Homomorphic Encryption and Lattices, Spring 2011 Instructor: Shai Halevi

Problem Set #5
June 2, 2011 due June 16

1 Simple Decryption Modulo p

Recall that if we wanted to use the Gentry-Halevi variant as-is with plaintext space Z, for some
p > 2 (co-prime with d), then decryption using the secret key w € Z4 would become [cw]4 -y mod p
where 1 = w™! (mod p). Also, in this case it is unlikely that we get d = 1 (mod p). The purpose
of this question is to demonstrate how to find another modulus d’ and secret key w’ € Zg such
that d =1 (mod p) and decryption can be implemented as [w’ - ¢|# mod p.

Notations and facts. If m,y,z € Z, then y Z 2 denotes the fact that Y,z are congruent
modulo m. The same fact is sometimes also denoted y = z (mod m). If z,m are co-primes
then (27! mod m) is the unique integer y € [0,m) such that yz = 1 (mod m). For integers z,m,
denote the reduction of z modulo m by [z],,, where this operation maps integers to the interval
[-m/2,m/2). The notation “z mod m” denotes the operation that maps integers to the interval
[0,m).

For a rational number ¢, denote by [¢] the rounding of ¢ to the nearest integer, and by [q]

the distance between ¢ and the nearest integer, [¢q] = ¢ — [¢]. These notations are extended to
vectors and matrices in the natural way: for example if ¢ = {(qo,q1,-..,qn—1) IS a rational vector
then rounding is done coordinate-wise, [¢] = ([qo],[q1] ;- [qn-1])-

The notations ||Z||, ||Z]|cc, ||Z]l1 denote the Euclidean norm, /o, norm, and {; norm of the vector
Z. For a matrix A, denote by ||A]|, ||A|lco, ||A]|1 the Euclidean, [, I; norms of the largest columns
of A, respectively. Here are some facts that may be useful for solving the following questions:

o If g=y/z (with y,z € Z) then z - [¢] = [y]. = [2¢]2-

e If m,y, z are integers such that y/z € Z and z is co-prime with m, then y/z = y- (271 mod m).
In words, the integer y/z is congruent modulo m to the integer y times (2~! mod m).

Keys, encryption, decryption. Recall that in the Gentry-Halevi variant, an integer polynomial
¥ is chosen as ¥ = §+ (7,0,...,0) where s is a random integer vector with entries bounded by o
(whp), with o and 7 parameters. The rotation basis V' of ¥ is the “good basis” of the underlying
GGH cryptosystem, and its scaled inverse is denoted W (i.e., WV = dI, where d = det(V)).
Importantly, W is an integer matrix, and it is the rotation basis of the scaled inverse @ = d - 7!
(where inverse is taken in the field of rational polynomials modulo z" + 1).

The (implicitly represented) encryption procedure for a plaintext m € Z, consists of choosing a
random integer vector @ with entries bounded whp by p (which is another parameter), setting the
“error vector” € = pd + m (where m = (m,0,...,0)) and then reducing € modulo the “bad basis”
of A(V') in the public key. Hence a ciphertext is a vector ¢ = ¢/ + € for some lattice vector v € A(V)
and the error vector above. Moreover, the structure of the public basis in this variant is such that
the vector ¢ has a special form ¢ = (c,0,...,0).

As described in class, the secret key consists of the (implicitly represented) matrices V' and
W. Below you need to show that one can also use some other matrices. Specifically, consider the
following matrices:



e Let A= (W1 modp). Namely A € Z, and AW = I (mod p). Then let B = [d- A], (i.e.,
multiply A by the integer d = det(V') and reduce mod p to the interval [—p/2,p/2)).

e Let S = V!B, where V™! is the inverse of V over the reals. S is therefore a rational matrix.
e Let d =d-(d~! mod p) and U = d'S, with multiplication over the integers/reals.

The questions below establish that if ¢ € Zg4 is an encryption of m € Z, and u is the upper-left
element in U, then [uc]y = m (mod p).

A. Prove that the matrix W has an inverse mod p (hence the matrices above are well defined).
Prove also that the matrix S is invertible over the reals.

B. Prove that the largest entry of S in absolute value is at most pn times larger than in V1.
C. Prove that U = I (mod p).

D. Let & be a ciphertext, ¢ = ¥+ €, for some lattice vector 7 € A(V'), and some integer error vector
€ € Z" such that ||€]] < 1/2||S||. Prove that [¢S] = €S, and deduce that the two vectors [¢S]S ™1
and [¢S] S~! are both integer vectors. (Here S~! is the inverse of S over the reals.)

E. Prove that [¢S] = [¢S] S~! (mod p).
F. Deduce that €= ¢ — [éS] (mod p).
G. Prove that d'[éS] = [eU]y.

H. Deduce that €= [¢U]y (mod p).

I. Conclude that if the ciphertext ¢ is of the form ¢ = (c,0,...,0), and the error vector satisfies
€= (m,0...,0) (mod p), then [ugc]z = m (mod p) (where ug is the top-left entry in U).

J. Suggest a setting for the parameters o, 7, p (as a function of p,n), so that the cryptosystem with
the modified decryption procedure Dec,(c) = ([uc]y mod p) still supports homomorphic evaluation
of polynomials of degree 2|p| with (say) upto n2lPl terms. Make sure that your suggested parameters
are not broken by known lattice-reduction algorithms.

2 Elementary Symmetric Polynomials

Let eg(z1,...,x,) be the degree-k elementary symmetric polynomial in n variables over some field
K. Prove that for any vy,...,v, € K, the value ex(vy,...,v,) equals the coefficient of 2" % in the
univariate polynomial Py(z) = [\ (z + v;).

3 El-Gamal Decryption

Let p = 2¢+1 be a safe prime and let g € Z,, be a generator of QR(p), the group of quadratic residues
mod P. Let e € Z, be an El-Gamal secret exponent and h = g~¢ mod p the corresponding public
key. Let e,—1...e1€9 be the binary representation of e, i.e., e = Y " e;2'. Also, let m € QR(p)
and let (y,z) be an encryption of m with respect to the public key g, h. Le., y = ¢" mod p and
z = mh” mod p for some r € Z,.

Show that El-Gamal decryption can be computed by a degree-n polynomial in the bits of
the secre key. Namely, show how to efficiently compute from (y,z) an explicit description of a
multilinear polynomial Q(zo,...,x,—1), such that Q(eo,...,e,—1) mod p = m.

Hint. Show that the value yeizi (with e; a bit) can be expressed as a linear expression in e;.



