Homomorphic Encryption and Lattices, Spring 2011	Instructor: Shai Halevi
Problem Set $\# \mathbf{2}$	

March 17, 2011
Due March 24

1 Lattices and their Determinant

A. Prove that if $\Lambda \subset \mathbb{Z}^{n}$ is a full-rank integer lattice with prime determinant, then it has no nontrivial refinements. Namely, if $\Lambda \subseteq \Lambda^{\prime}$ for some integer lattice Λ^{\prime} then $\Lambda^{\prime}=\Lambda$ or $\Lambda^{\prime}=\mathbb{Z}^{n}$.
B. Prove the converse: if $\Lambda \subset \mathbb{Z}^{n}$ is a full rank lattice and $\operatorname{det}(\Lambda)$ is a composite, then Λ has a nontrivial refinement. Namely, there exists a lattice Λ^{\prime} such that $\Lambda \subsetneq \Lambda^{\prime} \subsetneq \mathbb{Z}^{n}$.

2 Gram-Schmidt, LLL, and Dual Lattices

Recall that the Gram-Schmidt orthogonalization of a basis $B=\left(b_{1}, \ldots, b_{n}\right)$ is $\tilde{B}=\left(\tilde{b_{1}}, \ldots, \tilde{b_{n}}\right)$ such that the $\tilde{b_{i}}$'s are orthogonal to each other and $b_{i}=\tilde{b_{i}}+\sum_{j<i} \mu_{i, j} \tilde{b_{j}}$, where $\mu_{i, j}=\left\langle b_{i}, \tilde{b_{j}}\right\rangle /\left\|\tilde{b_{j}}\right\|^{2}$.
Recall also that a basis $B=\left(b_{1}, \ldots, b_{n}\right)$ is LLL reduced if its Gram-Schmidt orthogonalization satisfies

$$
\begin{align*}
\forall 1 \leq j<i \leq n, & \left|\mu_{i, j}\right| \leq 1 / 2 \tag{1}\\
\quad \forall 1 \leq i<n, & \left\|\tilde{b}_{i-1}\right\|^{2} \cdot \frac{3}{4} \leq\left\|\tilde{b}_{i}+\mu_{i, i-1} \tilde{b}_{i-1}\right\|^{2} \tag{2}
\end{align*}
$$

Note that all the "smallness" properties of LLL-reduced bases actually rely on a weaker first condition, namely that

$$
\begin{equation*}
\forall 1 \leq j<n, \quad\left|\mu_{j+1, j}\right| \leq 1 / 2 \tag{3}
\end{equation*}
$$

(The stronger condition from Equation (1) is only needed to prove that the numbers do not grow too large during the LLL procedure.) Below we call a basis "effectively $L L L$-reduced" if it satisfies Equations (3) and (2).

Let $B=\left(b_{1}, \ldots, b_{n}\right)$ be a basis of a full rank lattice Λ, let D^{\prime} be the dual basis (i.e., $\left.D^{\prime}=\left(B^{-1}\right)^{t}\right)$, and let $D=\left(d_{1}, \ldots, d_{n}\right)$ be the matrix D^{\prime} with the order of the columns reversed. Namely

$$
\left\langle b_{i}, d_{j}\right\rangle= \begin{cases}1 & \text { if } i=n+1-j \\ 0 & \text { otherwise }\end{cases}
$$

A. Prove that the following relation holds for all i :

$$
\begin{equation*}
\tilde{b}_{i}=\tilde{d}_{n+1-i} /\left\|\tilde{d}_{n+1-i}\right\|^{2} \tag{4}
\end{equation*}
$$

B. Using Equation (4), prove that the following relation holds for all i :

$$
\begin{equation*}
\left\langle b_{i}, \tilde{b}_{i-1}\right\rangle /\left\|\tilde{b}_{i-1}\right\|^{2}=-\left\langle d_{n+2-i}, \tilde{d}_{n+1-i}\right\rangle /\left\|\tilde{d}_{n+1-i}\right\|^{2} \tag{5}
\end{equation*}
$$

C. Using Equations (4) and (5), prove that if B is effectively LLL-reduced then so is D.

3 Lattice-Based Cryptanalysis

The purpose of this question is to cryptanalyze the following simple candidate for a "weak pseudorandom function" (wPRF).

There is a public prime modulus p. (We will assume for convenience that p is very close to a power of two, say $2^{n}>p>2^{n}-2^{n / 2}$ with n the security parameter, hence the bits of a random element modulo p are almost uniform and independent.) The secret key for the weakPRF is a randomly chosen integer $\tau \in \mathbb{Z}_{p}$, and on input $x \in \mathbb{Z}_{p}$ the function outputs $f_{\tau}(x)=$ $\mathrm{MSB}_{k}(\tau x \bmod p)$. Namely, reduce $\tau \cdot x$ modulo p (into the interval $[0, p-1]$) and output the k most-significant bits of the result, where k is a parameter. (Think about $k=O(\sqrt{n})$.)

Consider now an attacker that can obtain polynomially many pairs (x_{i}, y_{i}) where the x_{i} 's are chosen uniformly in \mathbb{Z}_{p} and independently, and the y_{i} 's are computed as $y_{i}=\operatorname{MSB}_{k}\left(\tau x_{i} \bmod p\right)$. The attacker's goal is to recover the secret τ. Assume that the attacker has d pairs $\left(x_{i}, y_{i}\right)$ (for some parameter d), and denote $\vec{u}=2^{n-k} \cdot\left\langle y_{1}, \ldots, y_{d}, 0\right\rangle$. Consider the $(d+1)$-dimensional lattice with basis

$$
B=\left(\begin{array}{ccccc}
p & 0 & \cdots & 0 & x_{1} \\
0 & p & \cdots & 0 & x_{2} \\
& \vdots & \ddots & \vdots & \\
0 & 0 & \cdots & p & x_{d} \\
0 & 0 & \cdots & 0 & 1 / p
\end{array}\right)
$$

A. Prove that for the secret τ and appropriately chosen integers $\kappa_{1}, \ldots, \kappa_{d}$, the lattice vector $\vec{v}=B \cdot\left\langle\kappa_{1}, \ldots, \kappa_{d}, \tau\right\rangle^{t}$ satisfies $\|\vec{v}-\vec{u}\| \leq \sqrt{d+1} \cdot p / 2^{k}$.
B. Prove that for any parameters d and μ, and for randomly chosen x_{1}, \ldots, x_{d} (and their corresponding y_{i} 's), it holds with probability at least $1-p / 2^{d(\mu-1)}$ (over the x_{i} 's) that every vector $\vec{v} \in \Lambda(B)$ which is as close to \vec{u} as $\|\vec{v}-\vec{u}\| \leq p / 2^{\mu}$, has to be of the form $\vec{v}=B \cdot\left\langle\kappa_{1}, \ldots, \kappa_{d}, \tau^{\prime}\right\rangle^{t}$ for some $\tau^{\prime}=\tau(\bmod p)$ and some κ_{i} 's.
C. Using A and B , describe a polynomial-time algorithm that recovers the secret τ, assuming that the parameter k is larger than (say) $3\lceil\sqrt{n}\rceil$. Use the fact that LLL can be used to get an approximation algorithm for the closest-vector-problem (CVP) with approximation factor $2^{(d-1) / 2}$ in dimension d.

