

Why Do Restriction Enzymes Prefer 4 and 6 Base DNA Sequences?

Thomas D. Schneider, Ph.D.
Vishnu Jejjala, Ph.D.

Molecular Information Theory Group Center for Cancer Research RNA Biology Laboratory National Cancer Institute Frederick, MD 21702-1201 and
University of the Witwatersrand Johannesburg, South Africa

CLAUDE E. SHANNON

- April 30, 1916 - February 24, 2001

CLAUDE E. SHANNON

- April 30, 1916 - February 24, 2001
- Founded Information Theory

CLAUDE E. SHANNON

- April 30, 1916 - February 24, 2001
- Founded Information Theory
- Important papers: 1948

$T_{\text {HE recent development of various methods of modulation such as PCM and PPM which exchange }}^{\text {bandwidth for sionalto }}$ 1 bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist ${ }^{2}$ and Hartley ${ }^{2}$ on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the The fundamental p proximately a messag to or are correlated acc aspects of communicat message is one selecte
possible selection not possible selection, not .
If the number of $m t$ can be regarded as an choices being equally function. Although thi statistics of the messa essenualy logatimic
The logarithmic $m e$

1. It is practically n
of relays, etc., te adding one relay doubles the loga
2 It is nearerto
2. It is neares to ou tuitively measu
two punched car channels twice ti
3. It is mathematic rithm but would
he choice of a lo base 2 is used the res J. W. Tukey. A device If the base 10 is used t
${ }^{1}{ }^{1}$ Nyquists. $\mathrm{H},$. Certain Fi Tlegraph Transmision hee
2Hartey. . V. L. Thans
CLAUDE E. SHANNON

- April 30, 1916 - February 24, 2001
- Founded Information Theory
- Important papers: 1948, 1949

Communication in the Presence of Noise

CLAUDE E. SHANNON, MEMBER, IRE
Classic Paper

A method is developed for representing any commmication system geometrically. Messages and the corresponding signals ar points in two "fumction spaces," and the modulation process is a mapping of one space into the other. Using this representation, ing expansion and compression of bandwidth and the threshol effect. Formulas are found for the maximum rate of transmission of binary digits over a system when the signal is perturbed b various types of noise. Some of the properties of "ideal" system
which transmit at this maximum rate are discussed. The equivalent number of binary digits per second for certain information sources is calculated.
I. Introduction

A general communications system is shown schemati cally in Fig. 1. It consists essentially of five elements. 1) An Information Source: The source selects one mes the receiving a possible messages to be transmitted tpes; for exale, a sequace of ters or oubers in telegraphy or teletype or a continuous function of time $f(t)$, as in radio or telephony.
2) The Transmitter: This operates on the message some way and produces a signal suitable for transmissio the recerving point over the channel. In telephony, this operation consists of merely changing sound pressure int a proportional electrical current. In telegraphy, we have a encoding operation which produces a sequence of dots, dashes, and spaces corresponding to the letters of the multiplex PCM telephony the different speech fuctions must be sampled compressed quantized and encoded and nust be sampled, compressed, quantized and encoded, finally interleaved properly to construct the signal.
3) The Channel: This is merely the medium used to transmit the signal from the transmitting to the receiving point. It may be a pair of wires, a coaxial cable, a band of radio frequencies, etc. During transmission, or at the receiving terminal, the signal may be perturbed by noise or distortion. Noise and distortion may be differentiated on the basis that distortion is a fixed operation applied to the signal, while noise involves statistical and unpredictabl This paper is reprinted from me PROCEBDNGS of The RE, vol. 37 , no
pp. $10-21$, Jan. 1949 . Ppulioliher Item Identififer S 0018-9219(98)01299-7.

Tig. 1. General communications system.
perturbations. Distortion can, in principle, be corrected by pplying the inverse operation, while a perturbation due to oise cannot always be removed, since the signal does not ways undergo the same change during transmission
4) The Receiver: This operates on the received signa and attempts to reproduce, from it, the orignal message. Ordinarily it will perform approximately the mathematical nverse of the operations of the transmitter, although they ay differ somewhat with best design in order to comb 5)
estination: This is the person or thing for whom he message is intended.
Following Nyquist ${ }^{1}$ and Hartley ${ }^{2}$ it is convenient to use a logarithmic measure of information. If a device has possible positions it can, by definition, store $\log _{,} n$ units of nformation. The choice of the base b amounts to a choic of unit, since $\log _{b} n=\log _{b} c \log _{c} n$. We will use the bas and call the resultang units binary digits or bits. A group of m relays or flip-flop circuits has 2^{m} possible sets positions, and can therefore store $\log _{2} 2^{m}=m$ bits If it is possible to distinguish reliably M different signa hans of duration Y on a channel, we can say that ansmission is then $\log _{2} M / T$. More precisely the channel capacity may be defined as

$$
\begin{equation*}
C=\lim _{T \rightarrow \infty} \frac{\log _{2} M}{T} \tag{1}
\end{equation*}
$$

${ }^{1}{ }^{1} \mathrm{H}$. . Nyquists. "Certain factors affecting telegraph speed," Bell Syst. Tech. ²R. V. L. Harley. "The transmission of information," Bell Syst. Tech
J., vol. 3. p. 535-564, July 1928 .

T^{HE} recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist ${ }^{2}$ and Hartley 2 on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the in the channel, and the savings possible due to the statistical structure of the original message and due to the The fundamental p proximately a message to or are correlated ac aspects of commumicat
message is one selecte message is one selecte If the number of mt can be regarded as a n choices being equally function. Although thi statistics of the messa essentially loganthmic
The logarithmic $m e$
.

1. It is practically n
of relays, etc., te adding one relay doubles the loga
2. It is nearerto
3. It is nearer to ou tuitively measu
two punched c channels twice ti
4. It is mathemati nithm but would
e choice of a lo base 2 is used the res J. W. Tukey. A device If the base 10 is used t

CLAUDE E. SHANNON

- April 30, 1916 - February 24, 2001
- Founded Information Theory
- Important papers: 1948, 1949
- Result: modern communications!

Communication in the Presence of Noise

CLAUDE E. SHANNON, MEMBER, IRE
Classic Paper

0018-9219/988510.00 © 1998 IEEE

number of number symbols of bits example

M
B
2
1
(H)T
42
1110
0100
8
3
$M=2^{B}$
$B=\log _{2} M$

Information Theory: One-Minute Lesson

number of number symbols of bits example

M
B
2
1
42
1110
0100
83
$M=2^{B}$
$B=\log _{2} M$

4
2 3
$M=2^{B}$
$B=\log _{2} M$

Information Theory: One-Minute Lesson

 $\begin{array}{ll}\text { number of } & \begin{array}{l}\text { number } \\ \text { of bits }\end{array} \text { example }\end{array}$
$\begin{array}{ll}\text { number of } & \begin{array}{l}\text { number } \\ \text { of bits }\end{array} \quad \text { example }\end{array}$
M B

2
1
HT

4
2

3
$M=2^{B}$
$B=\log _{2} M$

Information of EcoRI DNA Binding

- EcoRI - restriction enzyme

- EcoRI - restriction enzyme
- EcoRI binds DNA at 5^{\prime} GAATTC 3^{\prime}

Information of EcoRI DNA Binding

- EcoRI - restriction enzyme
- EcoRI binds DNA at 5^{\prime} GAATTC 3^{\prime}
- information required:

6 bases $\times 2$ bits per base $=12$ bits

Energy Dissipation by EcoRI

- Measured specific binding constant:

$$
K_{\text {spec }}=1.6 \times 10^{5}
$$

Energy Dissipation by EcoRI

- Measured specific binding constant:

$$
K_{\text {spec }}=1.6 \times 10^{5}
$$

- Average energy dissipated by one molecule as it binds:

$$
\Delta G_{\text {spec }}^{\circ}=-k_{\mathrm{B}} T \ln K_{\text {spec }} \quad(\text { joules per binding })
$$

Energy Dissipation by EcoRI

- Measured specific binding constant:

$$
K_{\text {spec }}=1.6 \times 10^{5}
$$

- Average energy dissipated by one molecule as it binds:

$$
\Delta G_{\text {spec }}^{\circ}=-k_{\mathrm{B}} T \ln K_{\text {spec }} \quad(\text { joules per binding })
$$

- The Second Law of Thermodynamics as a conversion factor:

$$
\mathcal{E}_{\min }=k_{\mathrm{B}} T \ln 2 \quad \text { (joules per bit) }
$$

Energy Dissipation by EcoRI

- Measured specific binding constant:

$$
K_{\text {spec }}=1.6 \times 10^{5}
$$

- Average energy dissipated by one molecule as it binds:

$$
\Delta G_{\text {spec }}^{\circ}=-k_{\mathrm{B}} T \ln K_{\text {spec }} \quad \text { (joules per binding) }
$$

- The Second Law of Thermodynamics as a conversion factor:

$$
\mathcal{E}_{\min }=k_{\mathrm{B}} T \ln 2 \quad \text { (joules per bit) }
$$

- Number of bits that could have been selected:

$$
\begin{aligned}
R_{\text {energy }} & =-\Delta G^{\circ} / \mathcal{E}_{\text {min }} \\
& =k_{\mathrm{B}} T \ln K_{\text {spec }} / k_{\mathrm{B}} T \ln 2 \\
& =\log _{2} K_{\text {spec }} \\
& =17.3 \text { bits per binding }
\end{aligned}
$$

Information/Energy = Efficiency of EcoRI

EcoRI could have made 17.3 binary choices

EcoRI could have made 17.3 binary choices
... but it only made 12 choices.

Information/Energy = Efficiency of EcoRI

EcoRI could have made 17.3 binary choices
... but it only made 12 choices.
Efficiency is
'WORK' DONE / ENERGY DISSIPATED

Information/Energy = Efficiency of EcoRI

EcoRI could have made 17.3 binary choices
... but it only made 12 choices.
Efficiency is
'WORK' DONE / ENERGY DISSIPATED
$\frac{12 \text { bits per binding }}{17.3 \text { bits per binding }}=0.7$

Information/Energy = Efficiency of EcoRI $=70 \%$

EcoRI could have made 17.3 binary choices
... but it only made 12 choices.
Efficiency is
'WORK' DONE / ENERGY DISSIPATED
$\frac{12 \text { bits per binding }}{17.3 \text { bits per binding }}=0.7$

The efficiency is 70%.

Information/Energy = Efficiency of EcoRI $=70 \%$

EcoRI could have made 17.3 binary choices
... but it only made 12 choices.
Efficiency is
'WORK' DONE / ENERGY DISSIPATED
$\frac{12 \text { bits per binding }}{17.3 \text { bits per binding }}=0.7$

The efficiency is 70%.

18 out of 19 DNA binding proteins give $\sim 70 \%$ efficiency.

Rhodopsin Shape Change

Dark State

P. Scheerer et al. Nature 455, 497-502(2008) doi:10.1038/nature07330

Rhodopsin Shape Change

Dark State

$\mathrm{h} \nu$

P. Scheerer et al. Nature 455, 497-502(2008) doi:10.1038/nature07330

Rhodopsin Shape Change

Dark State

After Photon - Light State

P. Scheerer et al. Nature 455, 497-502(2008) doi:10.1038/nature07330

Rhodopsin Shape Change

Dark State

After Photon - Light State

P. Scheerer et al. Nature 455, 497-502(2008) doi:10.1038/nature07330

Rhodopsin Shape Change

Dark State

P. Scheerer et al. Nature 455, 497-502(2008) doi:10.1038/nature07330

Rhodopsin Shape Change

Dark State

P. Scheerer et al. Nature 455, 497-502(2008) doi:10.1038/nature07330

Efficiency of Muscle

- Experiments by Kushmerick's lab since (at least) 1969

Efficiency of Muscle

- Experiments by Kushmerick's lab since (at least) 1969
- new work: 2008, 2011

Efficiency of Muscle

- Experiments by Kushmerick's lab since (at least) 1969
- new work: 2008, 2011
- Weight lifting gives work done

Efficiency of Muscle

- Experiments by Kushmerick's lab since (at least) 1969
- new work: 2008, 2011
- Weight lifting gives work done
- NMR coil gives ATP = energy used

Efficiency of Muscle

- Experiments by Kushmerick's lab since (at least) 1969
- new work: 2008, 2011
- Weight lifting gives work done
- NMR coil gives ATP = energy used
- Efficiency: 0.68 ± 0.09

Tom's Model of Muscle Mechanism

Why are molecular machines 70% efficient?

70\% efficiency appears widely in biology:

Why are molecular machines 70% efficient?

70\% efficiency appears widely in biology:

- DNA - protein binding

Why are molecular machines 70% efficient?

70\% efficiency appears widely in biology:

- DNA - protein binding
- rhodopsin

Why are molecular machines 70% efficient?

70\% efficiency appears widely in biology:

- DNA - protein binding
- rhodopsin
- muscle

Why are molecular machines 70% efficient?

70\% efficiency appears widely in biology:

- DNA - protein binding
- rhodopsin
- muscle
- other systems

Why are molecular machines 70% efficient?

70\% efficiency appears widely in biology:

- DNA - protein binding
- rhodopsin
- muscle
- other systems

Why 70\% efficiency?

Like a key in a lock which has many independent pins, it takes many numbers to describe the vibrational state of a molecular machine

Gaussians

- Pin motion x has a Gaussian distribution:

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \xlongequal{p(x) e^{-e^{2}}} \times
$$

$\mu=$ mean, $\sigma=$ standard deviation

Gaussians

- Pin motion x has a Gaussian distribution:

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \xlongequal{\overbrace{}^{p(x) x e^{-x^{2}}}} \times
$$

$\mu=$ mean, $\sigma=$ standard deviation

- Gaussian distributions are generated by the sum of many small random variables

Gaussians

- Pin motion x has a Gaussian distribution:

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \xlongequal{\overbrace{}^{p(x) x e^{-x^{2}}}} \times
$$

$\mu=$ mean, $\sigma=$ standard deviation

- Gaussian distributions are generated by the sum of many small random variables
- Drunkard's walk: Galton's quincunx device!

Two Gaussians

$$
\begin{align*}
& p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{1}\\
& p(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} \tag{2}
\end{align*}
$$

Two Gaussians

$$
\begin{align*}
& p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \propto e^{-x^{2}} \tag{1}\\
& p(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} \propto e^{-y^{2}} \tag{2}
\end{align*}
$$

Two Gaussians

$$
\begin{align*}
& p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \propto e^{-x^{2}} \tag{1}\\
& p(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} \propto e^{-y^{2}} \tag{2}
\end{align*}
$$

Two Gaussians

Two Gaussians

Two Gaussians

Two Gaussians

credit: http://en.wikipedia.org/wiki/Pythagoras

Two Gaussians

Two Gaussians

credit: http://en.wikipedia.org/wiki/Pythagoras

Energy

States
1 dimension is too simple!

N Dimensional Sphere

Spheres tighten in high dimensions

Good Sphere Packing

- Good packing of spheres gives a molecule the capacity to make selections efficiently

Good Sphere Packing

- Good packing of spheres gives a molecule the capacity to make selections efficiently
- Shannon's 1949 paper: each gumball is a message

Good Sphere Packing

- Good packing of spheres gives a molecule the capacity to make selections efficiently
- Shannon's 1949 paper: each gumball is a message
- For a molecule each gumball is a state

N Dimensional Sphere Separation
Degenerate Sphere

N Dimensional Sphere Separation

Degenerate Sphere

Forward Sphere

N Dimensional Sphere Separation

Degenerate Sphere

Forward Sphere

N Dimensional Sphere Separation

Degenerate Sphere

Forward Sphere

N Dimensional Sphere Separation

Degenerate Sphere

Forward Sphere

Energy dissipated to escape the Degenerate Sphere must exceed the Noise

N Dimensional Sphere Separation

Degenerate Sphere

Forward Sphere

Energy dissipated to escape the Degenerate Sphere must exceed the Noise

$$
\sqrt{\text { Power }}>\sqrt{\text { Noise }}
$$

N Dimensional Sphere Separation

Degenerate Sphere

Forward Sphere

Energy dissipated to escape the Degenerate Sphere must exceed the Noise

$$
\sqrt{\text { Power }}>\sqrt{\text { Noise }} \text { SO Power }>\text { Noise }
$$

N Dimensional Sphere Separation

Degenerate Sphere

Forward Sphere

Energy dissipated to escape the Degenerate Sphere must exceed the Noise

$$
\sqrt{\text { Power }}>\sqrt{\text { Noise }} \text { SO Power }>\text { Noise SO Power/Noise }>1
$$

Theoretical Isothermal Efficiency

- For molecular states of molecules with $d_{\text {space }}$ 'parts' P energy is dissipated for noise N and
$C=d_{\text {space }} \log _{2}(P / N+1) \leftarrow$ machine capacity

T. D. Schneider, Nucleic Acids Research (2010) 38: 5995-6006

Theoretical Isothermal Efficiency

- For molecular states of molecules with $d_{\text {space }}$ 'parts' P energy is dissipated for noise N and
$C=d_{\text {space }} \log _{2}(P / N+1) \leftarrow$ machine capacity
$\epsilon_{t}=\frac{\ln \left(\frac{P}{N}+1\right)}{\frac{P}{N}} \leftarrow$ molecular efficiency
T. D. Schneider, Nucleic Acids Research (2010) 38: 5995-6006

Theoretical Isothermal Efficiency

- For molecular states of molecules with $d_{\text {space }}$ 'parts' P energy is dissipated for noise N and
$C=d_{\text {space }} \log _{2}(P / N+1) \leftarrow$ machine capacity
$\epsilon_{t}=\frac{\ln \left(\frac{P}{N}+1\right)}{\frac{P}{N}} \leftarrow$ molecular efficiency

The curve is an upper bound
T. D. Schneider, Nucleic Acids Research (2010) 38: 5995-6006

Theoretical Isothermal Efficiency

- For molecular states of molecules with $d_{\text {space }}$ 'parts' P energy is dissipated for noise N and
$C=d_{\text {space }} \log _{2}(P / N+1) \leftarrow$ machine capacity $\epsilon_{t}=\frac{\ln \left(\frac{P}{N}+1\right)}{\frac{P}{N}} \leftarrow$ molecular efficiency

The curve is an upper bound

- If $P / N=1$ the efficiency is 70% !
T. D. Schneider, Nucleic Acids Research (2010) 38: 5995-6006

Dimensionality

Like a key in a lock which has many independent pins, it takes many numbers to describe the vibrational state of a molecular machine

A Dimensionality Equation

Channel capacity of molecular machine:

$$
\begin{equation*}
C=d_{\text {space }} \log _{2}\left(\frac{P}{N}+1\right) \quad \text { (bits per operation) } \tag{7}
\end{equation*}
$$

Channel capacity of molecular machine:

$$
\begin{equation*}
C=d_{\text {space }} \log _{2}\left(\frac{P}{N}+1\right) \quad \text { (bits per operation) } \tag{7}
\end{equation*}
$$

Maximum of the information R is the channel capacity:

$$
\begin{equation*}
C \geq R . \tag{8}
\end{equation*}
$$

A Dimensionality Equation

Channel capacity of molecular machine:

$$
\begin{equation*}
C=d_{\text {space }} \log _{2}\left(\frac{P}{N}+1\right) \quad \text { (bits per operation) } \tag{7}
\end{equation*}
$$

Maximum of the information R is the channel capacity:

$$
\begin{equation*}
C \geq R . \tag{8}
\end{equation*}
$$

Dimensionality of the coding space:

$$
\begin{equation*}
D=2 d_{\text {space }} \tag{9}
\end{equation*}
$$

since there are both a phase and an amplitude for each of the independent oscillator pins that describe the motions of a molecule at thermal equilibrium.

A Dimensionality Equation

Channel capacity of molecular machine:

$$
\begin{equation*}
C=d_{\text {space }} \log _{2}\left(\frac{P}{N}+1\right) \quad \text { (bits per operation) } \tag{7}
\end{equation*}
$$

Maximum of the information R is the channel capacity:

$$
\begin{equation*}
C \geq R . \tag{8}
\end{equation*}
$$

Dimensionality of the coding space:

$$
\begin{equation*}
D=2 d_{\text {space }} \tag{9}
\end{equation*}
$$

since there are both a phase and an amplitude for each of the independent oscillator pins that describe the motions of a molecule at thermal equilibrium.

Combining equations (7), (8) and (9) gives a lower bound for the dimensionality:

$$
\begin{equation*}
D \geq \frac{2 R}{\log _{2}\left(\frac{P}{N}+1\right)} \tag{10}
\end{equation*}
$$

Vishnu's Observation

- In 1993 Vishnu Jejjala,

THEN a graduated high school student from the NCI-Frederick Student Intern Program (SIP)

Vishnu's Observation

- In 1993 Vishnu Jejjala,

THEN a graduated high school student from the NCI-Frederick Student Intern Program (SIP) NOW a string theory physicist pointed out that the equation gives a lower bound on the dimension.

Vishnu's Observation

- In 1993 Vishnu Jejjala,

THEN a graduated high school student from the NCI-Frederick Student Intern Program (SIP) NOW a string theory physicist pointed out that the equation gives a lower bound on the dimension.

- Vishnu suggested there could be another equation for an upper bound.

Vishnu's Observation

- In 1993 Vishnu Jejjala,

THEN a graduated high school student from the NCI-Frederick Student Intern Program (SIP) NOW a string theory physicist pointed out that the equation gives a lower bound on the dimension.

- Vishnu suggested there could be another equation for an upper bound.
- He suggested that the two bounds might converge to give one number.

Vishnu's Observation

- In 1993 Vishnu Jejjala,

THEN a graduated high school student from the NCI-Frederick Student Intern Program (SIP)
NOW a string theory physicist pointed out that the equation gives a lower bound on the dimension.

- Vishnu suggested there could be another equation for an upper bound.
- He suggested that the two bounds might converge to give one number.
- He set out to find that equation.

Vishnu's Observation

- In 1993 Vishnu Jejjala,

THEN a graduated high school student from the NCI-Frederick Student Intern Program (SIP)
NOW a string theory physicist pointed out that the equation gives a lower bound on the dimension.

- Vishnu suggested there could be another equation for an upper bound.
- He suggested that the two bounds might converge to give one number.
- He set out to find that equation.
- He did not succeed.

18 years later ...

Key Discovery: July 2011

- Tom was reading a 1983 paper by the famous information theorist Jaynes.
- Tom was reading a 1983 paper by the famous information theorist Jaynes.
- Jaynes pointed out that the total energy in a molecule depends on the number of degrees of freedom.
- Tom was reading a 1983 paper by the famous information theorist Jaynes.
- Jaynes pointed out that the total energy in a molecule depends on the number of degrees of freedom.
- Each degree of freedom carries $\frac{1}{2} k_{\mathrm{B}} T$ energy.
- Tom was reading a 1983 paper by the famous information theorist Jaynes.
- Jaynes pointed out that the total energy in a molecule depends on the number of degrees of freedom.
- Each degree of freedom carries $\frac{1}{2} k_{\mathrm{B}} T$ energy.
- But since they are independent, degrees of freedom are dimensions D!
- Tom was reading a 1983 paper by the famous information theorist Jaynes.
- Jaynes pointed out that the total energy in a molecule depends on the number of degrees of freedom.
- Each degree of freedom carries $\frac{1}{2} k_{\mathrm{B}} T$ energy.
- But since they are independent, degrees of freedom are dimensions D!
- For n atoms there are $3 n-6$ degrees of freedom.
- Tom was reading a 1983 paper by the famous information theorist Jaynes.
- Jaynes pointed out that the total energy in a molecule depends on the number of degrees of freedom.
- Each degree of freedom carries $\frac{1}{2} k_{\mathrm{B}} T$ energy.
- But since they are independent, degrees of freedom are dimensions D!
- For n atoms there are $3 n-6$ degrees of freedom.
- A molecule can use only some of these: $D \ll 3 n-6$.
- Tom was reading a 1983 paper by the famous information theorist Jaynes.
- Jaynes pointed out that the total energy in a molecule depends on the number of degrees of freedom.
- Each degree of freedom carries $\frac{1}{2} k_{\mathrm{B}} T$ energy.
- But since they are independent, degrees of freedom are dimensions D!
- For n atoms there are $3 n-6$ degrees of freedom.
- A molecule can use only some of these: $D \ll 3 n-6$.
- So the relevant thermal noise energy flowing through a molecule is:

$$
\begin{equation*}
N=\frac{1}{2} k_{\mathrm{B}} T D \quad \text { (joules per mmo) } \tag{11}
\end{equation*}
$$

$(\mathrm{mmo}=$ molecular machine operation $)$

- Tom was reading a 1983 paper by the famous information theorist Jaynes.
- Jaynes pointed out that the total energy in a molecule depends on the number of degrees of freedom.
- Each degree of freedom carries $\frac{1}{2} k_{\mathrm{B}} T$ energy.
- But since they are independent, degrees of freedom are dimensions D!
- For n atoms there are $3 n-6$ degrees of freedom.
- A molecule can use only some of these: $D \ll 3 n-6$.
- So the relevant thermal noise energy flowing through a molecule is:

$$
\begin{equation*}
N=\frac{1}{2} k_{\mathrm{B}} T D \quad \text { (joules per mmo) } \tag{11}
\end{equation*}
$$

($\mathrm{mmo}=$ molecular machine operation)

- Tom already had this equation in 1991!

Rearranging the Equation to get the Dimensionality

- Tom's 70% discovery implies that the energy a molecule dissipates to make selections must exceed this thermal noise:

$$
\begin{equation*}
P>N \tag{12}
\end{equation*}
$$

Rearranging the Equation to get the Dimensionality

- Tom's 70% discovery implies that the energy a molecule dissipates to make selections must exceed this thermal noise:

$$
\begin{equation*}
P>N \tag{12}
\end{equation*}
$$

So plugging in N :

$$
\begin{equation*}
P>N=\frac{1}{2} k_{\mathrm{B}} T D \tag{13}
\end{equation*}
$$

Rearranging the Equation to get the Dimensionality

- Tom's 70% discovery implies that the energy a molecule dissipates to make selections must exceed this thermal noise:

$$
\begin{equation*}
P>N \tag{12}
\end{equation*}
$$

So plugging in N :

$$
\begin{equation*}
P>N=\frac{1}{2} k_{\mathrm{B}} T D \tag{13}
\end{equation*}
$$

Rearrange:

$$
\begin{equation*}
\frac{P}{\frac{1}{2} k_{\mathrm{B}} T}>D . \tag{14}
\end{equation*}
$$

That's an upper bound on the dimensionality!

Rearranging the Equation to get the Dimensionality

- Tom's 70% discovery implies that the energy a molecule dissipates to make selections must exceed this thermal noise:

$$
\begin{equation*}
P>N \tag{12}
\end{equation*}
$$

So plugging in N :

$$
\begin{equation*}
P>N=\frac{1}{2} k_{\mathrm{B}} T D \tag{13}
\end{equation*}
$$

Rearrange:

$$
\begin{equation*}
\frac{P}{\frac{1}{2} k_{\mathrm{B}} T}>D \tag{14}
\end{equation*}
$$

That's an upper bound on the dimensionality!

> Vishnu was right!
> There is an equation for the upper bound!

Convert to more useful form - Part 1 - Definitions

- The energy available in coding space for making selections is the free energy:

$$
\begin{equation*}
P=-\Delta G^{\circ} \quad \text { (joules per mmo) } \tag{15}
\end{equation*}
$$

Convert to more useful form - Part 1 - Definitions

- The energy available in coding space for making selections is the free energy:

$$
\begin{equation*}
P=-\Delta G^{\circ} \quad \text { (joules per mmo) } \tag{15}
\end{equation*}
$$

- The maximum bits that can be gained for that free energy is

$$
\begin{equation*}
R_{\text {energy }} \equiv-\Delta G^{\circ} / \mathcal{E}_{\text {min }} \quad \text { (bits per mmo) } \tag{16}
\end{equation*}
$$

Convert to more useful form - Part 1 - Definitions

- The energy available in coding space for making selections is the free energy:

$$
\begin{equation*}
P=-\Delta G^{\circ} \quad \text { (joules per mmo) } \tag{15}
\end{equation*}
$$

- The maximum bits that can be gained for that free energy is

$$
\begin{equation*}
R_{\text {energy }} \equiv-\Delta G^{\circ} / \mathcal{E}_{\text {min }} \quad \text { (bits per mmo) } \tag{16}
\end{equation*}
$$

- Use the second law of thermodynamics as an ideal conversion factor between energy and bits:

$$
\begin{equation*}
\mathcal{E}_{\text {min }}=k_{\mathrm{B}} T \ln 2 \quad \text { (joules per bit) } \tag{17}
\end{equation*}
$$

Convert to more useful form - Part 1 - Definitions

- The energy available in coding space for making selections is the free energy:

$$
\begin{equation*}
P=-\Delta G^{\circ} \quad \text { (joules per } \mathrm{mmo} \text {) } \tag{15}
\end{equation*}
$$

- The maximum bits that can be gained for that free energy is

$$
\begin{equation*}
R_{\text {energy }} \equiv-\Delta G^{\circ} / \mathcal{E}_{\text {min }} \quad \text { (bits per mmo) } \tag{16}
\end{equation*}
$$

- Use the second law of thermodynamics as an ideal conversion factor between energy and bits:

$$
\begin{equation*}
\mathcal{E}_{\min }=k_{\mathrm{B}} T \ln 2 \quad \text { (joules per bit) } \tag{17}
\end{equation*}
$$

- A measured isothermal efficiency, $\epsilon_{r}<\epsilon_{t}$, is defined by the information gained, R, versus the information that could be gained for the given energy dissipation, $R_{\text {energy }}$:

$$
\begin{equation*}
\epsilon_{r}=R / R_{\text {energy }} \tag{18}
\end{equation*}
$$

Convert to more useful form - Part 2 - Substitutions

- combining equations (15) to (18) gives

$$
\begin{align*}
P & =\mathcal{E}_{\text {min }} R_{\text {energy }} \tag{19}\\
& =k_{\mathrm{B}} T \ln 2 R_{\text {energy }} \tag{20}\\
& =k_{\mathrm{B}} T R \ln 2 / \epsilon_{r} \tag{21}
\end{align*}
$$

Convert to more useful form - Part 2 - Substitutions

- combining equations (15) to (18) gives

$$
\begin{align*}
P & =\mathcal{E}_{\text {min }} R_{\text {energy }} \tag{19}\\
& =k_{\mathrm{B}} T \ln 2 R_{\text {energy }} \tag{20}\\
& =k_{\mathrm{B}} T R \ln 2 / \epsilon_{r} . \tag{21}
\end{align*}
$$

- Inserting this result into equation (14) gives

$$
\begin{equation*}
\frac{2 R \ln 2}{\epsilon_{r}}>D \tag{22}
\end{equation*}
$$

Convert to more useful form - Part 2 - Substitutions

- combining equations (15) to (18) gives

$$
\begin{align*}
P & =\mathcal{E}_{\text {min }} R_{\text {energy }} \tag{19}\\
& =k_{\mathrm{B}} T \ln 2 R_{\text {energy }} \tag{20}\\
& =k_{\mathrm{B}} T R \ln 2 / \epsilon_{r} . \tag{21}
\end{align*}
$$

- Inserting this result into equation (14) gives

$$
\begin{equation*}
\frac{2 R \ln 2}{\epsilon_{r}}>D \tag{22}
\end{equation*}
$$

- Equation (22) is an
upper bound on the dimensionality as a function of the information gain R and the isothermal efficiency ϵ_{r}.

Bounds on the dimensionality of molecular machines

- Combining the lower bound (10) with the upper bound (22)

$$
\begin{equation*}
\frac{2 R}{\log _{2}\left(\frac{P}{N}+1\right)} \leq D<\frac{2 R \ln 2}{\epsilon_{r}} \tag{23}
\end{equation*}
$$

Bounds on the dimensionality of molecular machines

- Combining the lower bound (10) with the upper bound (22)

$$
\begin{equation*}
\frac{2 R}{\log _{2}\left(\frac{P}{N}+1\right)} \leq D<\frac{2 R \ln 2}{\epsilon_{r}} \tag{23}
\end{equation*}
$$

- To simplify terminology, define $\rho=P / N$

Bounds on the dimensionality of molecular machines

- Combining the lower bound (10) with the upper bound (22)

$$
\begin{equation*}
\frac{2 R}{\log _{2}\left(\frac{P}{N}+1\right)} \leq D<\frac{2 R \ln 2}{\epsilon_{r}} \tag{23}
\end{equation*}
$$

- To simplify terminology, define $\rho=P / N$
- Notice that $\log _{2}(\rho+1)=\frac{\ln (\rho+1)}{\ln 2}$

Bounds on the dimensionality of molecular machines

- Combining the lower bound (10) with the upper bound (22)

$$
\begin{equation*}
\frac{2 R}{\log _{2}\left(\frac{P}{N}+1\right)} \leq D<\frac{2 R \ln 2}{\epsilon_{r}} \tag{23}
\end{equation*}
$$

- To simplify terminology, define $\rho=P / N$
- Notice that $\log _{2}(\rho+1)=\frac{\ln (\rho+1)}{\ln 2}$
- So

$$
\begin{equation*}
\frac{2 R \ln 2}{\ln (\rho+1)} \leq D<\frac{2 R \ln 2}{\epsilon_{r}} \tag{24}
\end{equation*}
$$

A beautifully symmetrical equation!

Pincers on the dimensionality of molecular machines

$$
\frac{2 R \ln 2}{\ln (\rho+1)} \leq D<\frac{2 R \ln 2}{\epsilon_{r}}
$$

Pincers on the dimensionality of molecular machines

The dimensionality of a molecular machine is bounded on the two sides by three factors:

Pincers on the dimensionality of molecular machines

The dimensionality of a molecular machine is bounded on the two sides by three factors:

- $\quad R$ - the information gain in bits

Pincers on the dimensionality of molecular machines

The dimensionality of a molecular machine is bounded on the two sides by three factors:

- $\quad R$ - the information gain in bits
- ϵ_{r} - the real isothermal efficiency

Pincers on the dimensionality of molecular machines

The dimensionality of a molecular machine is bounded on the two sides by three factors:

- $\quad R$ - the information gain in bits
- ϵ_{r} - the real isothermal efficiency
- $\quad \rho$ - the normalized energy dissipation

Pincers on the dimensionality of molecular machines

The dimensionality of a molecular machine is bounded on the two sides by three factors:

- $\quad R$ - the information gain in bits
- ϵ_{r} - the real isothermal efficiency
- $\quad \rho$ - the normalized energy dissipation

As a molecular machine evolves:

$$
\rho \rightarrow 1 \quad \text { The } \quad \text { left hand side converges to } 2 R \text {. }
$$

Pincers on the dimensionality of molecular machines

The dimensionality of a molecular machine is bounded on the two sides by three factors:

- $\quad R$ - the information gain in bits
- ϵ_{r} - the real isothermal efficiency
- $\quad \rho$ - the normalized energy dissipation

As a molecular machine evolves:

$$
\begin{array}{l|l|}
\rho \rightarrow 1 & \text { The } \text { left hand side converges to } 2 R . \\
\epsilon_{r} \rightarrow \ln (2) & \text { The right hand side converges to } 2 R . \\
\hline
\end{array}
$$

Pincers on the dimensionality of molecular machines

$$
\frac{2 R \ln 2}{\ln (\rho+1)} \leq D<\frac{2 R \ln 2}{\epsilon_{r}}
$$

The dimensionality of a molecular machine is bounded on the two sides by three factors:

- $\quad R$ - the information gain in bits
- ϵ_{r} - the real isothermal efficiency
- $\quad \rho$ - the normalized energy dissipation

As a molecular machine evolves:

$$
\begin{array}{l|l|}
\rho \rightarrow 1 \\
\epsilon_{r} \rightarrow \ln (2) & \text { The } \text { left hand side converges to } 2 R . \\
\hline & \text { The right hand side converges to } 2 R . \\
\hline
\end{array}
$$

Vishnu was right about the convergence!

Efficiency curve bounds

Efficiency curve bounds

$D=2 R$ when the molecular machine is optimal

Dimensionality of Molecular Machines

If a molecular machine has evolved to optimum, then the dimensionality is

$$
D=2 R
$$

Dimensionality of Molecular Machines

If a molecular machine has evolved to optimum, then the dimensionality is

$$
D=2 R
$$

Let's calculate D for restriction enzymes!

Sequence Logo

17 Bacteriophage T7 RNA polymerase binding sites

1 ttattaatacaactcactataaggagag
2 aaatcaatacgactcactatagagggac
3 cggttaatacgactcactataggagaac
4 gaagtaatacgactcagtatagggacaa
5 taattaattgaactcactaaagggagac
6 cgcttaatacgactcactaaaggagaca
6 of 17 sites

Schneider \& Stephens Nucl. Acids Res. 18: 6097-6100 1990

Sequence Logo

17 Bacteriophage T7 RNA polymerase binding sites

Schneider \& Stephens Nucl. Acids Res. 18: 6097-6100 1990

2 aaatcaatacgactcactatagagggac
3 cggttaatacgactcactataggagaac
4 gaagtaatacgactcagtatagggacaa
5 taattaattgaactcactaaagggagac
6 cgcttaatacgactcactaaaggagaca
6 of 17 sites

Sequence Logo

17 Bacteriophage T7 RNA polymerase binding sites

Sequence Logo

17 Bacteriophage T7 RNA polymerase binding sites

Restriction Enzyme Dimensionality Computation 1

Example:

Restriction Enzyme Dimensionality Computation 1

Example: - EcoRI

Restriction Enzyme Dimensionality Computation 1

Example:
 - EcoRI
 - 5^{\prime} G \downarrow AATTC 3^{\prime}

Restriction Enzyme Dimensionality Computation 1

Example:
 - EcoRI
 - 5^{\prime} G \downarrow AATTC 3^{\prime}
 - 6 bases: selecting 1 in 4 .

Example:

- EcoRI
- 5^{\prime} G \downarrow AATTC 3^{\prime}
- 6 bases: selecting 1 in 4.
- Uncertainty before binding: 2 bits Uncertainty after binding: 0 bits Decrease in uncertainty:

2 bits

Example:

- EcoRI
- 5^{\prime} G \downarrow AATTC 3^{\prime}
- 6 bases: selecting 1 in 4.
- Uncertainty before binding: 2 bits Uncertainty after binding: 0 bits Decrease in uncertainty: 2 bits
- $6 \times(2-0)=12$ bits

Example:

- EcoRI
- 5^{\prime} G \downarrow AATTC 3^{\prime}
- 6 bases: selecting 1 in 4.
- Uncertainty before binding: 2 bits Uncertainty after binding: 0 bits Decrease in uncertainty: 2 bits
- $6 \times(2-0)=12$ bits
- $12 \times 2=24$ dimensions

Restriction Enzyme Dimensionality Computation 2

Example:

Restriction Enzyme Dimensionality Computation 2

Example:
 - 5^{\prime} GTY \downarrow RAC 3^{\prime} Hinclll

Example:

- 5^{\prime} GTY \downarrow RAC 3^{\prime} HincllI
- 5^{\prime} GT AC 3^{\prime}

GT \quad AC $\quad:(2-0) \times 4=8$ bits
total $=8$

Example:

- 5^{\prime} GTY \downarrow RAC 3^{\prime} Hinclll
- 5^{\prime} GTY $\downarrow R A C 3^{\prime}$
$\begin{array}{cc}\text { GT AC } & :(2-0) \times 4=8 \text { bits } \\ Y \downarrow R & :(2-1) \times 2=2 \text { bits } \\ \text { total }=8+2 & \end{array}$

Example:

- 5^{\prime} GTY \downarrow RAC 3^{\prime} HincllI
- 5^{\prime} GTY $\downarrow R A C 3^{\prime}$

GT AC $\quad:(2-0) \times 4=8$ bits
$Y \downarrow R \quad:(2-1) \times 2=2$ bits
total $=8+2=10$ bits

Example:

- 5^{\prime} GTY \downarrow RAC 3^{\prime} HincllI
- 5^{\prime} GTY $\downarrow R A C 3^{\prime}$
- GT AC : $2-0) \times 4=8$ bits
$Y \downarrow R \quad:(2-1) \times 2=2$ bits
total $=8+2=10$ bits
- 10 bits $/ 2=5$ compressed bases

Example:

- 5^{\prime} GTY \downarrow RAC 3^{\prime} HincllI
- 5^{\prime} GTY \downarrow RAC 3^{\prime}
- GT AC : $2-0) \times 4=8$ bits $Y \downarrow R \quad:(2-1) \times 2=2$ bits
total $=8+2=10$ bits
- 10 bits $/ 2=5$ compressed bases
- 10 bits $\times 2=20$ dimensions

Restriction Enzyme Dimensionality Computation 3

Example:

Restriction Enzyme Dimensionality Computation 3

Example:
 - 5^{\prime} VCW 3^{\prime} Rlal

Example:
 - 5^{\prime} VCW 3^{\prime} Rlal
 - 5^{\prime} C 3^{\prime}
 - \quad C $: 2-0=2$ bits

total $=2$

Example:
 - 5^{\prime} VCW 3^{\prime} Rlal
 - $5^{\prime} \mathrm{CW} 3^{\prime}$
 - $\quad \begin{aligned} \mathrm{C}_{\mathrm{W}} & : 2-0=2 \text { bits } \\ \mathrm{W} & =\mathrm{A} / \mathrm{T}: 2-1=1 \text { bit }\end{aligned}$

total $=2+1$

Example:

- 5^{\prime} VCW 3^{\prime} Rlal
- 5^{\prime} VCW 3^{\prime}
- C $: 2-0=2$ bits

$$
\begin{aligned}
\mathrm{W} & =\mathrm{A} / \mathrm{T}: 2-1=1 \mathrm{bit} \\
& =\mathrm{A}, \mathrm{C}, \mathrm{G}: \\
& 2-\log _{2} 3 \approx 0.42 \mathrm{bits} \\
\text { total }=2 & +1+0.42
\end{aligned}
$$

Example:

- 5^{\prime} VCW 3^{\prime} Rlal
- 5^{\prime} VCW 3^{\prime}
- C $\quad: 2-0=2$ bits
$\mathrm{W}=\mathrm{A} / \mathrm{T}: 2-1=1 \mathrm{bit}$
$\mathrm{V} \quad=\mathrm{A}, \mathrm{C}, \mathrm{G}:$
$2-\log _{2} 3 \approx 0.42$ bits
total $=2+1+0.42=3.42$ bits

Example:

- 5^{\prime} VCW 3^{\prime} Rlal
- 5^{\prime} VCW 3^{\prime}
- C $\quad: 2-0=2$ bits

$$
\mathrm{W}=\mathrm{A} / \mathrm{T}: 2-1=1 \mathrm{bit}
$$

$$
\mathrm{V} \quad=\mathrm{A}, \mathrm{C}, \mathrm{G}:
$$

total $=2+1+0.42=3.42$ bits

- 3.42 bits $/ 2=1.71$ compressed bases

Example:

- 5^{\prime} VCW 3^{\prime} Rlal
- 5^{\prime} VCW 3^{\prime}
- C_{W}

$$
: 2-0=2 \text { bits }
$$

$=\mathrm{A} / \mathrm{T}: 2-1=1 \mathrm{bit}$
$\mathrm{V} \quad=\mathrm{A}, \mathrm{C}, \mathrm{G}:$
total $=2+1+0.42=3.42$ bits

- 3.42 bits $/ 2=1.71$ compressed bases
$\bullet 3.42$ bits $\times 2=6.83$ dimensions

Restriction Enzyme Coding Space Dimensionality

3802 restriction enzymes from Rich Roberts' Restriction Enzyme Database, REBASE

Restriction Enzyme Dimensionalities

Number of Restriction Enzymes

Packing in 2 Dimensions

Square Packing

$\pi r^{2} /(2 \times r)^{2}=79 \%$
of the plane filled

Hexagonal Packing

$\pi / \sqrt{12}=91 \%$
of the plane filled

Packing in 3 Dimensions

hexagonal sphere packing

Packing in 3 Dimensions

hexagonal sphere packing

green balls reveal square packing

Packing in 3 Dimensions

hexagonal sphere packing

face centered cubic packing

green balls reveal square packing

Packing in 3 Dimensions

hexagonal sphere packing

face centered cubic packing

green balls reveal square packing

more spheres show square packing

Higher Dimensional Sphere Packing?

What happens in higher dimensions?

Discovery of the Leech Lattice

" Some sphere
(1964), "Some space", Canadian
John higher space', 657-682
Leeckings in hithematics
journal of
\section*{HIGHER SPACE

SHERE PACKINGS IN

JOHN LEECH} par is concerned with the packing of equal a packing is a ction. This paper is concerned wions. To be precise, a porking of contact in Introduction. $[n]$ of $n>8$ which have at most a packing is said to be to in Euclidean spheres any two of whes form a lattice, known for spaces or asions. distribution of sphentres of the sphere packings are kore than eight dimen have common. If the cene densest lat for any space of in [3] and [5] which has commice packing. The), but not for any are known in (\mathbf{k}) is known which to eight eight dimensions non-lattice packings packings, none space of up to espen Further, alensity as the densest lattice packings two dimensions,

the same density than the densest lace of more than two greater density than, for any space of in [4] and [8] are generalizes dimensions, neith do not exist. shown that 1 the densest lattice paring, in $\left[2^{\text {m }}\right]$, in

In Pars not all lattice packing $\left(2+2^{n}\right) \ldots\left(2^{n}\right)$
packings, not all $(2+2)\left(2+2^{2}\right)\left(2+2^{2}\right) \ldots(2+2)$ there touches 4320 others,
$(2+2)(2+2)$ in which each sphere touches 4320 others,
thers. This gives packings in [10] in . For $m>4$ seem to be the densest yet
hich may be the densest in tensest, though they which unlikely to be the denses the densest lattice packing [24 [12] this does not are unliked. different analogies to in [12] and [24]. In to new co-ordinates constructed. 2 some different new packings in though it leads to new in which In Part 2 sorich lead to new as K_{13} (5), thougtice packing is found inensions
considered, wacking as dense In [24] a dense packings in up to 23 , other poper lead to ane known packings. 98256 others. Other . [24]. for some each sphere touches 9820 packing in $[24$. are found as sections of the densities of these is also made for the kno been made befound In Part 3 the This comparison is also mhich it has not Coseter's upper bouched
ound (10). This eight dimensions are compared with of spheres'toucher upper bound (in in to eight suched are con and the number and Coxeter's upp the packings inbers of spheres the $\left[2^{* "}\right]$ the density and than Rogers and are closer to that $[8]$ (4). For the packings in order of magnitude to 24 dimensions ap dimensions, that in $[8]$ (4). For much smaller order packings in up in from 3 to 8 dimensi
bounds as $m \rightarrow \infty$. Th not so close as in
upper bounds, though
being especially c
eech, John (1967), "Notes on sphere packings", Leech, John (1967), "Notes on sphere pack
Canadian Journal of Mathematics 19: $251-267$

NOTES O

N Sphere packings
Johi leech
〕OHN LEECH
ent my paper (4), and should be read in con
these notes the
and in here supplements
notes are to supplement into three parts, $\$ 1.41$ here supplements These notes it. Both are divider digit added; thus the (4) or to the junction wimbers have a furthion numbers are numbered independently. section numbeferences by sect papers are numb following. New sphere as those of $\$ 1.4$ of (4). References to other pa notes are the fore twice as dense as thase of notes, but referencesults of these [24], which are the same density in the earlier The principal res $\left[2^{m}\right], m \geqslant 6$, and in $\left[22^{m}\right], m \geqslant 5$, with the spheres than in the Barnes are given in $\left[2^{m}\right], m$, others are given in $\left[2^{m}\right], m$ fewer other sphe in $\left[2^{m}\right]$ given by $\$ 81.6,2.3$. Others each sphere touch of lattice packings packings were latice [11], as $\$ 1.6$, but in whichledgment is mace (in which the of $\$ 2.4$ are given for [in [24]; packings. Acknownaticipation of ackings than those of the new packing in in [16] packing. (2) in anticipa
 a section of K_{12}, and to Barnes (1). A $\$ 2.3$ or $\$ 2.31$). Table packings, and Coxete to that in [11] is due of those in [24] ($\$ 2$.or the density of packi, for spaces of up $(11.2$) is a section of Rogers' bound for thay touch any one, for spown packings
(4), giving values of Rogers spheres that may the number achieved by
bound for the number in comparison
24 dimensions.
hary to the constructions of
in these spaces.

1. Packings in $\left[2^{n}\right]$ next two are prelimown in $\delta 1.3$ that any follows that
1.31. This section and $881.61-1.63$ below. Wiffer in at least 2^{k} placem any row having sphere pack digits having k-pary differs in at least 2^{k} place rows differing in of 2^{m} binary having exactly k-paritstigate whether the -parity. any row)-parity. We now every row having (k, since every row sive to git 1 -parity.
$(k+1)$-places from every row no such row, siny one place so as 1 -parity, then it can
For $k=0$ there is clean be altered in aw does not have digit whose position,
simple even parity or fow for $k=1$. If a row; we reverse the digust those positions (simple evalso no such row give it 2 -panity, There is also in one place to geger in the binary binary constituent rows walter it in be altered insed as an integer to those bin a row has 1 -parity, we carbitraily, and the when expressed corresponds 1 -parity. If a row be chosen arbitrarily, 1 -parity. whose significance not have 1-parity; one may do row not having 1-parity given row which as give it 2 -paned as above for a 5 , 1966 .
two places so as en uniquely determined as abecived Augnst $5,1966$.
other is then uniquer 251

Discovery of the Leech Lattice

 shown that they densest lattice paccing in in whshow Part 1 the
In packings, not all lattice packkings,

$$
(2+2)\left(2+2^{y}\right)\left(2+2^{n}\right) \text {.. }
$$

"some sphere
Some spheredian
John (1964) space : 657-682
Ieech, joh higher 16: 657-682
packings in Mathematics
SPHERE PACKINGS IN HIGHER SPACE
John LEECH
JOHN LEECA ling of equal spheres
This paper is concerned with the packing ore a packing is a
Introduction. This paper $\gg 8$ dimensions. To be most a point of contact to be
Euclidean spaces (n) any two of which form a lattice, then for spaces of up to
in Euctation of spheres any the spheres form a mare known tor spand dimensions.
distribut. If the centres of sest lattice packings of more than eight which have
common. packing. The densut not for any spar known in [3] and (5 , wnown which has
a lattice packing ($\mathbf{1}, \mathbf{2}$), but not eating are
$\begin{aligned} & \text { eight dim although non-lattice pest lattice packing in any space ons the the it been } \\ & \text { Further, }\end{aligned}$
Furture density as the densest lattice packings two dimensions of more than the
greater density than for any space of mither, io in 41 and $[8]$ are generalized
dimensions, neither, , or en exist.

$$
\begin{aligned}
& \text { ttice packing } \\
& (2+2)\left(2+2^{y}\right)\left(2+2^{y}\right) \ldots \\
& \text { and in which ea }
\end{aligned}
$$

The Best Sphere Packing

 is in 24 dimensions!Notes on sphere packings",
Leech, John (1967), "Notes on sphere pack-267 Leech, John (1967), "Notes on sphere
Canadian Journal of Mathematics 19:251-267

N SPHERE PACKINGS

NOTES ON

JOHN LEECH
are to supplement my paper (didee parts, into three in thes $\$ 1.41$ here supplements
These notes are to th are divided digit added; thus \$1.41 (4) or to the present junction with it. Boave a further digmers are always independently. section numbers have by section nums refernces numbered indep. New sphere packing of $\$ 11.4$ of (4). References to other papers are the following. as dense as those of $\$$ notes, but references results of these notes notes, principal results $\left[2^{m}\right], m \geqslant 6$, and in $[\{24], m \geqslant 5$, with the same sheres than in the earnes

 $\$ 81.6$, but in which eadg ont is made of (in which the packing are given for [11] [24]; $\$$ packings. Acknowleditication of 81.0 (2 , than those of of the new packing in ${ }^{24 / 4,}$ packing. (2) in anticip enser packings as sections of the the packing in $[16]$ and Wall for $m \leqslant 6$). Denser] and [23], as sef is given that the peacsedes those of

24 dimensions.
nes (1). $\$ 3$ or $\$ 2.31$). Table packings, and Coxeter to in [24] ($\$ 2.3$ or $\$ 2.31$). packings, and in $[24]$ for the density fouch any one, for spaces packings sp spheres that may figures ach
ison with the best fig
in these spaces.
constructions of
others. This gives pa ensest in this spaty though they which maikely to be the denses to densest lattice pal this does not are unliked. constructed.
In Part 2 some different
new packings in
, though it lead to
ne ns Pared, which lead to dense as K_{12} (5), tho lattice packing is 23 dimensions considered, any packing as dense [24] a dense lattice ps in up to 23
lead to ame known packings. In (2lters. Other pa- 8256 pore with Rogers' upper for some kno touches 98256 opais packing in [24]. each sphere sections of this phese packings made for the know been made before. are found as seche densities of then is also made it has not been made bereund In Part 3 the den comparison is ans for which it with Coseter's upper bouched In Par (10). This compa dimensions for wompared with Coxee of spheres 'ouched

(4). For the packings in 22 of magnitude than dimensions are 24 , that in $[8]$
(4). For much smaller order packings in up to 24 . The 8 dimensi
are ornds as $m \rightarrow \infty$. Fh not so close as in
bounds as
upper bounds, though
upper bounds, being especially close.

1. Packings in $\left[2^{m}\right]$ next two are preliminary to the that any two rows
2. Packings section and the next two. It was shown tin $2^{\text {e }}$ places. It follows having 1.31. This section $88 . .61-1.63$ below, 1 , sphere packings bigits having k-pary differs in at leathere exist rows d. 1 -parity of 2^{m} bin having exactly ${ }^{2}$. investigate wh $(k+1)$-parity. row either has 1 -parity any row havity. We now row having ($k+$, since every row so as to give it 1 -paritc. $(k+1)$-party. from every rym no such row, sy one place so as 1 -parity, then it can For $k=0$ there is cer can be altered in any does not have digit whose position, (simple even parity) or ow for $k=1$. .1fariy; we reverse the in just those position of the
 There is asd in one place toge in the binary
be altered in be ahe expressed as an inesponds to those If a row has 1 -parts, arbitrarily, and whose significance cont have 1 -parity. One may be chosen and having 1 -parity. given row which to give it 2 -paritas as abo for a row 10 .
two places so as then uniquely determined as aiceived August 5,1966 .
other is ther June 30,1965 . Revised version 251

Restriction Enzyme Dimensions \& Best Packing

Number of Restriction Enzymes

Leech Lattice Modem

Fig. 1. A hardware prototype of the $19200 \mathrm{bit} / \mathrm{s}$ Leech modem.

Lang \& Longstaff, IEEE J. on Selected Areas in Comm. 7:968-973, 1989

Leech Lattice Modem

Fig. 1. A hardware prototype of the $19200 \mathrm{bit} / \mathrm{s}$ Leech modem.

- Leech Lattice 19,200 bit/sec modem built by Motorola

Lang \& Longstaff, IEEE J. on Selected Areas in Comm. 7:968-973, 1989

Leech Lattice Modem

Fig. 1. A hardware prototype of the $19200 \mathrm{bit} / \mathrm{s}$ Leech modem.

- Leech Lattice $19,200 \mathrm{bit} / \mathrm{sec}$ mode
- EcoRI decodes one of 4096 patterns probably using the Leech Lattice

Leech Lattice Modem

Fig. 1. A hardware prototype of the $19200 \mathrm{bit} / \mathrm{s}$ Leech modem.

- Leech Lattice 19,200 bit/sec mode
- EcoRI decodes one of 4096 patterns probably using the Leech Lattice
- Single molecules could be used to build a modem, in theory.

Conclusions

Number of Restriction Enzymes

Conclusions

- 6 base cutting restriction enzymes work in 24 dimensions 4 base cutting restriction enzymes work in 16 dimensions Both have good lattice packings.

Conclusions

- 6 base cutting restriction enzymes work in 24 dimensions 4 base cutting restriction enzymes work in 16 dimensions Both have good lattice packings.
- Restriction Enzymes probably use the 24 dimensional Leech Lattice

Conclusions

- 6 base cutting restriction enzymes work in 24 dimensions 4 base cutting restriction enzymes work in 16 dimensions Both have good lattice packings.
- Restriction Enzymes probably use the 24 dimensional Leech Lattice
- Good packing can explain why restriction enzymes are so precise

Conclusions

- 6 base cutting restriction enzymes work in 24 dimensions 4 base cutting restriction enzymes work in 16 dimensions Both have good lattice packings.
- Restriction Enzymes probably use the 24 dimensional Leech Lattice
- Good packing can explain why restriction enzymes are so precise
- Dimensionality is a clue to mechanism

Conclusions

- 6 base cutting restriction enzymes work in 24 dimensions 4 base cutting restriction enzymes work in 16 dimensions Both have good lattice packings.
- Restriction Enzymes probably use the 24 dimensional Leech Lattice
- Good packing can explain why restriction enzymes are so precise
- Dimensionality is a clue to mechanism
- Leech Lattice coding is used for modern communications

Conclusions

Number of Restriction Enzymes

- 6 base cutting restriction enzymes work in 24 dimensions 4 base cutting restriction enzymes work in 16 dimensions Both have good lattice packings.
- Restriction Enzymes probably use the 24 dimensional Leech Lattice
- Good packing can explain why restriction enzymes are so precise
- Dimensionality is a clue to mechanism
- Leech Lattice coding is used for modern communications
- Single molecules probably can be used to do communications!

Acknowledgements

- N. J. A. Sloane
- Rich Roberts
- Soren Brunak and Technical University of Denmark
- Michael Smith, NCI
- Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.
- At Queen Mary, University of London Vishnu Jejjala was supported by the UK Science and Technology Facilities Council under grant ST/G000565/1.
- Vishnu Jejjala, School of Physics, University of the Witwatersrand, Johannesburg, South Africa.
Support: South African Research Chairs Initiative of Department of Science and Technology and National Research Foundation.

Version

version $=1.62$ of latticetalk.tex 2020 Jan 21

