
Simplified Distributed Authoring Via Component-based Object Construction
and Deconstruction in Collaborative Croquet Spaces

Howard Stearns, Joshua Gargus, Martin Schuetze

Division of Information Technology
University of Wisconsin-Madison

[hstearns, gargus]@wisc.edu, martin.schuetze@gmail.com
and

Julian Lombardi
Office of Information Technology

Duke University
julian@duke.edu

Abstract

We introduce a component architecture in support

of a simplified approached to distributed authorship of
functional content and user interface elements within
Croquet-based 3D spaces. Known as “Brie,” the
approach is designed to take advantage of social
opportunities afforded by Croquet’s collaborative
architecture by greatly simplifying content creation
through an intuitive and highly flexible user interface
approach. By reducing the technical demands of
authoring functional content in Croquet-based
multiuser environments, we hope to facilitate
expansion of the potential community of content
developers to include graphic designers and
technically naïve users. The Brie component-based
approach addresses this in two ways: 1) it establishes
a fundamentally new way for users to construct new
objects and behaviors de novo, and 2) it establishes a
way for users to easily deconstruct and recombine
objects and behaviors received from other users,
discovered through a search mechanism, or
encountered as objects within existing Croquet spaces.

1. Introduction

The Croquet platform [1][2] enables new
dimensions of online collaboration by allowing users
to easily create their own 3D environments, and to
encounter other users within those environments. An
obstacle to fully realizing this vision is the prohibitive
cost of developing 3D content, as video game budgets
approach those of Hollywood blockbusters.

This is a particularly troubling problem for Croquet.
Content creation threatens to become a bottleneck that
stands in the way of fully realizing the benefits
promised by Reed’s Law [3]. It is therefore imperative
to circumvent this obstacle; this is what Brie is
designed to do.

Brie’s solution to the problem of content creation is
technical as well as social: our approach is to empower
any user (not only computer artists and programmers)
to develop and re-deploy compelling content within 3D
worlds of their own individual or collective creation by
reducing the costs of content creation. Firstly, the Brie
component architecture provides tools that are easy to
use and that use direct-manipulation of live objects to
leverage a user's familiarity with object handling and
manipulation in the real world. Secondly, the Brie user
interface encourages a culture of object and component
sharing between users of massively multi-user worlds.
Users of Brie-enabled Croquet spaces can copy and
modify objects and behaviors that others have already
created. Such objects and components may be
encountered in Croquet spaces, shared among users, or
searched for in global content [4].

The Brie component-based architecture also seeks
to provide a highly extensible framework that allows
multiple user interfaces (henceforth “UIs”) to function
simultaneously and independently within a single
shared space [5].

2. What is Brie?

Brie is a language architecture and framework that
supports direct manipulation and creation of 3D
content and user interfaces. The component-based

architecture of both the language and the UI
framework is described in a companion paper [6].

Brie’s language is an extension of Squeak Smalltalk
[7] that facilitates the creation of interoperable
components within shared Croquet-based 3D spaces.
Such components can interact with (and be composed
of) independently created components. Interaction
between components will be possible even if each
component is designed and implemented without
knowledge of the others.

The Brie framework also delivers a proof-of-
concept UI that forms the basis for the discussion in
the second half of this paper.

3. Definition of Users

For the purposes of this paper, we classify potential

Croquet users into four groups (based on analogous
groups for the current World Wide Web):

• “Consumers”
• “Authors”
• “Programmers”
• “Wizards”

The consumer group is the potentially largest of all
of these groups. It consists of people who browse
content that has been authored by others. Authors are
the creators of worlds and the content contained
therein. In Web terms they range in skill from wiki
authors and bloggers to expert multimedia artists.
Programmers extend existing content development and
deployment technologies (i.e., they might write
Photoshop plugins or Javascript for a web page to
communicate with a server). Wizards are those
programmers that develop sophisticated software
frameworks and architectures.

Brie seeks to transform large numbers of consumers
into authors by reducing the barriers to creation of
compelling and functional content. It also allows
unaided authors to implement sophisticated functional
3D objects that would otherwise require the aid of a
Programmer.

Although Brie’s design includes features that make
life easier for Programmers and Wizards, the focus of
this effort is to increase the number and effectiveness
of Authors. Features of interest to Programmers and
Wizards are discussed in a companion paper [6].

4. Utilizing the Edge of the Network

Reed’s Law states that the value of a Group-
Forming Network (or GFN: a network that enables
groups of more than 2 people to interact) grows

exponentially with the number of participants [3]. The
mathematics of Reed’s law provides the fundamental
motivation for Croquet’s existence. This broad
framework encompasses many dimensions that affect
the value provided by GFNs. In order to maximize this
value, Brie’s design seeks to empower users at the
edge of the network so that they may create their own
content, and their own ways of interacting with that
content.

4.1. Decentralized Content Creation

A simple explanation for the scalability of peer-to-
peer network architectures is that they distribute
capability and responsibility amongst all peers, and
thereby avoid bottlenecks. Looking at the current
economics of virtual worlds, it is clear that the
technical expertise required for creating such worlds
reduces the potential for such worlds to be deep and
functionally complex. Limiting factors such as the
availability of technical expertise or the cost of
bringing such expertise to bear on the creation of 3D
spaces act to preclude generation of very large and
content rich worlds. Brie eliminates such bottlenecks
by making it relatively simple for anyone to create new
content. Furthermore, content created by users draws
directly on their expertise within their field,
specialization, or interest. This stands in stark contrast
to the all too common situations in which content must
be created by technology experts who do not grasp the
subtleties of the application domain.

4.2. Behavior as Content

In Croquet, code is simply another medium [1]. The
Brie component architecture takes advantage of this
fact by supporting end-user authoring of behaviors, not
merely of objects and their appearances. Brie allows
units of behavior to be reified as first-class objects. In
this way, such objects can be made visible in the 3D
space, and may be copied, inspected, and modified
collaboratively directly within the space.

4.3. User Interface as Content

Brie makes no distinction between the objects in a
world and the objects that comprise the UI for
interacting with that world. That is, elements such as
menus, information panels, interaction managers,
highlights and affordances are all composed of Brie
objects.

4.4. Feedback Loops

Software engineering approaches such as Agile
Development [8] seek to meet the end-user’s needs by
reducing the time expended for each development
iteration. Brie takes the next logical step: it shortens
the cycle by removing the programmer in many cases.

Brie cuts out the programmer by allowing users to
reuse existing content directly in much the same way
that Software Mass Customization allows
programmers to compose pre-existing software
modules that have been made available for this
purpose.

Subject to the assignment of appropriate
permissions, the Brie component architecture allows
anything encountered in a Croquet-based 3D world to
be copied, inspected, or modified at any time. Copies
can be used in the same space, or saved for later use in
a completely different context.

The ability to directly modify content (at runtime!)
allows users to immediately rectify faults and make
improvements, without the interruption of switching to
a separate development environment. Crucially,
Croquet's collaborative dialogue between users
remains unbroken.

As with other content, UI elements can be
collaboratively modified as they are being used. We
hope that this will stimulate authors to develop a great
diversity of domain-specific UIs that would not
otherwise exist due to the cost factors. We also
anticipate that a very important feedback loop will
ensue once designers begin to build UIs to help them
build UIs, without the help of a programmer. As with
all content, these UIs can be specific to a single user or
utilized by any subgroup of users within a
collaborative space.

Croquet already provides mechanisms for
deliberatively publishing content so that it is available
for search and reuse without visiting the original world
in which it was created. Combined with the ease of
customization, we hope that the tendency for authors to
share what they have created will lead to the rapid
proliferation of content that can be reused and
repurposed.

4.5. Distributed Cognition

Distributed cognition is a cognitive theory which
states that human knowledge and cognition are not
confined to the individual, but are also embodied in
human-created artifacts in our environment [9]. For
example, consider the meaning that can be
communicated by diagrams on a public whiteboard,
even when the creator of those diagrams is no longer

present. In a persistent online environment, the creator
of an artifact can therefore participate in a GFN
without being present within the environment. Stated
differently, such environments become mechanisms for
the publication, persistence, and even distribution of
works.

UIs are particularly interesting artifacts to consider
in the light of this notion of distributed cognition. Due
to the large amount of design required to create good
UIs, we consider them to embody a concentrated
amount of cognition. Since they are the mediators of
all user interactions with Croquet spaces (and their
contents) they have the effect of exerting a great
influence on how users perceive, conceptualize, and
interact with the space, its contents, and with other
users.

Together, Reed’s Law and the theory of Distributed
Cognition suggest that even a modest increase in the
proportion of users who are also authors can result in a
substantial increase in Croquet’s overall utility.

5. Construction and Deconstruction

Our design of Brie involves two complementary
approaches to facilitating the authoring of 3D Croquet
spaces. Construction is the first approach and involves
building artifacts from scratch. Deconstruction is the
second and involves taking existing artifacts apart.

Figure 1. A meta-medium application consisting of a
3D molecular model and 2D Flash and a Web page, all

annotated with text voice, video and 3D portals.

5.1. Construction

User interfaces can be varied, and everything is
subject to permission. However, in general, every Brie
object can be positioned anywhere within its container
or within the enclosing virtual space. The default user

interface allows this to be done by direct manipulation
(e.g., by dragging with a mouse, pen, or other pointing
device).

One obvious use of this is that applications may be
developed simply by assembling pre-existing elements
into a desirable arrangement. Unlike the Web, in which
pages must generally be coded in an HTML editor
locally and then explicitly published to a separately
maintained server, Croquet worlds may be instantly
created by any user (or group of users) at any time. The
ability to collaboratively author such spaces happens
automatically and transparently (although it is subject
to creator-specified control). Likewise, a Brie-enabled
Croquet space can be created by anyone and then
populated with content simply by arranging and
modifying copies of pre-existing content. Such content
can be presentations of text, time-based linear media,
and even entire applications. Content may include not
just disembodied data that needs a separate player for
viewing, but the whole application and user interface.
Any application available on a networked computer
can be presented this way. Therefore, the Croquet
spaces may be considered as a meta-medium for the
use of other media.

Additionally, Brie objects are designed to be small
components capable of being assembled by simply
dragging them to a container object. In this way,
complex shapes and architectures may be assembled
from primitive geometry. However, since such
components can also possess functionality in the form
of behaviors, Brie objects make it possible for authors
to develop working applications through the
recombination of found objects.

5.2. Deconstruction

As a way of promoting the use of existing code,
Brie objects may be used directly or also deconstructed
into their constituent objects. This is done through
direct manipulation of a compound Brie object. All
behaviors associated with that compound object or its
constituent components are accessible through an
information panel that is available for every Brie
object. Once identified, components can be further
inspected, copied, modified, and repurposed for use
elsewhere.

5.3. Persistence and Copying

Even consumers (casual users of content) can easily
copy Brie objects (subject to permission). Such copy
behavior is typically available through any object's
authoring menu. Since all objects can be decomposed

into constituent geometry, materials, sounds, and
behaviors, users can easily copy whole applications or
any interesting parts of them.

In the next version of Croquet (the Hedgehog
release), objects are capable of persisting in the state in
which they are left. Users can come and go from a
Croquet-based 3D world, and always get the most
recent replication of that world. For Brie, this means
that objects constructed interactively are immediately
useable by themselves and by others, and will remain
directly useable upon revisiting the world they reside
in. These characteristics allow an incremental,
iterative, collaborative, and very "live" application
development process.

Figure 2. Pulling the "jump" behavior out of a menu.

5.4. Consequences: A Culture of Sharing

With the use of Brie, programming and creating
applications becomes a treasure hunt. When you
encounter an application (or functionality) that does
something you like, you can copy (with permission)
any combination of the look or feel or content. Easy
sharing combined with deconstruction/reconstruction
makes it easy to put things together that may not have
been envisioned by the authors of the original
subcomponent/behavior. This capitalizes on existing
trends of a creative "sampling" culture [10]. By
contrast, the Web makes it easy to sample text – with
or without permission. Existing Peer-to-Peer systems
make it easy to sample other media. The Internet at
large makes it easy to trade in application "skins" that
are especially created for this purpose. By allowing the
permission-controlled deconstruction of geometry, user

interfaces, media, and application behavior, Brie
allows sampling and adaptation at many more levels.

6. Brie’s Default User Interface

Brie is a language architecture and framework
designed to support any user interface that an author
can envision. As part of our research and development
efforts, we have created a very basic default user
interface (henceforth referred to as the Brie UI) as a
proof-of-concept, and as a way to motivate design
decisions during Brie’s development. As we describe
some interesting aspects of the default Brie UI, we ask
the reader to bear in mind that it is only one very basic
example of a UI that can be built in Brie.

The default Brie UI assumes a 3-button mouse.
These are assigned as follows:

• left: standard object interaction
• middle: movement and navigation of the

user's avatar
• right: special “authoring” interaction

Currently, the default Brie UI uses the standard
Croquet interface for movement and navigation. We
describe in more detail what we mean by “standard
interaction” and “authoring”, and then reflect on how
we arrived at this division of responsibilities.

6.1. Left Mouse Button: Standard Interaction

The basic UI model familiar to most Consumers is
that of the desktop and icon-based representations of
files and applications. The default Brie UI leverages
this familiarity by providing a 3D analogue to the 2D
desktop in most modern operating systems. That is, all
Brie objects -- whether 3D or not, and whether
"content" or UI -- act similarly to 3D desktop icons in
terms of highlighting and selection. Everything can be
accomplished with a one-button mouse, or the left
button of a multi-button mouse. Users can select by
clicking, and deselect by clicking on "nothing." The
usual menu and button selection is also done with a
simple click. Users can toggle selections of a multiple
selection by holding down a modifier key while
selecting. As in some desktop UIs, one can drill down
through containers with successive left-clicks. There
are visual and aural responses to each gesture (such as
mouse-over and selection). Everything can be
interactively modified to act, look, and sound as
desired.

To avoid distracting other users in the same space,
the highlight is visible only to the user whose mouse is
hovering over the object. The object can define any
highlight behavior, including additional mouse-

sensitive affordances, descriptive text (e.g., in a heads-
up display area), and sound.

When an object does not implement some behavior
on clicking (such as a button does), it can (by default)
be moved by dragging it around. Dropping it onto
another object embeds it within that object, so that it
moves with the container.

Figure 3. Creating a compound object by dragging

one object over another to become a child of the static
object. The spherical highlight indicates that the

contained object is a valid drop target.

Figure 4. An object and an object with mouseover.

Figure 5. Drilling down through a compound object.

The user has selected node "C."

6.2. Right Mouse Button: Authoring

When an object such as a button or menu item does
exhibit some behavior when clicked on, we need an
"author mode" that still allows the object to be
selected, moved, and otherwise manipulated, else we
could never again change the object! The user interface
can be put into "author mode" by selecting an object
with the right mouse button. While in this mode, any
normal left-click behavior is suppressed, so that, for
example, the object can be moved by dragging it with
the left mouse button pressed. Furthermore, a second
right click will bring up a context menu. One of the
options on the menu will bring up an information panel
from which all the behaviors of the object can be
examined and manipulated.

Figure 6. An object with menu after two right clicks (or

a double right click).

6.3. Why we did it this way

We believe that the subtle distinction between using
and authoring a space is quite universal, and therefore
chose our allocation of mouse buttons to reflect it. The
user quickly internalizes the association between the
interaction mode and the corresponding button.

The author/use distinction is also a natural
boundary for granting permission. For instance, in an
educational space, students might only be authorized to
act as users (interacting with a space designed to meet

pedagogical objectives), whereas the teacher has
complete liberty to change anything in the space.

For these reasons, and for compatibility with other
Brie UIs, we advocate that others who write their own
Brie UIs to follow this convention.

6.4. Examples

6.4.1. Manipulating a Menu As An Ordinary Object
Menus are usually displayed for the initiating user
only, and are oriented and positioned relative to the
camera. (See 7.1. "Filters and Interactors," below.)
However, they also have a button on them that
"pushes" them out into the normal collaborative 3D
space, where they can be seen, manipulated, and shared
by everyone. In this case, "2D Fixed To Camera"
implies "private to me", while "3D in Scene" implies
"shared by everyone" [11]. After manipulation as an
ordinary 3D object, a user can press the button again to
"pull" the menu back into their own user interface, so
that the menu will appear (privately, in the fixed-to-
camera overlay space) when the user next calls for a
menu for the original object.

The following examples all do their manipulation
while the menu is "pushed out". The customization can
then be shared by any user in the space who then
"pulls" the modified menu back in to their own UI.

6.4.2. Customizing a Menu

The objects in a menu can be manipulated just like
any other. However, since the labels act as active
buttons when selected with the left mouse button, we
must use the right mouse button to select the menu, as
described in Section 6.2. We then drill down to the
menu item we want by clicking on it. Since the menu
item is now selected (for authoring), we can then drag
it to the desired location.

Figure 7. Rearranging the items in a menu.

6.4.3. Moving the "Jump" Menu Item From One
Object's Menu to Another.

We can pull a menu item off the menu entirely.
Until it is attached to some other object, it will still
apply to the original object. For example, the separated
“jump” menu item, when clicked, will still cause the
object to jump.

The standard technique of dropping an object onto
another can be used to add the “jump” item to a menu
for another object; clicking on the menu item now
causes the new menu’s object to jump. It is easy to see
how this could be used to create a custom control panel
made of menu items and other controls for various
objects; this is the “deconstruction” described in
Section 5.2).

Of course, if we did not want to break the original
menus, we could duplicate their menu items rather than
tearing them out of the menu.

Figure 8. The "jump" menu item pulled off the menu
for an object. The stand-alone jump item is not merely

text, but still acts as a button which, when pressed,
makes the original object jump.

Figure 9. The "jump" menu item being added to

another object's menu.

7. Related Work

The direct manipulation principles were pioneered
by Self [12]. These ideas are also present with
construction/deconstruction of user interfaces in
Morphic [13]. Brie applies these ideas more
pervasively, and combines them with Croquet's P2P
collaboration.

In game design, Sims creator Will Wright is
developing a new game based on the sharing of content
created by other users on the Internet [14]. But Spore
content creation is merely highly parameterized. Brie
allows deconstruction followed by reuse in arbitrary
reconstruction.

 7.1. Filters and Interactors

A general mechanism is used to filter all content,
including user interface elements, so as not to clutter
the scene for all users. This mechanism is also
available for per-user interfaces. However, the state of
the user interface is reified in a shareable object (a
view screen) so that users can "take off their viewing
glasses" and share them with others. An example of the
use of these is given in [15].

7.2. Ownership and Control

Although we are inspired by the vision of a medium
where “authoring is always on” [16], we recognize that
there are valid reasons to support the notion of
ownership of worlds and objects within them, and to
allow owners to exercise various forms of control. For
example, a teacher might not want students to
rearrange a carefully designed learning space.

This issue is being approached from two directions.
At the infrastructure level, the Croquet architects have
recognized the inability of standard access control
techniques to handle an unstructured global network of
interconnected Croquet spaces, and are incorporating
results from the field of capability-based security [17].
At the social level, we will explore expectations of
users and faculty as Brie applications are built at the
University of Wisconsin.

8. Conclusion

The opportunities to enhance human performance
with computers are too diverse to be entirely developed
by a small community of specialists. Our approach is
to empower end users to actively participate in the

creation, assembly, and architecture of the applications
they use. Embracing the largest possible user group is
the key to developing the rich, dynamic, and planetary
scale community we hope to build. We are therefore
evolving the technologies to support not only
application use but also application creation and
evolution by non-technical users. Rather than making
incremental improvements in how existing applications
are used or even developed, we are seeking a sea-
change in which it is possible for ordinary users to do
things that they could not previously do at all. We have
looked at UI refinement by end-users as one example.
We believe this work will also stimulate much
thinking, problem solving, and code refinement across
the larger development community.

9. Acknowledgement

This work was undertaken under the direction of the
Division of Information Technology of the University
of Wisconsin-Madison. It was funded in part under a
contract with the National Institute of Information and
Communications Technology (http://www.nict.go.jp)

10. References

[1] D. A. Smith, A. Kay, A. Raab, and D. P. Reed, “Croquet
– A Collaboration System Architecture.” Proceedings of the
First Conference on Creating, Connecting, and
Collaborating through Computing (C5 ’03), IEEE Computer
Society Press, 2003.

[2] J. Lombardi and M. McCahill, “Enabling Social
Dimensions of Learning Through a Persistent, Unified,
Massively Multi-User, and Self-Organizing Virtual
Environment”, Proceedings of the Second Conference on
Creating, Connecting, and Collaborating through Computing
(C5 ’04), IEEE Computer Society Press, 2004.

[3] D. P. Reed, “That Sneaky Exponential – Beyond
Metcalfe’s Law to the Power of Community Building”,
http://www.reed.com/Papers/GFN/reedslaw.html

[4] M. McCahill and J. Lombardi, "Design for an Extensible
Croquet-Based Framework to Deliver a Persistent, Unified,
Massively Multi-User, and Self-Organizing Virtual
Environment", Proceedings of the Second Conference on

Creating, Connecting, and Collaborating through Computing
(C5 ’04), IEEE Computer Society Press, 2004.

[5] D. A. Smith et. al., “Filters and Tasks in Croquet”,
Proceedings of the Third Conference on Creating,
Connecting, and Collaborating through Computing (C5 ’05),
IEEE Computer Society Press, 2005.
[6] H. Stearns, J. Gargus, M. Schuetze, and J. Lombardi,
“Simplified Distributed Authoring Via Component-based
Object Construction and Deconstruction in Collaborative
Croquet Spaces”, Proceedings of the Fourth Conference on
Creating, Connecting, and Collaborating through Computing
(C5 ’06), IEEE Computer Society Press, 2006.

[7] Squeak, http://squeak.org

[8] Agile Alliance, http://www.agilealliance.org
[9] E. Hutchins, Cognition in the Wild, MIT Press,
Cambridge, MA. 1995.

[10] L. Lessig. "The People Own Ideas!" Technology Review,
June. Cambridge, MA, 2005.

[11] J. Lombardi and M. McCahill, "User Interfaces for Self
and Others in Croquet Learning Spaces", Proceedings of the
Third Conference on Creating, Connecting, and
Collaborating through Computing (C5 ’05), IEEE Computer
Society Press, 2005.

 [12] R. B. Smith and D. Ungar. "Programming as an
Experience, The Inspiration for Self" in J. Noble, A
Taivalsaari & I. Moore, eds, Prototype-Based Programming:
Concepts, Languages, Applications. Springer-Verlag, 1997.

[13] "An Introduction to Morphic: The Squeak User Interface
Framework." in M. Guzdial, K. Rose, Squeak: Open
Personal Computing and Multimedia. Prentice-Hall,
Englewood Cliffs, NJ, 2001.

[14] Spore, http://spore.ea.com

[15] R. Kadobayashi, J. Lombardi, M. McCahill, H. Stearns,
K. Tanaka, and A. Kay. "3D Model Annotation from
Multiple Viewpoints for Croquet”, Proceedings of the Fourth
Conference on Creating, Connecting, and Collaborating
through Computing (C5 ’06), IEEE Computer Society Press,
2006.

[16] A. Kay, “Background on How Children Learn”,
http://squeakland.org/school/HTML/essays/how_child_learn.
html

[17] M. S. Miller and J. Shapiro, “Paradigm Regained:
Abstraction Mechanisms for Access Control”, 8th Asian
Computing Science Conference (ASIAN03), 2003.

