class
of recognizer.

Variance of Ri

Analogous to the mean of the Ri distribution is the spread or variance of the Ri distri-
bution, given by

var(Ri) =
1

n− 1

n
∑

j=1

(Ri(j)− E(Ri))
2 . (11)

For ease of calculation, this may be rewritten as:

var(Ri) =
1

n− 1

n
∑

j=1

Ri(j)
2 − R2

sequence. (12)

The standard deviation of the distribution is:

σRi
=
√

var(Ri) (bits per site). (13)

This number measures how variable the binding sites are.

Standard error of the mean

By using the Ri distribution, we can determine the standard deviation of the mean
(Rsequence), which is known as the standard error of the mean (SEM). The SEM can be
determined directly from the standard deviation of the Ri distribution (σRi

) by

SEM =
σRi√
n

(14)

where n is the number of examples (Taylor, 1982). When many complete sites are available,
one can determine the variation of Rsequence directly from the individual information distri-
bution. When there are few sequences, the variation of Rsequence can also be estimated by
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Monte Carlo approximation (Stephens & Schneider, 1992). The SEM plays an important
role in molecular information theory, as it allows one to determine quantitatively how much
Rsequence differs from Rfrequency (Stephens & Schneider, 1992) or from a multiple of Rfrequency

(Herman & Schneider, 1992).

Individual information variance at each position in a binding site

Riw(b, l) may also be used to determine the variance at each position l in the binding
site. First we define the individual information at each position l of each sequence j:

Ri(l, j) =
t
∑

b=a

s(b, l, j)Riw(b, l). (15)

Since the mean at each position is:

Rsequence(l) =
1

n

n
∑

j=1

Riw(l, j) (16)

the variance is

var(Ri(l)) =
1

n− 1

n
∑

j=1

(Riw(l, j)− Rsequence(l))
2

=
1

n− 1

n
∑

j=1

(Riw(l, j))
2 − Rsequence(l)

2. (17)

The standard deviation is:
σRi(l) =

√

var(Ri(l)) (18)

Finally, the standard deviation of the mean is the variation of Rsequence(l) at each position
in the site:

SEM(l) =
σRi(l)√

n
. (19)

These measures may have practical application for producing error bars in the sequence
logo display (Schneider & Stephens, 1990) and for testing the hypothesis that positions are
independent by calculating individual covariance.

Thermodynamics and individual information

In the case of a molecule binding to a nucleic acid, the zero coordinate on the Ri distri-
bution can be understood from a thermodynamic viewpoint. So far, by avoiding the concept
of energy when studying pure sequences, we have avoided making assumptions about the
relationship between information and energy. That relationship is not a proportionality, it
is the inequality

kBT ln 2 ≤ −q/R (joules per bit), (20)
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where kB is Boltzmann’s constant, T is the absolute temperature, −q > 0 is the heat
dissipation to the surroundings (i.e. “energy”) and R is the information gain. This is
an alternative form of the Second Law of Thermodynamics (Schneider, 1991b; Schneider,
1994). Because of the inequality, it is not possible to make statements about absolute binding
energies given only sequence data, since the latter are purely informational.

Consider a binding site that has a negative evaluation by an Riw(b, l) matrix:

Ri < 0. (21)

Since Boltzmann’s constant kB, temperature T (under most circumstances, (Waldram, 1985;
Atkins, 1984)) and the natural logarithm of 2 are all positive, kBT ln 2 > 0. We can therefore
multiply both sides of (21) by kBT ln 2 and switch sides to obtain

0 > RikBT ln 2. (22)

If binding by only one species of recognizer is responsible for the observed sequence conser-
vation, so that the situations at T7 promoters (Schneider et al., 1986; Schneider & Stormo,
1989) and F incD regions (Herman & Schneider, 1992) are excluded, then R = Ri in equation
(20). Multiplying both sides of equation (20) by the negative valued Ri gives:

RikBT ln 2 ≥ −q. (23)

Transitive combination of equations (22) and (23) and rearranging gives

q > 0. (24)

Since q < 0 corresponds to heat flow out, equation (24) means that heat must flow from
the surrounding heat bath into the small region of the recognizer/nucleic acid system to
make it stay together when the individual information is negative (equation (21)). This is
equivalent to pressing on a spring to get the two ends closer together. As soon as one lets
go, the energy flows out and the two come apart again. In molecular terms, examples of this
are two positive charges or a steric hindrance that would have to be overcome to get the two
molecules together. In contrast, the heat flows outward when Ri > 0. This increases the
entropy of the molecule and the surrounding heat bath and so is (usually) favored. Therefore
positive Ri values correspond to binding sites.

Searches using individual information

New sequences can be evaluated and searched for by applying the Riw(b, l) matrix to
sequences other than those from which it was derived. Since the numerical value assigned to
each position in a sequence by an Riw(b, l) matrix is in bits, the evaluations can be directly
compared to the average measures Rsequence and Rfrequency (Schneider et al., 1986).

If a particular base does not appear in the data set used to create the frequency matrix
f(b, l), then f(b, l) = 0 and so Riw(b, l) = −∞ at that position (see equation (1)). Since
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there are no known examples of a functioning site containing the base b at position l, there is
a high degree of surprisal there. This cannot happen if the matrix is only used to analyze the
sequences that were used to make up the matrix itself because the infinite positions are never
selected. (Also, when using the dot product method, the fact that lim

f→0
f log f = 0 ensures

that the infinite quantities are suppressed.) Search programs can handle this situation by
replacing −∞ with a large negative value. Alternatively, the search may be relaxed by using
a less severe penalty (Staden, 1984). The Ri program therefore allows substitution with
1/(n+ t), with the condition that t ≥ 0. For example, using t = 1 suggests that the missing
base would be found if just one more binding site sequence were obtained. However, the
“law of succession of Laplace” states that given n trials in which there were k results of one
kind, the best estimate for the probability in another trial is (k + 1)/(n + 2) (Feller, 1968;
Papoulis, 1990). In the present case, we need the probability of the absence of a particular
base when searching for another binding site, so k = 0 and the best estimate is 1/(n + 2).
For this reason we set t = 2 for most purposes.

Sampling problems and assumptions

It is not possible to determine the information content from a single sequence alone. One
reason is that the actual contacts could be anywhere within the sequence, and some positions
could be absolutely required (2 bits) while others are completely ignored (0 bits). Without
further data, these cannot be distinguished. Another reason is that when frequencies are
substituted for probabilities, the information measure becomes biased, and so a small sample
correction must be applied (Schneider et al., 1986). When there is only one sequence the
bias is so large that the information content calculated at every position is zero. Yet this
paper presents a method for evaluating the sequences of individual binding sites, which may
at first appear to be impossible. It is possible because the method is performed in two steps:
creating a weight matrix and then evaluating the binding sites with that matrix. There is
no contradiction because the individual sites are always evaluated by a model created from
a large collection of sequences.

If parts of the sequences are unknown, then the average of the individual information
contents generally will not equal the Rsequence as calculated from the frequencies of bases
at each position because individual sequences can be strongly affected by missing data.
Missing sequences do not affect the overall frequencies much, so Rsequence hardly changes.
For this reason calculation of Rsequence should still be done by the original frequencies method
(Schneider et al., 1986), and individual information values taken from partial sequence data
should be interpreted cautiously.

The individual information method depends on an aligned set of sequences. While mul-
tiple alignment is a difficult problem in general, for most binding sites gaps are not required
to make good alignments because protein binding sites are generally small objects with little
flexibility observed along the sequence. We have recently shown that it is possible to perform
rapid gap-free multiple alignment based on information theory (Schneider & Mastronarde,
1996). A general theory for individual information with gaps is not available, although the
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uncertainty introduced by gaps has been considered (Schneider et al., 1986) and hidden
Markov models may provide the basis for a solution (Krogh et al., 1994).

The model described here assumes that positions along the site are statistically inde-
pendent from one another. Fortunately, in the cases which have enough sequence samples
to be tested, binding sites show almost complete statistical independence. For example, at
most 2% of the information in human splice donor sites is in correlations, and none was
observed for acceptors (Stephens & Schneider, 1992). This is also supported by the success
of one-layer neural net training (the perceptron) (Stormo et al., 1982; Nakata et al., 1985;
Brunak et al., 1990a; Brunak et al., 1990b; O’Neill, 1991; Horton & Kanehisa, 1992; Bisant
& Maizel, 1995). Single layer neural networks depend on additivity, and hence their suc-
cess demonstrates a good degree of positional independence. Furthermore, the closeness of
Rsequence and Rfrequency also supports independence in a number of cases (Schneider et al.,
1986). In cases that do not show independence, it should be possible to extend the individ-
ual information method to account for bases correlated to their neighbors, or even longer
relationships (Stephens & Schneider, 1992; Gutell et al., 1992). However, to do this or to
apply it to protein patterns requires many more sequences to avoid the severe effects of small
sample size with a large alphabet (Schneider et al., 1986).

Multiple recognizers in a genetic region can affect information theory based models. This
problem breaks down into two parts. First, when two or more recognizers have binding sites
that are always in the same register with respect to each other, the sequence conservation is
higher than expected from the size of the genome and the number of binding sites (Schneider
et al., 1986; Herman & Schneider, 1992). If a thorough information analysis has been done,
the situation is easy to detect and in such cases it is unwise to use the individual information
matrix because it does not represent a single entity. Second, when nearby sites are not in
the same register, the sequence conservation of one site is blurred out in the alignment of
the other site. For example, there is no hint of a promoter near the Escherichia coli CRP
binding sites (Schneider et al., 1986; Papp et al., 1993).

Results and Discussion

Information of individual sequences

The first step in individual information analysis of nucleotide binding sites is to gather a
number of example sites and to align them using information content as a criterion for good
alignment (Schneider et al., 1982; Schneider & Mastronarde, 1996). After computation of
the average information content of the binding sites (Rsequence) (Schneider et al., 1986) and
generation of a sequence logo graphic to inspect the average sequence conservation (Schneider
& Stephens, 1990; Schneider, 1996), the aligned sequences are used to generate a model of
the binding sites that is called the Riw(b, l) matrix (equation (1)). Because this weight
matrix is created from many sequences, it can give statistically significant evaluations of
individual sequences, including those used to create the matrix itself. Surprisingly, only one
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simple criterion is needed to completely determine the weight matrix: it must give individual
evaluations to a set of binding sites such that the average of the evaluations is Rsequence.

Single binding site conservation distributions

The individual conservation distributions for ribosome, donor and acceptor sites are
shown in Fig. 3. The majority of the individual information values are above zero (99%, ⇐Fig 3
98%, and 97%, respectively, Fig. 3). This confirms the idea that zero has special significance
on the distribution (Fig. 2). A particular sequence might have some parts rated negatively,
and other parts rated positively such that the total Ri is zero. These sequences have at best
no binding energy according to equation (23), so Ri = 0 classifies sequences into sites and
non-sites. Shannon’s channel capacity theorem shows that this can be a sharp demarkation
(Schneider, 1991a).

Although the distributions are approximately Gaussian, they cannot be exactly Gaussian
because the smallest values are truncated at zero. There is also a softer limit at the high
end because of the consensus sequence, so the distribution is contained much like a binomial
but for practical purposes may be treated as Gaussian.

In rare cases the calculated Ri value is less than zero. This may occur for various
reasons. (1) Site sequences may contain sequence or database errors. (2) The Ri is often
underestimated when only part of a site’s sequence is available. (3) When a limited number
of sequences are available to define the distribution, the error for any individual sequence
may be appreciable. (4) There may be correlations between parts of the site that are not
properly accounted for, although for ribosomes and splice sites these are minimal effects
(Stormo et al., 1982; Schneider, 1991a; Stephens & Schneider, 1992). (5) There may be
several kinds of recognizer sites in the data set, an example of which is the new class of
splice junctions discussed below.

Identification of distinct classes of sites

Hall and Padgett (1994) have observed a new class of splice junctions. Using the acceptor
site model developed for Fig. 3, the human acceptor sites in the CMP intron G (GenBank
accession M55682, coordinate 396) and P120 intron F (GenBank accession M33132, coor-
dinate 7205) are rated as −3.5 and −3.7 bits respectively. This shows that if the binding
sites for several different recognizers have been lumped together, the individual information
may be used to help identify the different classes. With enough sequences, multiple classes
of sites might be detected by a bimodal or multimodal distribution.

Detecting database errors

Like neural networks that have been used to detect errors in a sequence database (Brunak
et al., 1990a; Brunak et al., 1990b), negative individual information values have been used
to detect errors in data sets for splice junctions, ribosome binding sites and other binding
sites. For example, a search of GenBank (72.0 6/15/92) for entries with “Homo sapiens”
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in the source line and “exon” in the features gave 4873 entries. The ends of exons were
extracted (Schneider et al., 1982) and analyzed with the Riw(b, l) for donor sites from Fig. 1.
Of the 6405 exon ends in the 3756 entries that really had exon features, many were not
donor sites because many exons end at the poly A site (unfortunately donor and acceptor
sites are not explicitly recorded in the database). A large number of exon ends with large
negative Ri values were expected (1438 were found), but 842 entries were discovered that
had all negative values. An example is the locus HUMEMPB42 (accession M60298) which
turned out to be a spliced transcript (Korsgren & Cohen, 1991). Although portions of the
introns are known (figure 2 of that paper) they were not reported to GenBank, only the
abutted exons were. (After the error was reported to GenBank, the entry was corrected.)

Effect of adding new sites to a binding site model

When new sites are added to an individual information model, the evaluation of both the
old and new sites changes. Generally this has only a small effect on the old sites once the
model has been reasonably well established (Fig. 4). In contrast, new sites almost always ⇐Fig 4
increase in value as underrepresented bases become more appropriately represented. On
occasion, addition of one site will significantly increase the value of an old site because the
new site contains a second example of a base that previously only appeared in the old site.

Correlating binding site conservation with another binding site or a distance

The “exon definition” model for splicing proposes that the acceptor site is bound first
and that the spliceosome then scans downstream across the exon to locate the next donor
site (Robberson et al., 1990; Talerico & Berget, 1990; Niwa et al., 1992). A weak donor
might be compensated by a strong acceptor, or the strength of the donor might be related
to the distance from the acceptor, so it is important to check whether there are relationships
between the donor and acceptor conservation and the exon and intron lengths. Human donor
and acceptor splice sites were collected across complete introns and exons, and the individual
information of each donor site was plotted against the corresponding acceptor individual
information. The Ri site conservations were also plotted against neighboring intron and exon
lengths and the total intron-exon interval surrounding each site. No strong correlations were
observed (data not shown). A similar lack of correlations between individual splice junctions
and each other or with distances between sites across the intron was first noted by F. E.
Penotti (Penotti, 1991). This implies that each human binding site evolves independently to
match the spliceosome’s molecular surface. Thus Ri can play a role in quantitative analysis
of genetic structures.

Correlations of conservation within a single binding site

Not only can correlations between whole sites be made, but also correlations between
parts of sites can be investigated. A previous analysis of splice junctions suggested that each
comes in two parts (Stephens & Schneider, 1992). To see whether this has an effect on the
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conservation of these parts, the left half of all donor sites (positions −3 to +1 of Fig. 1) was
correlated to the right half of the same sites (+2 to +6) giving r = −0.37, and the left half
of the acceptor (−25 to −4) was correlated to the right half (−2 to +2) giving r = −0.12.
In each case only a weak negative correlation was observed (data not shown), as expected
from the requirement for the whole site to have positive Ri.

Strong binding sites are not always natural binding sites

Probabilities computed from individual information distributions are curious because
sequences with evaluations significantly higher than the mean have low probabilities of being
real sites, as can be seen in the distributions (Fig. 3). Strong sites are less likely to appear in
the set of natural sites. Evidently the sites evolve to what is required for their function rather
than to become the strongest binder. That is, the average of the distribution (Rsequence)
evolves to match the information needed to locate the set of sites in the genome (Rfrequency)
(Schneider et al., 1986; Schneider, 1988; Schneider, 1994).

Consensus sequences are abnormal binding sites

Many authors have proposed methods for searching for binding sites in nucleic-acid se-
quences. The “consensus sequence” is widely used by practicing molecular biologists (Day &
McMorris, 1992; Prestridge & Stormo, 1993) even though it destroys subtle distinctions in
the frequencies of bases in a set of binding sites. This is because choosing the most frequent
base at a position is mathematically equivalent to forcing one frequency to 1.0 and all others
to 0.0. A glance at some sequence logos (Stephens & Schneider, 1992; Papp et al., 1993)
demonstrates that in many binding sites the observed frequencies lie between 0.0 and 1.0
and are not simple fractions such as 1/2 or 1/3.

A consensus sequence is a model of the binding sites. However, to many authors the
idea of a consensus sequence has become synonymous with the actual binding sites (Mount
et al., 1992; Toledano et al., 1994; Cui et al., 1995). Thus, for example, it is said that “the
splice site machinery searches a region of the precursor RNA for a consensus 5′ splice site”
(Robberson et al., 1990) or “The splice points are marked by consensus sequences that act
as signals for the splicing process” (Seidel et al., 1992). The simplest consensus sequence is
found by selecting the most frequent base at each position, and therefore by equation (1)
gives the largest value obtainable from the Riw matrix. As a result, the consensus sequence
lies at the high end of the Ri distribution (Fig. 2). The histograms for ribosomes and splice
junctions (Fig. 3) show that most binding sites are not the consensus.

For E. coli ribosomes, the individual information distribution over the base range −21 to
+18 is characterized reasonably well as a Gaussian distribution having a mean and standard
deviation of 8.68 ± 3.42 bits (Fig. 3). The consensus is at 23.98 bits, which is Z = 4.48
standard deviations from the mean, so the probability of finding such a sequence in wild
type E. coli ribosome binding sites is p < 3.8 × 10−6. No single site (of 1055) was the
consensus. Since there are only about 4300 genes (GenBank accession U00096), chances are
slim that even one consensus sequence exists in the natural population.
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For the compact human donor sites, over the range −3 to +6, the mean and standard
deviation are 7.93 ± 3.22 bits with the consensus at 13.13 bits, giving a Z of 1.6, and a
probability of 0.05. In the set of 1799 sites, only 5 (0.3%) were the consensus. Even with
such a compact binding site, the consensus is not representative of the whole set.

Acceptor sites, with the range −25 to +2, are much more flexible, allowing for a larger
consensus. Their mean and standard deviation are 9.44 ± 4.57 bits with the consensus at
21.68 bits, giving a Z of 2.7, and a probability of p < 3.7×10−3; none were in the set of 1744
sites.

Thus the consensus, rather than being typical, is improbable. If the consensus were
the pattern being searched for by a recognizer molecule, as suggested by the statements
quoted above, most sites would not be found. One cannot rescue the consensus method by
allowing discrete variations such as “A or G” (Day & McMorris, 1992) since this still distorts
the frequency data. For these reasons, consensus sequences are extremely poor models for
binding sites.

Comparison with other quantitative methods

Individual information, although independently derived as described above, is related to
several other methods that use a matrix. However, important distinctions exist. Information
is the only measure that allows one to consistently add together “scores” from each posi-
tion in a binding site (Shannon, 1948), so other proposed search methods (Mulligan et al.,
1984; Shapiro & Senapathy, 1987; Goodrich et al., 1990; Gribskov et al., 1990; Bucher,
1990; Quandt et al., 1995) will give inconsistent results. The logarithm of probabilities was
proposed as a useful information measure because it allows addition of the components, as-
suming their independence (Shannon, 1948). Likewise, various authors have used the natural
logarithm of the base frequencies to create a weight matrix (Staden, 1984; Berg & von Hippel,
1987; Bucher, 1990; Rice et al., 1992), but a logarithm alone is not sufficient to identify sites;
some kind of cutoff is required, and usually it is chosen arbitrarily. For example, because
Staden’s method does not add the factor of 2 bits in equation (1), all scores are negative
with strong ones closest to zero and so it is not clear where to place a cutoff. Furthermore,
all weights at positions with equiprobable bases would be assigned ln(0.25) so the scale shifts
depending on the width of the frequency matrix, and one cannot compare sites for different
recognizers to each other. Using a consensus to express a weight matrix evaluation as a
percentage of a maximum (Goodrich et al., 1990; Bucher, 1990; Quandt et al., 1995) also
prevents comparison between recognizers. Staden’s measure also lacks a correction for small
sample size. Because these sequence evaluation methods lack an absolute scale of measure,
they cannot be used to create a graphic display of binding sites, such as the walker (Schnei-
der, 1997), that is consistent for different recognizers. With natural logarithms the units of
the score are “nits”, which have to be divided by ln 2 = 0.693 . . . to be directly comparable
to the “bits” used in modern computing and communications systems (Schneider, 2010).

The log-odds method, a derivative of the information theory approach (Schneider, 1984;
Schneider et al., 1986; Stormo, 1990), does put different kinds of sites on a common scale
in bits. However, the average of the log-odds distribution is not the Shannon information
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content and does not produce a state function (Schneider, 1991b; Schneider, 1994). It
therefore cannot be related to standard definitions of entropy and energy, which are state
functions. Further, the log-odds computation of the average can give values larger than 2
bits (Stormo, 1990) even though there are only 4 possible bases. This is because the log-odds
method measures the information an observer gains rather than the information gained by
the molecular system (Schneider, 1991b). The states of an external observer are not relevant
to molecular interactions, so this computation is not appropriate for the goal of modeling
molecular interactions.

The individual information method avoids these various problems by giving an average,
consistent with information theory, that allows one to compare different recognizer’s sites to
each other on an absolute scale given in bits.

The relationship between individual information and “discrimination energy”

The statistical mechanical approach to the analysis of binding sequences assumes that
the ratio of the frequencies of bases is related to the energy by a Boltzmann function (Berg
& von Hippel, 1987; Berg & von Hippel, 1988; Berg, 1988; Berg & von Hippel, 1988; Stormo,
1990; Penotti, 1990; Penotti, 1991). Strictly following this approach leads to a serious dif-
ficulty. At bacteriophage T7 promoters only half of the 35 bit pattern surrounding the
transcriptional start is required for transcriptional initiation (Schneider et al., 1986; Schnei-
der, 1988; Schneider & Stormo, 1989). If the observed patterns actually represent energy
dissipations, then 35 bits worth of energy is dissipated by the T7 polymerase when it binds.
Yet, experiments show that the polymerase only requires 18 ± 2 bits of sequence pattern
(Schneider & Stormo, 1989). Since energy must be dissipated to the surroundings to be
useful for molecular binding, what happened to the “undissipated” energy? How can there
be “discrimination energy” that is not dissipated by polymerase binding? This difficulty can
be avoided by referring only to the information in the sequence patterns: half of the 35 bit
pattern is used by the polymerase, and the other half is presumably used by a different rec-
ognizer when it binds. The difficulty with the statistical mechanical approach stems from an
assumption that energy is equivalent to information. The Second Law of Thermodynamics
shows that information and energy are related, but by the inequality in equation (20).

Associated with the idea of “discrimination energy” is a parameter called λ that defines
the relationship between sequence information and measured binding energies. λ could be a
function of the position in the binding site since the information could be closer or further
from its ideal maximum given by equation (20). That is, some binding positions could
dissipate more energy than absolutely necessary to specify a bit while other positions could
dissipate just exactly the minimum amount. (An entire binding site should not be able to
beat the Second Law, but it would be interesting to look for parts of a binding site that do so
by “coming along for the ride” as negative weights within functional sites. Several potential
candidates are shown by the upside-down bases of the walker positioned on the functional
site at base 180 in the middle sequence of Figure 1 in (Schneider, 1997). Confirmation would
require experimental studies of the binding energetics of these positions.)



Schneider, Information of Individual Sequences 16

The discrimination energy method compares the frequency of a base at a position in a
binding site to the frequency of the consensus base at the same position (Berg & von Hippel,
1988; Stormo & Hartzell 3rd, 1989). However, the discrimination energy can easily be
calculated from the Riw(b, l) matrix. Let Riw(consensus, l) be the evaluation of the consensus
base at position l, where “consensus” is the most frequent base. Then, equation (1) gives:

Riw(consensus, l) = E(Hn(l)) + log2(f(consensus, l)). (25)

The discrimination energy measure (DE) is:

DE(b, l)/ ln 2 = Riw(consensus, l)− Riw(b, l) (26)

= log2(f(consensus, l)/f(b, l)) (27)

where the factor of ln 2 converts the nits in the original definition of DE into bits for direct
comparison to the Ri values. When this DE matrix is used to evaluate a sequence, we sum
equation (27) over the sequence (using equation (2)), so the result is:

DE(sequence)/ ln 2 = Ri(consensus)− Ri(sequence). (28)

Thus the Ri method can produce the DE result, but the DE method is relative to a standard
sequence, usually the consensus, and therefore the scale changes between different binding
sites while Ri does not. From the second law and the results for ribosome binding sites and
splice junctions it appears that Ri = 0 corresponds to a cutoff for functional sites, a feature
that the DE method lacks. Furthermore a larger “discrimination energy” corresponds to
worse binding (Berg & von Hippel, 1988), which is counter-intuitive. Finally, DE uses the
consensus, which is an extreme binding site (Fig. 2). However, as Berg and von Hippel
note (Berg & von Hippel, 1988), one can use a different reference sequence to obtain similar
results, but this would shift the scale. In contrast, the Ri method compares the sites to
a string of equiprobable bases, which accurately represents the non-specific binding of the
recognizer to the nucleic acid. Using this reference state, the individual information measure
is directly comparable to the energy dissipated by the molecular machine during its operation
(Schneider, 1991a; Schneider, 1991b).

Individual information compared to training methods

With ideal data sets the individual information search method probably cannot give
results as good as artificial intelligence methods such as the perceptron (Stormo et al., 1982),
neural nets (Nakata et al., 1985; Brunak et al., 1990a; Brunak et al., 1990b; O’Neill, 1991;
Horton & Kanehisa, 1992; Bisant & Maizel, 1995), categorical discrimination (Iida, 1987) or
hidden Markov models (Krogh et al., 1994) because those methods have the advantage of
training on sequences that are not sites.

In practice, however, extensive experimental analysis is needed to avoid contamination of
the negative training set by functional sites. In contrast, the information theory method does
not require such sites or any cyclic training. As soon as a few experimentally proven sample
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sites are available, the Riw matrix can be constructed by using an equation. The difficult task
of collecting large sets of experimentally demonstrated non-functional sequences is avoided,
so there is no concern that one may have contaminated the non-functional examples with
real sites (Horton & Kanehisa, 1992). This lack of training is particularly advantageous for
identifying errors for any kind of binding site recorded in a sequence database (Schneider,
1997).

Conclusion

The individual information method is simple, but has many useful properties. By this
method, individual binding sites can be compared directly to the overall information con-
tent, Rsequence, since by definition Rsequence is the average of Ri over the sites. This also
allows direct comparison to the predicted average information content given the size of the
genome and number of sites (Rfrequency) (Schneider et al., 1986). It shows that there is a
relationship between the evolution of specific genetic control points and the overall control
mechanism in the cell. Individual sequence conservation is measured in standard units, bits,
that are easy to manipulate (Schneider, 2010) and allow a wide variety of biological systems
to be compared to each other. Because Ri calculations make no assumptions about binding
energies, the relationship between energy and information can be investigated experimen-
tally. Applications of the method include the graphical display and engineering of entire
genetic control systems (Schneider, 1997) and dissection of binding sites to reveal new kinds
of genetic control systems (Hengen et al., in preparation).

Materials and Methods

Programs

Programs of the Delila system (Schneider et al., 1982; Schneider et al., 1984; Schneider
et al., 1986; Schneider & Stephens, 1990) were used to collect and analyze the sites. The
Ri program (version 2.37) generates a Riw(b, l) matrix and correlates individual sites with
quantitative data. The Scan program (version 2.88) uses the weight matrix to perform
searches (Hengen et al., 1997). It reports the evaluation of each sequence position j in
three ways: as the individual information (Ri(j)), as the standard deviation from the wild
type distribution mean (Z(j) = (Ri(j) − Rsequence)/σRi

) and as the one tailed probability
(p(j), computed from Z(j) assuming a normal distribution). The DNAplot program (version
3.40) graphs the results in PostScript (Hengen et al., 1997). Histograms (Fig. 3) were
generated by the GenHis program (version 1.73) written by G. Stormo, and displayed in
PostScript by the GenPic program (version 2.20). X-Y plots and correlation coefficient
computations (Fig. 4) were performed by the Xyplo program (version 8.63). See http://www-
lmmb.ncifcrf.gov/∼toms/ for further information about the programs.

Sequences
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Ribosome binding sites were from Kenn Rudd’s EcoSeq5 database (Rudd & Schneider,
1992). Human donor and acceptor splice sites were those described in (Stephens & Schneider,
1992). Fis sites are described in (Hengen et al., 1997).
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APPENDIX 1 Proof that Ri is the only function whose average is Rsequence

John Spouge, National Library of Medicine, Bethesda, MD 20894

First, from equation (6) and E(Ri) = Rsequence,

∑

l

E(Hn(l))− Rsequence =
L
∑

l=1

j(b, l) (29)

where j(b, l) = −∑T
b=A f(b, l) log2 f(b, l) and 1 . . . L is the range of positions l in the site.

This Appendix asserts that if the function h in

j(b, l) = −
T
∑

b=A

f(b, l)h[f(b, l)] (30)

also satisfies (29) for all base frequencies at position l, then the problem’s constraints imply
that h(p) = log2 p. Hence Ri is the only function whose average is Rsequence.

We reduce the problem further by adding a new position to the range. Initially the site
runs from 1 . . . L and

L
∑

l=1

E(Hn(l))−Rs1 =
L
∑

l=1

j(l). (31)

With an extended range 0 . . . L,

L
∑

l=0

E(Hn(l))− Rs2 =
L
∑

l=0

j(l) (32)

so
Rs2 − Rs1 = E(Hn(0))− j(0). (33)

Thus the problem is reduced to considering a single (arbitrary) position.
Now we only need to show that at position 0 if

j(0) = −
T
∑

b=A

f(b, 0) log2 f(b, 0) = −
T
∑

b=A

f(b, 0)h[f(b, 0)] (34)

for all frequency vectors f(b, 0), then h(p) = log2 p, where p = f(b, 0).
If we define g(p) = p log2 p− ph(p) then showing that g(p) = 0 for all p would finish the

proof, since then h(p) = log2 p except possibly at p = 0, but the latter value can be ignored
because of the multiplication by p = f(b, 0) in (34).

We shall insist that h(p) should be continuous, so the same is true of g(p). Moreover,
equation (34) gives

T
∑

b=A

g(f(b, 0)) = 0 (35)

for all frequency vectors f(b, 0).
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Because a new base β (Piccirilli et al., 1990) with frequency zero (i.e. f(β, 0) = 0 always)
should not affect equation (35), g(f(β, 0)) = g(0) = 0. The frequency vector

f(b, 0) = {1, 0, 0, 0} (36)

in equation (35) gives us that g(1) = 0. This shows that the two ends of the distribution
are the same. Substituting the two frequency vectors p = {p + q, 1 − p − q, 0, 0} and
p = {p, q, 1− p− q, 0} into equation (35) gives

g(p+ q) + g(1− p− q) + 2g(0) = g(p) + g(q) + g(1− p− 1) + g(0) (37)

so
g(p) + g(q) = g(p+ q) (38)

g(p) is therefore continuous and linear with g(0) = g(1) = 0, so for any p, g(p) = 0 must
follow as originally desired. This last step can be justified as follows (e.g. Melzak 1976, page
325).

Rewriting integer multiplications as repeated additions gives

g(mn−1) = g(n−1 + n−1 + . . .+ n−1)

= g(n−1) + g(n−1) + . . .+ g(n−1)

= mg(n−1) (39)

Setting m = n shows that g(1) = ng(n−1). Solving for this last for g(n−1) and back-
substituting into equation (39) gives g(mn−1) = mn−1g(1). Thus g(p) = pg(1) for any
rational p = mn−1. Since any frequency p is arbitrarily close to a rational number and g(p)
is continuous, g(p) = pg(1) = 0 for any p.
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A) the jth sequence matrix, s(b, l, j)

base b position l

C A G G T C T G C A
−3 −2 −1 0 1 2 3 4 5 6

A 0 1 0 0 0 0 0 0 0 1
C 1 0 0 0 0 1 0 0 1 0
G 0 0 1 1 0 0 0 1 0 0
T 0 0 0 0 1 0 1 0 0 0

B) individual information weight matrix, Riw(b, l)

base b position l

−3 −2 −1 0 1 2 3 4 5 6

A +0.42 +1.25 −1.41 −∞ −5.81 +1.12 +1.51 −1.81 −0.68 +0.05

C +0.58 −0.78 −2.40 −7.81 −5.49 −3.68 −1.56 −2.24 −0.51 −0.17

G −0.58 −1.04 +1.64 +1.99 −6.23 +0.72 −1.06 +1.71 −0.32 +0.44

T −1.02 −0.87 −1.67 −5.81 +1.98 −3.38 −1.59 −2.21 +0.90 −0.49

C A G G T C T G C A

Figure 1: Matrix representation of a sequence and a sequence recognizer.
A) The sequence 5′ CAGGTCTGCA 3′ represented in matrix format. There is only one “1”
in each column, marking the base at that position. The remainder of the column is filled
with “0”s. B) The individual weight matrix for human donor splice junctions derived from
data given in (Stephens & Schneider, 1992). The weights of the matrix in B that are selected
by the sequence in A are enclosed by boxes.
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Figure 2: Important landmarks on the individual information (Ri) scale.
The abscissa is the Ri scale in bits, while the ordinate is the number of sites. The Ri distri-
bution is approximately Gaussian. By definition, the mean of the distribution is Rsequence.
The standard deviation of the distribution is σRi

. The standard deviation of Rsequence is the
standard error of the mean, SEM. The consensus is the highest possible sequence evaluation
by the Riw(b, l) matrix; the anti-consensus is the lowest. For binding sites, sequences with
Ri = 0 separate sites (Ri > 0) from non-sites (Ri < 0).
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Ri (bits) based on a model from 46 sites

Ri (bits) based on a model from 46 sites with an additional 14 sites.

Figure 4: Effect of adding new sites to a binding site model.
14 new sites (Green et al., 1996; Pan et al., 1996; Falconi et al., 1996) were added to a previous
set of 46 Fis binding sites (Hengen et al., 1997). ◦, the 46 sites evaluated before and after
addition of the new sites to the model. Linear regression through these points (r = 0.982)
is shown by the solid line. , the 14 new sites evaluated before and after addition of (the
same) new sites to the model. Linear regression through these points (r = 0.986) is shown
by the dashed line.
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