Homomorphic Encryption and Lattices, Spring 2011 Instructor: Shai Halevi
Problem Set $\# \mathbf{3}$

April 7, 2011
due April 14

A Special "Easy" Lattice

In this problem set we cover a few aspects of the special easy lattice of Micciancio-Peikert, which is used in their trapdoor construction. Below let n be the security parameter and let q be another parameter, polynomial in n. Denote $k=|q|=O(\log n)$ and let the binary representation of q be $q_{k-1} \ldots q_{1} q_{0}$, namely the q_{i} 's are bits such that $q=\sum_{i=0}^{k-1} q_{i} 2^{i}$.

1 A Small Basis

A. Consider the vector $\vec{g}=\left\langle 1,2,4, \ldots, 2^{k-1}\right\rangle \in \mathbb{Z}^{k}$, and the lattice $\Lambda^{\perp}(\vec{g})=\left\{\vec{x} \in \mathbb{Z}^{k}:\langle\vec{g}, \vec{x}\rangle=0\right.$ $(\bmod q)\}$. Prove that the columns of the following matrix S_{k} form a basis for $\Lambda^{\perp}(\vec{g})$:

$$
S_{k} \stackrel{\text { def }}{=}\left(\begin{array}{rrrrrr}
2 & & & & & q_{0} \tag{1}\\
-1 & 2 & & & & q_{1} \\
& -1 & 2 & & & q_{2} \\
& & \ddots & \ddots & & \\
& & & -1 & 2 & q_{k-2} \\
& & & & -1 & q_{k-1}
\end{array}\right)
$$

B. Consider the $n \times n k$ matrix

$$
G \stackrel{\text { def }}{=}\left(\begin{array}{cccc}
-\vec{g}- & & & \tag{2}\\
& -\vec{g}- & & \\
& & \ddots & \\
& & & -\vec{g}-
\end{array}\right)
$$

Describe a basis for the lattice $\Lambda^{\perp}(G) \stackrel{\text { def }}{=}\left\{\vec{x} \in \mathbb{Z}^{n k}: G \vec{x}=0(\bmod q)\right\}$. What is the determinant of this lattice?

2 Small Integer Solutions

A. For any $u \in \mathbb{Z}_{q}$, denote the u-coset of $\Lambda^{\perp}(\vec{g})$ by $\Lambda_{u}^{\perp}(\vec{g}) \stackrel{\text { def }}{=}\left\{\vec{x} \in \mathbb{Z}^{k}:\langle\vec{g}, \vec{x}\rangle=u(\bmod q)\right\}$. Describe a poly (n)-time algorithm that given $u \in \mathbb{Z}_{q}$ outputs a vector $\vec{x} \in \Lambda_{u}^{\perp}(\vec{g})$ of length at most \sqrt{k}.
B. Recall that the discrete Gaussian distibution with parameter s over a lattice (or coset) $L \subset \mathbb{R}^{d}$, outputs each point $\vec{x} \in L$ with probability proportional to the Gaussian measure $\rho_{s}(\vec{x})$. Namely,

$$
D_{L, s}(\vec{x}) \stackrel{\text { def }}{=} \frac{\rho_{s}(\vec{x})}{\rho_{s}(L)}, \text { where } \rho_{s}(\vec{x}) \stackrel{\text { def }}{=} \exp \left(-\pi\|\vec{x}\|^{2} / s^{2}\right) \text { and } \rho_{s}(L)=\sum_{\vec{u} \in L} \rho_{s}(\vec{u})
$$

Describe a poly (n)-time algorithm that given $u \in \mathbb{Z}_{q}$ samples from the distribution $D_{\Lambda_{\bar{u}}^{\perp}(\vec{g}), s}$, for a small parameter s. How small can you make s while still keeping the algorithm poly (n)-time? Hint. you can use rejection sampling, and can use the fact that for any s one can efficiently sample from the discrete Gaussian distribution with parameter s over the integers $D_{\mathbb{Z}^{k}, s}$.
C. Describe a $\operatorname{poly}(n)$-time algorithm that given $\vec{u} \in \mathbb{Z}_{q}^{n}$ outputs a vector in $\Lambda_{\vec{u}}^{\perp}(G) \stackrel{\text { def }}{=}\{\vec{x} \in$ $\left.\mathbb{Z}^{n k}: G \vec{x}=\vec{u}(\bmod q)\right\}$ of size at most $\sqrt{n k}$ (for the matrix G from Equation 2). Also describe a poly (n)-time algorithm that given $\vec{u} \in \mathbb{Z}_{q}^{n}$ samples from $D_{\Lambda_{\bar{u}}^{\perp}(G), s}$, for a small parameter s.

3 Learning with Errors

A. Describe a $\operatorname{poly}(n)$-time algorithm that solves the learning with errors problem with respect to \vec{g}. Namely, for a secret scalar s, the algorithm is given as input a vector $\vec{u}=s \vec{g}+\vec{e} \bmod q$ where \vec{e} is a "small error vector" with entries smaller than $q / 8$ in absolute value. Your algorithm needs to recover the secret s.
B. Describe a poly (n)-time algorithm that inverts the function $\operatorname{LWE}_{G}(\vec{s}, \vec{e})=\vec{s} G+\vec{e} \bmod q$, where $\vec{s} \in \mathbb{Z}_{q}^{n}$ and $\vec{e} \in\left[-\left\lfloor\frac{q-1}{8}\right\rfloor,\left\lfloor\frac{q-1}{8}\right\rfloor\right]^{n k}$.
C. The purpose of this question is to show how to use a Micciancio-Peikert G-trapdoor to solve LWE with respect to an arbitrary matrix A. Below let $A_{1} \in \mathbb{Z}_{q}^{n \times m_{1}}$ and $A_{2} \in \mathbb{Z}_{q}^{n \times n k}$, and denote $A=\left[A_{1} \mid A_{2}\right] \in \mathbb{Z}_{q}^{n \times\left(m_{1}+n k\right)}$. Also let $R \in\{0, \pm 1\}^{m_{1} \times n k}$ be such that $A_{1} R+A_{2}=G \bmod q$. Describe a poly (n)-time algorithm that given the trapdoor R, inverts the function

$$
\operatorname{LWE}_{A}(\vec{s}, \vec{e})=\vec{s} A+\vec{e} \bmod q, \quad \text { where } \vec{s} \in \mathbb{Z}_{q}^{n} \text { and } \vec{e} \in\left[-\left\lfloor\frac{q-1}{8\left(m_{1}+1\right)}\right\rfloor,\left\lfloor\frac{q-1}{8\left(m_{1}+1\right)}\right\rfloor\right]^{m_{1}+n k}
$$

Hint. For an input vector $\vec{u}=\operatorname{LWE}_{A}(\vec{s}, \vec{e}) \in \mathbb{Z}_{q}^{m_{1}+n k}$, consider the vector $\vec{v}=\vec{u} \cdot\left(\frac{R}{I}\right) \bmod q$.

