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1 Simple Decryption Modulo p

Recall that if we wanted to use the Gentry-Halevi variant as-is with plaintext space Zp for some
p > 2 (co-prime with d), then decryption using the secret key w ∈ Zd would become [cw]d ·µ mod p
where µ = w−1 (mod p). Also, in this case it is unlikely that we get d ≡ 1 (mod p). The purpose
of this question is to demonstrate how to find another modulus d′ and secret key w′ ∈ Zd′ such
that d′ ≡ 1 (mod p) and decryption can be implemented as [w′ · c]d′ mod p.

Notations and facts. If m, y, z ∈ Z, then y
m≡ z denotes the fact that y, z are congruent

modulo m. The same fact is sometimes also denoted y ≡ z (mod m). If z,m are co-primes
then (z−1 mod m) is the unique integer y ∈ [0,m) such that yz ≡ 1 (mod m). For integers z,m,
denote the reduction of z modulo m by [z]m, where this operation maps integers to the interval
[−m/2,m/2). The notation “z mod m” denotes the operation that maps integers to the interval
[0,m).

For a rational number q, denote by dqc the rounding of q to the nearest integer, and by [q]
the distance between q and the nearest integer, [q] = q − dqc. These notations are extended to
vectors and matrices in the natural way: for example if ~q = 〈q0, q1, . . . , qn−1〉 is a rational vector
then rounding is done coordinate-wise, d~qc = 〈dq0c , dq1c , . . . , dqn−1c〉.

The notations ‖~x‖, ‖~x‖∞, ‖~x‖1 denote the Euclidean norm, l∞ norm, and l1 norm of the vector
~x. For a matrix A, denote by ‖A‖, ‖A‖∞, ‖A‖1 the Euclidean, l∞, l1 norms of the largest columns
of A, respectively. Here are some facts that may be useful for solving the following questions:

• If q = y/z (with y, z ∈ Z) then z · [q] = [y]z = [zq]z.

• If m, y, z are integers such that y/z ∈ Z and z is co-prime with m, then y/z
m≡ y ·(z−1 mod m).

In words, the integer y/z is congruent modulo m to the integer y times (z−1 mod m).

Keys, encryption, decryption. Recall that in the Gentry-Halevi variant, an integer polynomial
~v is chosen as ~v = ~s + (τ, 0, . . . , 0) where s is a random integer vector with entries bounded by σ
(whp), with σ and τ parameters. The rotation basis V of ~v is the “good basis” of the underlying
GGH cryptosystem, and its scaled inverse is denoted W (i.e., WV = dI, where d = det(V )).
Importantly, W is an integer matrix, and it is the rotation basis of the scaled inverse ~w = d · ~v−1
(where inverse is taken in the field of rational polynomials modulo xn + 1).

The (implicitly represented) encryption procedure for a plaintext m ∈ Zp consists of choosing a
random integer vector ~a with entries bounded whp by ρ (which is another parameter), setting the
“error vector” ~e = p~a+ ~m (where ~m = (m, 0, . . . , 0)) and then reducing ~e modulo the “bad basis”
of Λ(V ) in the public key. Hence a ciphertext is a vector ~c = ~v+~e for some lattice vector v ∈ Λ(V )
and the error vector above. Moreover, the structure of the public basis in this variant is such that
the vector ~c has a special form ~c = (c, 0, . . . , 0).

As described in class, the secret key consists of the (implicitly represented) matrices V and
W . Below you need to show that one can also use some other matrices. Specifically, consider the
following matrices:
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• Let A = (W−1 mod p). Namely A ∈ Zp and AW ≡ I (mod p). Then let B = [d · A]p (i.e.,
multiply A by the integer d = det(V ) and reduce mod p to the interval [−p/2, p/2)).

• Let S = V −1B, where V −1 is the inverse of V over the reals. S is therefore a rational matrix.

• Let d′ = d · (d−1 mod p) and U = d′S, with multiplication over the integers/reals.

The questions below establish that if c ∈ Zd is an encryption of m ∈ Zp and u is the upper-left
element in U , then [uc]d′ ≡ m (mod p).

A. Prove that the matrix W has an inverse mod p (hence the matrices above are well defined).
Prove also that the matrix S is invertible over the reals.

B. Prove that the largest entry of S in absolute value is at most pn times larger than in V −1.

C. Prove that U ≡ I (mod p).

D. Let ~c be a ciphertext, ~c = ~v+~e, for some lattice vector ~v ∈ Λ(V ), and some integer error vector
~e ∈ Zn such that ‖~e‖ < 1/2‖S‖. Prove that [~cS] = ~eS, and deduce that the two vectors [~cS]S−1

and d~cScS−1 are both integer vectors. (Here S−1 is the inverse of S over the reals.)

E. Prove that d~cSc ≡ d~cScS−1 (mod p).

F. Deduce that ~e ≡ ~c− d~cSc (mod p).

G. Prove that d′[~cS] = [~cU ]d′ .

H. Deduce that ~e ≡ [~cU ]d′ (mod p).

I. Conclude that if the ciphertext ~c is of the form ~c = (c, 0, . . . , 0), and the error vector satisfies
~e ≡ (m, 0 . . . , 0) (mod p), then [u0c]d′ ≡ m (mod p) (where u0 is the top-left entry in U).

J. Suggest a setting for the parameters σ, τ, ρ (as a function of p, n), so that the cryptosystem with
the modified decryption procedure Decu(c) = ([uc]d′ mod p) still supports homomorphic evaluation
of polynomials of degree 2|p| with (say) upto n2|p| terms. Make sure that your suggested parameters
are not broken by known lattice-reduction algorithms.

2 Elementary Symmetric Polynomials

Let ek(x1, . . . , xn) be the degree-k elementary symmetric polynomial in n variables over some field
K. Prove that for any v1, . . . , vn ∈ K, the value ek(v1, . . . , vn) equals the coefficient of zn−k in the
univariate polynomial P~v(z) =

∏n
i=1(z + vi).

3 El-Gamal Decryption

Let p = 2q+1 be a safe prime and let g ∈ Zp be a generator of QR(p), the group of quadratic residues
mod P . Let e ∈ Zq be an El-Gamal secret exponent and h = g−e mod p the corresponding public
key. Let en−1 . . . e1e0 be the binary representation of e, i.e., e =

∑n
i=0 ei2

i. Also, let m ∈ QR(p)
and let (y, z) be an encryption of m with respect to the public key g, h. I.e., y = gr mod p and
z = mhr mod p for some r ∈ Zq.

Show that El-Gamal decryption can be computed by a degree-n polynomial in the bits of
the secre key. Namely, show how to efficiently compute from (y, z) an explicit description of a
multilinear polynomial Q(x0, . . . , xn−1), such that Q(e0, . . . , en−1) mod p = m.

Hint. Show that the value yei2
i

(with ei a bit) can be expressed as a linear expression in ei.
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