
Homomorphic Encryption and Lattices, Spring 2011 Instructor: Shai Halevi

Constructions of FHE
June 2, 2011 Scribe: Omer Paneth

1 From SWHE to FHE

In the previous class we constructed a SWHE scheme with sk = w,pk = (d, r) and Decw(c) = [c · w]d
mod 2. We want to use “bootstrapping” to convert our SWHE to FHE. Namely we add c∗ = Eec(w)
to the public key (assuming circular security), then, given two ciphertexts c1, c2, consider the
functions:

ADDc1,c2(sk) = Decsk(c1) + Decsk(c2)

MULTc1,c2(sk) = Decsk(c1) · Decsk(c2)

If we can evaluate the function homomorphically on c∗ then we get two other ciphertexts c+, c×

s.t. Decw(c+) = c1 + c2 and Decw(c×) = c1 · c2. Our goal is therefore to get a bootstrappable
scheme, namely one where the functions ADD,MULT are within the homomorphic capacity of the
scheme for every two “evaluated ciphertexts” c1, c2 and “fresh ciphertext” c∗. So far we have a
SWHE scheme that can evaluate polynomials of degree up to

√
n with up to n2

√
n terms. But

the decryption algorithm for this scheme is given by Decw(c) = [c · w]d mod 2, where c, w, d have
O(n1.5) bits. Thus a Boolean circuit to evaluate the decryption operation will be of degree Õ(n1.5)
which is too much for the scheme to handle.

We want to reduce the complexity of the decryption without decreasing the homomorphic
capacity. We therefore add another “hint” about the secret key to the public key, namely a set of
S elements x1, . . . , xS ∈ Zd such that there exists a very sparse subset of the xi’s that sums up
to w modulo d. Although in principle adding such additional “hint” may compromise the security
of the cryptosystem, in this case one can prove that if the “sparse subset-sum problem” (SSSP) is
hard then the cryptosystem remains secure.

Let ~σ = σ1σ2 · · ·σS be the characteristic vector of this subset, namely
∑S

i=1 σixi ≡ w (mod d)
and HW(~σ) = s << S. We now view ~σ as the secret key. Given a ciphertext c we post-process it
to get yi = [c · xi]d, i ∈ [S]. Now decryption is given by:

Dec~σ(~y) =

[[
S∑
i=1

σiyi

]
d

]
2

=

[[
c

S∑
i=1

σixi

]
d

]
2

= [[cw]d]2

We would like to express the function Dec~σ(~y) as a low degree polynomial in the bits σi. Since
d is odd we have:[[

S∑
i=1

σiyi

]
d

]
2

=

[
S∑
i=1

σiyi − d ·

⌈
S∑
i=1

σiyi
d

⌋]
2

=
S∑
i=1

σi [yi]2 −

[⌈
S∑
i=1

σiyi
d

⌋]
2

Notice that the expression
∑S

i=1 σi [yi]2 is linear. In order to show how to express the term[⌈∑S
i=1

σiyi
d

⌋]
2

as a low degree polynomial, we first consider parameters for the scheme s.t. for

ciphertext c, |[wc]d| is much less than d
2 . In particular we require:

|[wc]d| =

∣∣∣∣∣
[

S∑
i=1

σiyi

]
d

∣∣∣∣∣ < d

2(s+ 1)
⇒

∣∣∣∣∣
[

S∑
i=1

σiyi
d

]∣∣∣∣∣ < 1

2(s+ 1)

1

Second, we consider a low precision representation of yi
d . For i ∈ [S] let zi be the number yi

d with

only l = dlog(s+ 1)e bits of representation, i.e.
∣∣zi − yi

d

∣∣ ≤ 2−(l+1) ≤ 1
2(s+1) . Since only s of the

σi’s are 1 and the rest are 0, we have:∣∣∣∣∣
S∑
i=1

σizi −
S∑
i=1

σiyi
d

∣∣∣∣∣ ≤ s

2(s+ 1)

Since the distance of
∑S

i=1
σiyi
d from the nearest integer is less than 1

2(s+1) , the distance of
∑S

i=1 σizi

from the same integer is less than 1
2(s+1) + s

2(s+1) = 1
2 and hence

⌈∑S
i=1 σizi

⌋
=
⌈∑S

i=1
σiyi
d

⌋
.

Altogether we have Dec~σ(~y) =
∑S

i=1 σi [yi]2 −
[⌈∑S

i=1 σizi

⌋]
2
. Since all zi’s have only l bits of

precision, we have seen (in the first lecture) that Dec~σ(~y) can be expressed as polynomial of degree
≤ 2l ≈ s.

2 FHE Without Squashing

We next sketch the Gentry-Halevi construction [GH11] for transforming SWHE to FHE without
relying on the hardness of the sparse-subset-sum problem.

Background: Elementary Symmetric Polynomials For any field K, the k’th elementary
symmetric polynomial (ESP) in n variables is (all operations are over the field):

ek(x1, . . . , xn) =
∑
I⊆[n]
|I|=k

∏
i∈I

xi

Fact 1. For any 0 ≤ k ≤ n and any set of values v1, v2, . . . , vn ∈ K, ek(v1, . . . , vn) is the coefficient
of zn−k in the univariate polynomial P~v =

∏n
i=0 (z + vi).

Fact 2. ei(~v) = 1 for all ~v s.t. HW(~v) = i, and ei(~v) = 0 for all ~v s.t. HW(~v) < i.

Corollary 1. Over any field K, the following n + 1 vectors in Kn+1 are linearly independent:{
(e0(~vi), e1(~vi), . . . , en(~vi)) | ~vi = 1i0n−i, 0 ≤ i ≤ n

}
Proof. Consider these vectors as the columns of a matrix. Following from Fact 2, this matrix is
upper triangular with 1’s on its diagonal.

Corollary 2. Let K be any field, and let S(x1, . . . , xn) be any symmetric function in n variables.
Then there exist linear coefficients α0, α1, . . . , αn ∈ K s.t. for any ~v ∈ {0, 1}n ⊆ Kn it holds that
S(~v) =

∑n
k=0 αkek(~v).

Proof. Since S and the ei’s are symmetric, it is enough to prove only for vectors of the form ~vi =
1i0n−i for 0 ≤ i ≤ n. By Corollary 1 the vectors {(e0(~vi), e1(~vi), . . . , en(~vi))}0≤i≤n are independent.

Therefore for every vector in Kn+1, in particular for the vector (S(~v0), S(~v1), . . . , S(~vn)), there exist
coefficients α0, α1, . . . , αn ∈ K s.t. for all 0 ≤ i ≤ n, S(~vi) =

∑n
k=0 αkek(~vi).

Lemma 1 (Ben-Or). Let K be a field s.t. |K| ≥ n + 1 and let S(x1, . . . , xn) be any symmetric
function in n variables over K. Then there is an AC3 (ΣΠΣ) arithmetic circuit C over K s.t. for
every ~v ∈ {0, 1}n ⊆ Kn, C(~v) = S(~v).

2

Proof. Fix an arbitrary subset A = {a1, . . . , an+1} of K of size n + 1. Note that the polynomial
P~v(z) =

∏n
i=1 (z + vi) is of degree n and therefore it can be interpolated from its values on any

n+ 1 points in K. In particular, any coefficient of P~v(z) can be expressed as a linear combination
of the n + 1 values P~v(aj) =

∏n
i=1 (aj + vi). Moreover, the interpolation coefficients depend only

on A, not on ~v. Recall that every ek(~v) is a coefficient of P~v(z) and hence can be computed as
ek(~v) =

∑n+1
j=1 λjP~v(aj) =

∑n+1
j=1 λj

∏n
i=1 (aj + vi). by Corollary 2 we have:

S(~v) =
n∑
k=0

αkek(~v) =

n,n+1∑
k=0,j=1

αkλj,k

n∏
i=1

(aj + vi)

Note that the ΣΠΣ circuit that we get has a very special structure: No mater what the function
S is, the bottom Σ layer always consists of evaluating the n(n + 1) linear functions (xi + aj) on
the values xi = ~vi. Note also that given the n + 1 values S(~v0), . . . , S(~vn) we can easily compute
the coefficients α0, . . . , αn, and since the λj,k’s are the interpolation coefficients (which are easy to
compute from the A), then we can compute an explicit description of the entire ΣΠΣ circuit.

In what follows, we call such ΣΠΣ circuits A-restricted circuits. Specifically, we require that
the bottom Σ layer contain only gates of the form (xi + aj) or just (xi).

Corollary 3. for any prime p, any function g : Zp → Zp, and any vector z0, . . . , zn−1 ∈ Zp of
coefficients, denote m = maxn−1i=0 zi. If p ≤ mn+ 1 then there is a restricted ΣΠΣ circuit C of size
poly(mn) s.t. for any vector ~v ∈ {0, 1}n ⊆ Kn it holds that C(~v) = g(

∑n−1
i=0 zivi).

Proof. Consider the function S(x1, . . . , xmn) = g(x1 + · · ·+ xmn). This is a symmetric function, so
by Lemma 1 it has a restricted ΣΠΣ circuit C ′ that agrees with g on every input in {0, 1}mn (since
p ≥ mn + 1). We get the required circuit C simply by replicating each input vi for zi times (and
padding with 0’s as needed). Namely:

C(v0 · · · vn−1) = C ′(vz00 0m−z0 vz11 0m−z1 · · · vzn−1

n−1 0m−zn−1)

Since C ′ is restricted, then so is C. Moreover, if we know g(0), g(1), . . . , g(mn) then we can explicitly
compute C ′ and C.

Recall our SWHE scheme: pk = (d, r),sk = w and Eecpk(m) = [2~e(r) +m]d,Decsk(c) = [[wc]d]2.
In what follows we want to work with plaintext space Zp rather than Z2. Now we have: Eecpk(m) =
[p~e(r) +m]d,Decsk(c) =

[
w−1 [wc]d

]
p
. For simplicity, we assume that w ≡ 1 mod p and also d ≡ 1

mod p (more on how to achieve this in the homework).
Let σn−1 · · ·σ1σ0 be the binary representation of w. We post-process the ciphertext c to get

yi =
[
2ic
]
d
. Then decryption becomes:

Decsk(c) ≡

[
n−1∑
i=0

σiyi

]
d

≡
n−1∑
i=0

σiyi − d ·

⌈
n−1∑
i=0

σi
yi
d

⌋
≡

n−1∑
i=0

σi [yi]p −

⌈
n−1∑
i=0

σi
yi
d

⌋
(mod p)

As before, if wc is within d
2n from a multiple of d then it is enough to keep only l = dlog(n)e bits

of precision for yi
d . Let zi ≤ 2l be the closest integer to 2l · yid and let xi = [yi]p. Then decryption

becomes:
∑n−1

i=0 σixi −
⌈∑n−1

i=0 2−lσizi

⌋
(mod p).

Consider the function g : Zp → Zp, g(x) =
[⌈

2−lx
⌋]
p
. By Corollary 3 there is a restricted ΣΠΣ

circuit computing s(σ0 · · ·σn−1) = g(
∑n−1

i=0 σizi) which is just the non-linear part of the decryption
formula. The complexity of the circuit is poly(n, 2l) = poly(n).

3

“Chimeric” - FHE with ElGamal Let p = 2q+ 1 be a safe prime s.t. DDH holds in the group
QR(p) of quadratic residues modulo p. We will use QR(p) as our plaintext space for ElGamal, and
use Zp as the plaintext space for the SWHE scheme. Let g be a generator for QR(p) (e.g. g = 4).
We first generate keys for ElGamal: sk = e ∈ zq and pk = h = g−e (mod p) ∈ QR(p). Recall that
the encryption of a message m ∈ QR(p) is a pair (gr,m · hr) ∈ QR(p)2.

Next we generate the keys for the SWHE scheme: pk = (d, r), sk = w. In addition, we encrypt
the bits of e and of w under the SWHE scheme. We choose a subset A ⊆ QR(p) of size 2|w|2 + 1
s.t. for all a ∈ A it holds that also a + 1 ∈ QR(p). For every bit σi in the binary representation
of w, we encrypt under ElGamal all the elements {a+ σi|a ∈ A}. Now we compute the explicit
representation of the A-restricted ΣΠΣ circuit C of the form C(~x) =

∑n,n+1
k=0,j=1 αkλj,k

∏n
i=1 (aj + xi)

that on inputs in {0, 1}n agrees with the function S(x1, . . . , xn) =
[⌈

2−l
∑n

i=1 2−lxizi
⌋]
p
. The

SWHE parameters are set so that it can evaluate polynomials of degree up to 2|p| with “sufficiently
many” terms (e.g., (2p)2|p| terms).

Given a ciphertext c of the SWHE scheme, we show how to compute homomorphic decryption.
Post-process c to get yi =

[
2ic
]
d

and compute xi = [yi]p and zi =
⌈
2l · yid

⌋
. For every bit σi in the

binary representation of w, let Si,j be the ElGamal encryption of the element (aj+σi) ∈ QR(p). Use
the multiplicative homomorphism to ElGamal to compute for every k, j and ElGamal ciphertext
Sj,k = αkλj,k

∏n
i=1 Si,j . Using the bits of e that are encrypted under the SWHE, compute the

SWHE ciphertext that encrypt the same values Cj,k = Eecw (αkλj,k
∏n
i=1 (aj + σi)) and add them

all to get C(σ0 . . . σn−1) =
[⌈

2−l
∑n−1

i=0 σizi

⌋]
p

encrypted under the SWHE scheme. Then use the

encryption of w under the SWHE to compute also
∑n−1

i=0 σixi, and add everything to compute the
homomorphic decryption.

Since we are using the SWHE scheme to homomorphically evaluate the ElGamal decryption
circuit, it is left to show how to compute ElGamal decryption using polynomial of degree |p|. Let
(y, z) = (gr,m · g−er) be a ciphertext, and let et−1 · · · e1e0 be the binary representation of the

ElGamal secret key. We post-process the ciphertext by computing ui =
[
y2

i − 1
]
p

for 0 ≤ i ≤ t−1.

Note that yei2
i

= ei(y
2i − 1) + 1 and therefore:

m = ye · z = y
∑t−1

i=0 ei2
i · z = z ·

t−1∏
i=0

ei(ui + 1)

which is a polynomial of degree |q| in the ei’s.

References

[GH11] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. Cryptology ePrint Archive, Report 2011/279, 2011. http:

//eprint.iacr.org/.

4

