
Homomorphic Encryption and Lattices, Spring 2011 Instructor: Shai Halevi

Problem Set #3
April 7, 2011 due April 14

A Special “Easy” Lattice

In this problem set we cover a few aspects of the special easy lattice of Micciancio-Peikert, which
is used in their trapdoor construction. Below let n be the security parameter and let q be another
parameter, polynomial in n. Denote k = |q| = O(log n) and let the binary representation of q be
qk−1 . . . q1q0, namely the qi’s are bits such that q =

∑k−1
i=0 qi2

i.

1 A Small Basis

A. Consider the vector ~g = 〈1, 2, 4, . . . , 2k−1〉 ∈ Zk, and the lattice Λ⊥(~g) = {~x ∈ Zk : 〈~g, ~x〉 = 0
(mod q)}. Prove that the columns of the following matrix Sk form a basis for Λ⊥(~g):

Sk
def
=



2 q0

−1 2 q1

−1 2 q2

. . .
. . .

−1 2 qk−2

−1 qk−1


(1)

B. Consider the n× nk matrix

G
def
=


−~g−

−~g−
. . .

−~g−

 (2)

Describe a basis for the lattice Λ⊥(G)
def
= {~x ∈ Znk : G~x = 0 (mod q)}. What is the determinant

of this lattice?

2 Small Integer Solutions

A. For any u ∈ Zq, denote the u-coset of Λ⊥(~g) by Λ⊥u (~g)
def
= {~x ∈ Zk : 〈~g, ~x〉 = u (mod q)}.

Describe a poly(n)-time algorithm that given u ∈ Zq outputs a vector ~x ∈ Λ⊥u (~g) of length at most√
k.

B. Recall that the discrete Gaussian distibution with parameter s over a lattice (or coset) L ⊂ Rd,
outputs each point ~x ∈ L with probability proportional to the Gaussian measure ρs(~x). Namely,

DL,s(~x)
def
=

ρs(~x)

ρs(L)
, where ρs(~x)

def
= exp

(
− π‖~x‖2/s2

)
and ρs(L) =

∑
~u∈L

ρs(~u)
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Describe a poly(n)-time algorithm that given u ∈ Zq samples from the distribution DΛ⊥
u (~g),s, for

a small parameter s. How small can you make s while still keeping the algorithm poly(n)-time?
Hint. you can use rejection sampling, and can use the fact that for any s one can efficiently sample
from the discrete Gaussian distribution with parameter s over the integers DZk,s.

C. Describe a poly(n)-time algorithm that given ~u ∈ Zn
q outputs a vector in Λ⊥~u (G)

def
= {~x ∈

Znk : G~x = ~u (mod q)} of size at most
√
nk (for the matrix G from Equation 2). Also describe a

poly(n)-time algorithm that given ~u ∈ Zn
q samples from DΛ⊥

~u
(G),s, for a small parameter s.

3 Learning with Errors

A. Describe a poly(n)-time algorithm that solves the learning with errors problem with respect to
~g. Namely, for a secret scalar s, the algorithm is given as input a vector ~u = s~g + ~e mod q where ~e
is a “small error vector” with entries smaller than q/8 in absolute value. Your algorithm needs to
recover the secret s.

B. Describe a poly(n)-time algorithm that inverts the function LWEG(~s,~e) = ~sG+~e mod q, where

~s ∈ Zn
q and ~e ∈

[
−
⌊
q−1

8

⌋
,
⌊
q−1

8

⌋ ]nk
.

C. The purpose of this question is to show how to use a Micciancio-Peikert G-trapdoor to solve
LWE with respect to an arbitrary matrix A. Below let A1 ∈ Zn×m1

q and A2 ∈ Zn×nk
q , and denote

A = [A1|A2] ∈ Zn×(m1+nk)
q . Also let R ∈ {0,±1}m1×nk be such that A1R+A2 = G mod q. Describe

a poly(n)-time algorithm that given the trapdoor R, inverts the function

LWEA(~s,~e) = ~sA+ ~e mod q, where ~s ∈ Zn
q and ~e ∈

[
−
⌊

q − 1

8(m1 + 1)

⌋
,

⌊
q − 1

8(m1 + 1)

⌋ ]m1+nk
.

Hint. For an input vector ~u = LWEA(~s,~e) ∈ Zm1+nk
q , consider the vector ~v = ~u ·

(
R

I

)
mod q.
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