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1 Lattices and their Determinant

A. Prove that if Λ ⊂ Zn is a full-rank integer lattice with prime determinant, then it has no
nontrivial refinements. Namely, if Λ ⊆ Λ′ for some integer lattice Λ′ then Λ′ = Λ or Λ′ = Zn.

B. Prove the converse: if Λ ⊂ Zn is a full rank lattice and det(Λ) is a composite, then Λ has a
nontrivial refinement. Namely, there exists a lattice Λ′ such that Λ ( Λ′ ( Zn.

2 Gram-Schmidt, LLL, and Dual Lattices

Recall that the Gram-Schmidt orthogonalization of a basis B = (b1, . . . , bn) is B̃ = (b̃1, . . . , b̃n) such

that the b̃i’s are orthogonal to each other and bi = b̃i +
∑
j<i

µi,j b̃j , where µi,j = 〈bi, b̃j〉/‖b̃j‖2.

Recall also that a basis B = (b1, . . . , bn) is LLL reduced if its Gram-Schmidt orthogonalization
satisfies

∀ 1 ≤ j < i ≤ n, |µi,j | ≤ 1/2 (1)

∀ 1 ≤ i < n, ‖b̃i−1‖2 ·
3

4
≤ ‖b̃i + µi,i−1b̃i−1‖2 (2)

Note that all the “smallness” properties of LLL-reduced bases actually rely on a weaker first con-
dition, namely that

∀ 1 ≤ j < n, |µj+1,j | ≤ 1/2 (3)

(The stronger condition from Equation (1) is only needed to prove that the numbers do not grow
too large during the LLL procedure.) Below we call a basis “effectively LLL-reduced” if it satisfies
Equations (3) and (2).

Let B = (b1, . . . , bn) be a basis of a full rank lattice Λ, let D′ be the dual basis (i.e., D′ = (B−1)t),
and let D = (d1, . . . , dn) be the matrix D′ with the order of the columns reversed. Namely

〈bi, dj〉 =

{
1 if i = n+ 1− j
0 otherwise

A. Prove that the following relation holds for all i:

b̃i = d̃n+1−i/‖d̃n+1−i‖2 (4)

B. Using Equation (4), prove that the following relation holds for all i:

〈bi, b̃i−1〉/‖b̃i−1‖2 = −〈dn+2−i, d̃n+1−i〉/‖d̃n+1−i‖2 (5)

C. Using Equations (4) and (5), prove that if B is effectively LLL-reduced then so is D.
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3 Lattice-Based Cryptanalysis

The purpose of this question is to cryptanalyze the following simple candidate for a “weak pseudo-
random function” (wPRF).

There is a public prime modulus p. (We will assume for convenience that p is very close
to a power of two, say 2n > p > 2n − 2n/2 with n the security parameter, hence the bits of a
random element modulo p are almost uniform and independent.) The secret key for the weak-
PRF is a randomly chosen integer τ ∈ Zp, and on input x ∈ Zp the function outputs fτ (x) =
MSBk(τx mod p). Namely, reduce τ · x modulo p (into the interval [0, p − 1]) and output the k
most-significant bits of the result, where k is a parameter. (Think about k = O(

√
n).)

Consider now an attacker that can obtain polynomially many pairs (xi, yi) where the xi’s are
chosen uniformly in Zp and independently, and the yi’s are computed as yi = MSBk(τxi mod p).
The attacker’s goal is to recover the secret τ . Assume that the attacker has d pairs (xi, yi) (for
some parameter d), and denote ~u = 2n−k · 〈y1, . . . , yd, 0〉. Consider the (d+ 1)-dimensional lattice
with basis

B =


p 0 · · · 0 x1
0 p · · · 0 x2

...
. . .

...
0 0 · · · p xd
0 0 · · · 0 1/p


A. Prove that for the secret τ and appropriately chosen integers κ1, . . . , κd, the lattice vector
~v = B · 〈κ1, . . . , κd, τ〉t satisfies ‖~v − ~u‖ ≤

√
d+ 1 · p/2k.

B. Prove that for any parameters d and µ, and for randomly chosen x1, . . . , xd (and their cor-
responding yi’s), it holds with probability at least 1 − p/2d(µ−1) (over the xi’s) that every vector
~v ∈ Λ(B) which is as close to ~u as ‖~v − ~u‖ ≤ p/2µ, has to be of the form ~v = B · 〈κ1, . . . , κd, τ ′〉t
for some τ ′ = τ (mod p) and some κi’s.

C. Using A and B, describe a polynomial-time algorithm that recovers the secret τ , assuming
that the parameter k is larger than (say) 3 d

√
ne. Use the fact that LLL can be used to get an

approximation algorithm for the closest-vector-problem (CVP) with approximation factor 2(d−1)/2

in dimension d.
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