Homomorphic Encryption and Lattices, Spring 2011	Instructor: Shai Halevi
Problem Set \#5	
June 2, 2011	due June 16

1 Simple Decryption Modulo p

Recall that if we wanted to use the Gentry-Halevi variant as-is with plaintext space \mathbb{Z}_{p} for some $p>2$ (co-prime with d), then decryption using the secret key $w \in \mathbb{Z}_{d}$ would become $[c w]_{d} \cdot \mu \bmod p$ where $\mu=w^{-1}(\bmod p)$. Also, in this case it is unlikely that we get $d \equiv 1(\bmod p)$. The purpose of this question is to demonstrate how to find another modulus d^{\prime} and secret key $w^{\prime} \in \mathbb{Z}_{d^{\prime}}$ such that $d^{\prime} \equiv 1(\bmod p)$ and decryption can be implemented as $\left[w^{\prime} \cdot c\right]_{d^{\prime}} \bmod p$.
Notations and facts. If $m, y, z \in \mathbb{Z}$, then $y \stackrel{m}{\equiv} z$ denotes the fact that y, z are congruent modulo m. The same fact is sometimes also denoted $y \equiv z(\bmod m)$. If z, m are co-primes then $\left(z^{-1} \bmod m\right)$ is the unique integer $y \in[0, m)$ such that $y z \equiv 1(\bmod m)$. For integers z, m, denote the reduction of z modulo m by $[z]_{m}$, where this operation maps integers to the interval $[-m / 2, m / 2)$. The notation " $z \bmod m$ " denotes the operation that maps integers to the interval $[0, m)$.

For a rational number q, denote by $\lceil q\rfloor$ the rounding of q to the nearest integer, and by $[q]$ the distance between q and the nearest integer, $[q]=q-\lceil q\rfloor$. These notations are extended to vectors and matrices in the natural way: for example if $\vec{q}=\left\langle q_{0}, q_{1}, \ldots, q_{n-1}\right\rangle$ is a rational vector then rounding is done coordinate-wise, $\lceil\vec{q}\rfloor=\left\langle\left\lceil q_{0}\right\rfloor,\left\lceil q_{1}\right\rfloor, \ldots,\left\lceil q_{n-1}\right\rfloor\right\rangle$.

The notations $\|\vec{x}\|,\|\vec{x}\|_{\infty},\|\vec{x}\|_{1}$ denote the Euclidean norm, l_{∞} norm, and l_{1} norm of the vector \vec{x}. For a matrix A, denote by $\|A\|,\|A\|_{\infty},\|A\|_{1}$ the Euclidean, l_{∞}, l_{1} norms of the largest columns of A, respectively. Here are some facts that may be useful for solving the following questions:

- If $q=y / z$ (with $y, z \in \mathbb{Z}$) then $z \cdot[q]=[y]_{z}=[z q] z$.
- If m, y, z are integers such that $y / z \in \mathbb{Z}$ and z is co-prime with m, then $y / z \stackrel{m}{\equiv} y \cdot\left(z^{-1} \bmod m\right)$. In words, the integer y / z is congruent modulo m to the integer y times $\left(z^{-1} \bmod m\right)$.

Keys, encryption, decryption. Recall that in the Gentry-Halevi variant, an integer polynomial \vec{v} is chosen as $\vec{v}=\vec{s}+(\tau, 0, \ldots, 0)$ where s is a random integer vector with entries bounded by σ (whp), with σ and τ parameters. The rotation basis V of \vec{v} is the "good basis" of the underlying GGH cryptosystem, and its scaled inverse is denoted W (i.e., $W V=d I$, where $d=\operatorname{det}(V)$). Importantly, W is an integer matrix, and it is the rotation basis of the scaled inverse $\vec{w}=d \cdot \vec{v}^{-1}$ (where inverse is taken in the field of rational polynomials modulo $x^{n}+1$).

The (implicitly represented) encryption procedure for a plaintext $m \in \mathbb{Z}_{p}$ consists of choosing a random integer vector \vec{a} with entries bounded whp by ρ (which is another parameter), setting the "error vector" $\vec{e}=p \vec{a}+\vec{m}$ (where $\vec{m}=(m, 0, \ldots, 0)$) and then reducing \vec{e} modulo the "bad basis" of $\Lambda(V)$ in the public key. Hence a ciphertext is a vector $\vec{c}=\vec{v}+\vec{e}$ for some lattice vector $v \in \Lambda(V)$ and the error vector above. Moreover, the structure of the public basis in this variant is such that the vector \vec{c} has a special form $\vec{c}=(c, 0, \ldots, 0)$.

As described in class, the secret key consists of the (implicitly represented) matrices V and W. Below you need to show that one can also use some other matrices. Specifically, consider the following matrices:

- Let $A=\left(W^{-1} \bmod p\right)$. Namely $A \in \mathbb{Z}_{p}$ and $A W \equiv I(\bmod p)$. Then let $B=[d \cdot A]_{p}$ (i.e., multiply A by the integer $d=\operatorname{det}(V)$ and reduce $\bmod p$ to the interval $[-p / 2, p / 2)$).
- Let $S=V^{-1} B$, where V^{-1} is the inverse of V over the reals. S is therefore a rational matrix.
- Let $d^{\prime}=d \cdot\left(d^{-1} \bmod p\right)$ and $U=d^{\prime} S$, with multiplication over the integers/reals.

The questions below establish that if $c \in \mathbb{Z}_{d}$ is an encryption of $m \in \mathbb{Z}_{p}$ and u is the upper-left element in U, then $[u c]_{d^{\prime}} \equiv m(\bmod p)$.
A. Prove that the matrix W has an inverse mod p (hence the matrices above are well defined). Prove also that the matrix S is invertible over the reals.
B. Prove that the largest entry of S in absolute value is at most $p n$ times larger than in V^{-1}.
C. Prove that $U \equiv I(\bmod p)$.
D. Let \vec{c} be a ciphertext, $\vec{c}=\vec{v}+\vec{e}$, for some lattice vector $\vec{v} \in \Lambda(V)$, and some integer error vector $\vec{e} \in \mathbb{Z}^{n}$ such that $\|\vec{e}\|<1 / 2\|S\|$. Prove that $[\vec{c} S]=\vec{e} S$, and deduce that the two vectors $[\vec{c} S] S^{-1}$ and $\lceil\vec{c} S\rfloor S^{-1}$ are both integer vectors. (Here S^{-1} is the inverse of S over the reals.)
E. Prove that $\lceil\vec{c} S\rfloor \equiv\lceil\vec{c} S\rfloor S^{-1}(\bmod p)$.
F. Deduce that $\vec{e} \equiv \vec{c}-\lceil\vec{c} S\rfloor(\bmod p)$.
G. Prove that $d^{\prime}[\vec{c} S]=[\vec{c} U]_{d^{\prime}}$.
H. Deduce that $\vec{e} \equiv[\vec{c} U]_{d^{\prime}}(\bmod p)$.
I. Conclude that if the ciphertext \vec{c} is of the form $\vec{c}=(c, 0, \ldots, 0)$, and the error vector satisfies $\vec{e} \equiv(m, 0 \ldots, 0)(\bmod p)$, then $\left[u_{0} c\right]_{d^{\prime}} \equiv m(\bmod p)\left(\right.$ where u_{0} is the top-left entry in $\left.U\right)$.
J. Suggest a setting for the parameters σ, τ, ρ (as a function of p, n), so that the cryptosystem with the modified decryption procedure $\operatorname{Dec}_{u}(c)=\left([u c]_{d^{\prime}} \bmod p\right)$ still supports homomorphic evaluation of polynomials of degree $2|p|$ with (say) upto $n^{2|p|}$ terms. Make sure that your suggested parameters are not broken by known lattice-reduction algorithms.

2 Elementary Symmetric Polynomials

Let $e_{k}\left(x_{1}, \ldots, x_{n}\right)$ be the degree- k elementary symmetric polynomial in n variables over some field K. Prove that for any $v_{1}, \ldots, v_{n} \in K$, the value $e_{k}\left(v_{1}, \ldots, v_{n}\right)$ equals the coefficient of z^{n-k} in the univariate polynomial $P_{\vec{v}}(z)=\prod_{i=1}^{n}\left(z+v_{i}\right)$.

3 El-Gamal Decryption

Let $p=2 q+1$ be a safe prime and let $g \in \mathbb{Z}_{p}$ be a generator of $Q R(p)$, the group of quadratic residues $\bmod P$. Let $e \in \mathbb{Z}_{q}$ be an El-Gamal secret exponent and $h=g^{-e} \bmod p$ the corresponding public key. Let $e_{n-1} \ldots e_{1} e_{0}$ be the binary representation of e, i.e., $e=\sum_{i=0}^{n} e_{i} 2^{i}$. Also, let $m \in Q R(p)$ and let (y, z) be an encryption of m with respect to the public key g,h. I.e., $y=g^{r} \bmod p$ and $z=m h^{r} \bmod p$ for some $r \in \mathbb{Z}_{q}$.

Show that El-Gamal decryption can be computed by a degree- n polynomial in the bits of the secre key. Namely, show how to efficiently compute from (y, z) an explicit description of a multilinear polynomial $Q\left(x_{0}, \ldots, x_{n-1}\right)$, such that $Q\left(e_{0}, \ldots, e_{n-1}\right) \bmod p=m$.
Hint. Show that the value $y^{e_{i} 2^{i}}$ (with e_{i} a bit) can be expressed as a linear expression in e_{i}.

