
132 p53 binding sites

0

1

2

b
it

s

5′ -6

A
T
G
C

-5

TAGC

-4

T
C
A
G

-3

T
C
A
G

-2

C
T
G
A

-1

GT
C

0G
C
T
A

1G
C
A
T

2CA
G

3G
A
C
T

4A
G
T
C

5A
G
T
C

6ATCG 7T
A
C
G

3′

Why Do Restriction Enzymes
Prefer 4 and 6 Base DNA

Sequences?
Thomas D. Schneider, Ph.D.

Vishnu Jejjala, Ph.D.

Molecular Information Theory Group
Center for Cancer Research
RNA Biology Laboratory
National Cancer Institute
Frederick, MD 21702-1201

and
University of the Witwatersrand
Johannesburg, South Africa



• April 30, 1916 - February 24, 2001



• April 30, 1916 - February 24, 2001

• Founded Information Theory



• April 30, 1916 - February 24, 2001

• Founded Information Theory

• Important papers: 1948



• April 30, 1916 - February 24, 2001

• Founded Information Theory

• Important papers: 1948 , 1949



• April 30, 1916 - February 24, 2001

• Founded Information Theory

• Important papers: 1948 , 1949

• Result: modern communications!
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• EcoRI - restriction enzyme

• EcoRI binds DNA at 5′ GAATTC 3′

• information required:

6 bases × 2 bits per base = 12 bits
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Energy Dissipation by EcoRI

• Measured specific binding constant:

Kspec = 1.6× 105

• Average energy dissipated by one molecule as it binds:

∆G◦
spec = −kBT lnKspec (joules per binding)

• The Second Law of Thermodynamics as a conversion factor:

Emin = kBT ln 2 (joules per bit)

• Number of bits that could have been selected:

Renergy = −∆G◦/Emin

= kBT lnKspec/kBT ln 2

= log2Kspec ⇐ SO SIMPLE!

= 17.3 bits per binding
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. . . but it only made 12 choices.

Efficiency is
‘WORK’ DONE / ENERGY DISSIPATED

12 bits per binding

17.3 bits per binding
= 0.7

The efficiency is 70%.

18 out of 19 DNA binding proteins give ∼70% efficiency.
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Efficiency of Muscle

• Experiments by Kushmerick’s lab since (at least) 1969

• new work: 2008, 2011

•Weight lifting gives work done

• NMR coil gives ATP = energy used

• Efficiency: 0.68± 0.09

http://dx.doi.org/10.1113/jphysiol.2007.146829 http://dx.doi.org/10.1242/jeb.052985

http://dx.doi.org/10.1113/jphysiol.2007.146829
http://dx.doi.org/10.1242/jeb.052985


Tom’s Model of Muscle Mechanism
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70% efficiency appears widely in biology:

• DNA - protein binding

• rhodopsin
• muscle

• other systems

Why 70% efficiency?



Lock and Key

Like a key in a lock
which has many independent pins,
it takes many numbers
to describe the vibrational state
of a molecular machine
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Gaussians

•
2

x

ep(x) −x

Pin motion x has a Gaussian distribution:

p(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

µ = mean, σ = standard deviation

• Gaussian distributions are generated by the sum of
many small random variables

•Drunkard’s walk: Galton’s quincunx device!

http://www.youtube.com/watch?v=xDIyAOBa_yU

http://www.youtube.com/watch?v=xDIyAOBa_yU
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p(x, y) = p(x)× p(y) (3)

∝ e−x
2 × e−y

2

(4)

∝ e−(x
2+y2) (5)

∝ e−r
2

(6)

If p(x, y) is a constant,
then r is a constant.

Circular distribution!



1 Dimension

Energy

States

1 dimension is too simple!
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Spheres tighten in high dimensions
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Good Sphere Packing

• Good packing of spheres
gives a molecule
the capacity
to make selections efficiently

• Shannon’s 1949 paper:
each gumball is a message

• For a molecule each gumball
is a state
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N Dimensional Sphere Separation

Degenerate Sphere Forward Sphere

√
Noise √

Power

Energy dissipated to escape the Degenerate Sphere must exceed the Noise
√
Power >

√
Noise SO Power > Noise SO Power/Noise > 1
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Theoretical Isothermal Efficiency

T. D. Schneider, Nucleic Acids Research (2010) 38: 5995-6006

• For molecular states of molecules with dspace ‘parts’
P energy is dissipated for noise N and

C = dspace log2(P/N + 1) ← machine capacity

ǫt =
ln( P

N
+1)

P
N

← molecular efficiency

�

t
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0.00
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P/N

0.69

0.55

0.46

0.40

Second Law upper bound

Isothermal Efficiency upper bound

The curve is an upper bound

• If P/N = 1 the efficiency is 70%!
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A Dimensionality Equation

Channel capacity of molecular machine:

C = dspace log2

(

P

N
+ 1

)

(bits per operation) (7)

Maximum of the information R is the channel capacity:

C ≥ R. (8)

Dimensionality of the coding space:

D = 2dspace (9)

since there are both a phase and an amplitude for each of the independent
oscillator pins that describe the motions of a molecule at thermal equilibrium.

Combining equations (7), (8) and (9) gives a lower bound for the
dimensionality:

D ≥ 2R

log2
(

P
N + 1

) . (10)
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Vishnu’s Observation

• In 1993 Vishnu Jejjala,
THEN a graduated high school student
from the NCI-Frederick Student Intern Program (SIP)
NOW a string theory physicist
pointed out that the equation gives a lower bound on the dimension.

• Vishnu suggested there could be another equation for an upper bound.

• He suggested that the two bounds might converge to give one number.

• He set out to find that equation.

• He did not succeed.
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Key Discovery: July 2011

• Tom was reading a 1983 paper by the famous information theorist Jaynes.

• Jaynes pointed out that
the total energy in a molecule
depends on the number of degrees of freedom.

• Each degree of freedom carries 1
2
kBT energy.

• But since they are independent, degrees of freedom are dimensions D!
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• Jaynes pointed out that
the total energy in a molecule
depends on the number of degrees of freedom.

• Each degree of freedom carries 1
2
kBT energy.

• But since they are independent, degrees of freedom are dimensions D!

• For n atoms there are 3n− 6 degrees of freedom.

• A molecule can use only some of these: D ≪ 3n− 6.

• So the relevant thermal noise energy flowing through a molecule is:

N = 1
2
kBTD (joules per mmo) (11)

(mmo = molecular machine operation)

• Tom already had this equation in 1991!
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Rearranging the Equation to get the Dimensionality

• Tom’s 70% discovery implies that the energy a molecule dissipates to make
selections must exceed this thermal noise:

P > N (12)

So plugging in N :
P > N = 1

2
kBTD (13)

Rearrange:
P

1
2kBT

> D. (14)

That’s an upper bound on the dimensionality!

Vishnu was right!
There is an equation
for the upper bound!
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Convert to more useful form - Part 1 - Definitions

• The energy available in coding space for making selections is the free energy:

P = −∆G◦ (joules per mmo) (15)

• The maximum bits that can be gained for that free energy is

Renergy ≡ −∆G◦/Emin (bits per mmo) (16)

• Use the second law of thermodynamics as an ideal conversion factor between
energy and bits:

Emin = kBT ln 2 (joules per bit) (17)

• A measured isothermal efficiency, ǫr < ǫt, is defined by the information
gained, R, versus the information that could be gained for the given energy
dissipation, Renergy:

ǫr = R/Renergy (18)
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Convert to more useful form - Part 2 - Substitutions

• combining equations (15) to (18) gives

P = EminRenergy (19)

= kBT ln 2Renergy (20)

= kBTR ln 2/ǫr. (21)

• Inserting this result into equation (14) gives

2R ln 2

ǫr
> D (22)

• Equation (22) is an

upper bound on the dimensionality
as a function of the information gain R
and the isothermal efficiency ǫr.
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Bounds on the dimensionality of molecular machines

• Combining the lower bound (10) with the upper bound (22)
2R

log2
(

P
N + 1

) ≤ D <
2R ln 2

ǫr
(23)

• To simplify terminology, define ρ = P/N

• Notice that log2(ρ+ 1) = ln(ρ+1)
ln 2

• So
2R ln 2

ln (ρ+ 1)
≤ D <

2R ln 2

ǫr
(24)

A beautifully symmetrical equation!
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Pincers on the dimensionality of molecular machines

2R ln 2

ln (ρ + 1)
≤ D <

2R ln 2

ǫr
The dimensionality of a molecular machine is bounded
on the two sides by three factors:

• R - the information gain in bits
• ǫr - the real isothermal efficiency
• ρ - the normalized energy dissipation

As a molecular machine evolves:

ρ→ 1 The left hand side converges to 2R.

ǫr → ln(2) The right hand side converges to 2R.

BOTH SIDES converge to 2R!



Vishnu was right
about the convergence!
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ln(ρ+1)
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accessible
states

optimal
molecular
machine

D = 2R when the molecular machine is optimal
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Dimensionality of Molecular Machines

If a molecular machine has evolved to
optimum, then the dimensionality is

D = 2R

Let’s calculate D for restriction enzymes!
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Uncertainty after binding: 0 bits
Decrease in uncertainty: 2 bits
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Restriction Enzyme Dimensionality Computation 3

Example:
•5′ VCW 3′ RlaI
•5′ VCW 3′
• C : 2− 0 = 2 bits

W = A/T: 2− 1 = 1 bit
V = A,C,G:

2− log2 3 ≈ 0.42 bits
total = 2 + 1 + 0.42 = 3.42 bits
•3.42 bits /2 = 1.71 compressed bases
•3.42 bits ×2 = 6.83 dimensions



Restriction Enzyme Coding Space Dimensionality

Example Sequence Compressed Bits Dimension Number
Restriction Bases, λ = R/2 R D = 2R N
Enzyme (pins)
MspJI CNNR(9/13) 1.50 3.00 6.00 1
RlaI VCW 1.71 3.42 6.83 1
SgeI CNNGNNNNNNNNN↓ 2.00 4.00 8.00 5
AspBHI YSCNS(8/12) 2.50 5.00 10.00 1
SgrTI CCDS(10/14) 2.71 5.42 10.83 2
CviJI RG↓CY 3.00 6.00 12.00 9
LpnPI CCDG(10/14) 3.21 6.42 12.83 1
M.NgoMXV GCCHR 3.71 7.42 14.83 1
TaqI T↓CGA 4.00 8.00 16.00 1034
Bsp1286I GDGCH↓C 4.42 8.83 17.66 15
AvaII G↓GWCC 4.50 9.00 18.00 346
Hin4I (8/13)GAYNNNNNVTC(13/8) 4.71 9.42 18.83 1
HincII GTY↓RAC 5.00 10.00 20.00 480
PpuMI RG↓GWCCY 5.50 11.00 22.00 20
EcoRI G↓AATTC 6.00 12.00 24.00 1738
PspXI VC↓TCGAGB 6.42 12.83 25.66 1
RsrII CG↓GWCCG 6.50 13.00 26.00 37
SgrAI CR↓CCGGYG 7.00 14.00 28.00 73
KpnBI CAAANNNNNNRTCA 7.50 15.00 30.00 2
SfiI GGCCNNNN↓NGGCC 8.00 16.00 32.00 34

3802 restriction enzymes from Rich Roberts’ Restriction Enzyme Database, REBASE

⇒
⇒

⇒
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Packing in 2 Dimensions

Hexagonal PackingSquare Packing

πr2/(2× r)2 = 79%
of the plane filled

π/
√
12 = 91%

of the plane filled
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Packing in 3 Dimensions

hexagonal sphere packing green balls reveal square packing

face centered cubic packing more spheres show square packing



Higher Dimensional Sphere Packing?

What happens
in higher
dimensions?
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Discovery of the Leech Lattice

The Best Sphere Packing
is in 24 dimensions!
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Restriction Enzyme Dimensions & Best Packing
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•
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EcoRI decodes one of 4096 patterns probably using the Leech Lattice
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Leech Lattice Modem

• Leech Lattice 19,200 bit/sec modem built by Motorola

•

⇔

EcoRI decodes one of 4096 patterns probably using the Leech Lattice

• Single molecules could be used to build a modem, in theory.

Lang & Longstaff, IEEE J. on Selected Areas in Comm. 7:968–973, 1989

https://doi.org/10.1109/49.29618
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• 6 base cutting restriction enzymes work in 24 dimensions
4 base cutting restriction enzymes work in 16 dimensions
Both have good lattice packings.

• Restriction Enzymes probably use the 24 dimensional Leech Lattice

• Good packing can explain why restriction enzymes are so precise

• Dimensionality is a clue to mechanism

• Leech Lattice coding is used for modern communications

• Single molecules probably can be used to do communications!
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