
Homomorphic Encryption and Lattices, Spring 2011 Instructor: Shai Halevi

Lecture 6: Lattice Trapdoor Constructions
April 7, 2011 Scribe: Nir Bitansky

This lecture is based on the trapdoor constructions due to Ajtai [Ajt99], Alwen-Peikert[AP11], and
Micciancio-Peikert [MP11].

In previous lectures, we have seen that, given a random matrix A ∈R Zn×m
q (with q ≥ poly(n) and

m ≥ n log q), finding a short vector ~v such that A~v = 0 (mod q) is at least as hard as obtaining a
good SIVP approximation algorithm. (Where short means of size O(

√
m) and good means up to

poly factors.)

We would like to generate A together with a short basis S for the lattice

Λ⊥q (A)
def
= {~x ∈ Zm : A~x = 0 (mod q)}

Such a short basis can then be used to construct various cryptographic schemes, such as signatures,
encryption, identity-based encryption and more.

We first note that det Λ⊥q (A) ≤ qn.

Proof sketch. For any ~u ∈ [q − 1]n Consider the co-set

~u+ Λ⊥q (A) = {~x ∈ Zm : A~x = ~u (mod q)}

Then, det Λ⊥q (A) is the number of such distinct co-sets, which is at most qn (and exactly qn if A is
of full rank).

Therefore, by Minkowski, there exist vectors in Λ⊥q (A) of size at most
√
mq

n
m . Our goal is to obtain

a short basis S ∈ Zm×m, where all vectors are of size O(
√
mq

n
m ). We would also like m to be as

small as possible, preferably O(n log q).

Easy exercise: Generate A with a single short vector ~v ∈ Λ⊥q (A). For this purpose, we can simply
choose a random short vector ~v ∈ {0, 1}m, and then choose a random A such that A~v = 0 (mod q).
Equivalently, choose the first m− 1 columns of A at random, and the last column to be a random
subset sum of the first columns. By the left over hash lemma (LOHL), A is statistically close to
random, so long that m > 3n log q.

Still easy: Generate A with t short vectors ~v1, . . . , ~vt ∈ Λ⊥q (A). Choose a random A1 ∈R Zn×m1 ,
where m1 = m − t. Then choose A2 = −A1R, where R ∈R {0, 1}m1×t. By LOHL, A is still
statistically close to random, so long that m1 > 3n log q.

In general, using this naive method, we will always be Ω(n log q) vectors short.

Starting with A1 ∈ Zn×m1, can we add a single dimension and obtain two short vectors?
This is actually almost as hard as finding a short vector for the initial A1. Indeed, assume we add
~a, and obtain short (~u1, ~u2) = ((~v1, γ1), (~v2, γ2)) such that(

A1 ~a
)( ~v1 ~v2

γ1 γ2

)
= 0 (mod q)
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Then, A1 (γ2~v1 − γ1~v2) = 0 (mod q), and the vector γ2~v1− γ1~v2 is short and non-zero (since ~u1, ~u2
are independent). This still does not mean that we can not extend A1 to obtain a short basis;
namely, it is possible that if we add t dimensions we might obtain even more than t short vectors.

The Alwen-Peikert Construction

Let m1 +m2 = m. As a first step, let us try to extend a given A1 ∈ Zn×m1 to
(
A1 A2

)
∈ Zn×m

together with a short basis S ∈ Zm×m, allowing A2 ∈ Zn×m2 not to be random. We require that

(
A1 A2

)( V W

U P

)
= 0 (mod q)

For now we shall work with W = 0. After seeing that U = I does not suffice, we will slightly
augment the choice of U , while keeping it invertible. In what follows all equalities are done modulo q.

To obtain A1V +A2U = 0 we need A2 = −A1V U
−1. Let G = V U−1. To obtain A1W+A2P = 0

we need −A1GP = 0. Let H = GP . We wish to obtain:

S =

(
GU 0

U P

)
such that U,GU,P are small (i.e., with small entries) and H = GP ∈ Λ⊥q (A1). Since we can not

find short vectors in Λ⊥q (A1), H will be large. Adding the fact that P should be small, we deduce
that G must also be large. That is, we are interested in finding small U and large G, such that GU
is small.

First attempt: Consider

U =


1 −1

. . .
. . .
. . . −1

1


then (

~g1 . . . ~gt
)
U =

(
~g1 ~g2 − ~g1 . . . ~gt − ~gt−1

)
This is not good enough since any column of G is a subset sum of columns in GU , implying that
‖G‖∞ ≤ t‖GU‖∞, and hence GU has large entries.

Second attempt: Consider

U =


1 −2

. . .
. . .
. . . −2

1


then (

~g1 . . . ~gt
)
U =

(
~g1 ~g2 − 2~g1 . . . ~gt − 2~gt−1

)
Now we can have ‖~gi+1‖∞ ≈ 2‖~gi‖∞ and GU can still potentially be small. Our final U will be
based on the above. Let us for now denote by T` a matrix such as the above of dimension ` × `.
For a given vector ~h, let ` = log ‖~h‖∞ (the maximum bit size of entries in ~h). We define:

G[~h]
def
=
( ⌊

~h
2`−1

⌋
. . .

⌊
~h
4

⌋ ⌊
~h
2

⌋
~h
)
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Note that:
G[~h]T` =

( ⌊
~h

2`−1

⌋
. . .

⌊
~h
2i

⌋
− 2

⌊
~h

2i+1

⌋
. . . ~h− 2

⌊
~h
2

⌋ )
Which is just the binary representation of ~h. Similarly, for a matrix H =

(
~h1 . . . ~ht

)
, define:

G[H] =
(
G[~h1] . . . G[~ht]

)
Then, for `i = log ‖~hi‖∞, we set

U =

 T`1
. . .

T`t


The corresponding G[H]× U is a zero-one matrix. Recall that for a given H, we would like to get

GP = H, where P is also small. We thus set G = G[H], and choose P to be a block-diagonal zero-
one matrix, which selects the rightmost column of every block G[~hi]. That is, for ~pi = (0, . . . , 0, 1)T

of dimension i, set:

P =

 ~p`1
. . .

~p`t


So that

G[H]× P =
(
G[~h1]× ~p`1 . . . G[~ht]× ~p`t

)
=
(
~h1 . . . ~ht

)
To satisfy H = GP ∈ Λ⊥q (A1), we choose H to be any basis of Λ⊥q (A1) (e.g. H = HNF(Λ⊥q (A1)).

Now, set A2 = −A1 ×G[H], and get:(
A1 A2

)
S =

(
A1 A2

)( G[H]× U 0

U P

)
=
(

(A1G−A1G)U −A1GP
)

= 0 (mod q)

So what did we achieve so far? At this point, given A1 ∈ Zn×m1 , we can extend it with

A2 ∈ Zn×m2 and find a small S ∈ {−2, 0, 1}m×m, such that
(
A1 A2

)
S = 0 (mod q). However,

A2 is completely determined by A1, can we get back to A2 = −A1R, for a random R, so that A2

will be (close to) random given A1?

Randomizing the matrix. Instead of setting A2 = −A1G, let us set A2 = −A1(G + R), where
R is random. This already guarantees (by LOHL) that

(
A1 A2

)
is close to random. Now, we

adapt the rest of the construction accordingly. We require that

(
A1 A2

)( (G+R)U W

U P

)
= 0 (mod q)

Which already zeros out the left part of the product. For the right part, we should zero out

A1W +A2P = A1W −A1(G+R)P

Choosing G and P as before, it holds that A1GP = 0, and hence to zero out the above, it suffices
to set W = RP . It is left to check: (a) S is still small; (b) S is indeed a basis. The first check

follows easily. Indeed, since R is a zero-one matrix and P simply selects a subset of its columns,
then W is also a zero-one matrix. In addition, (G + R)U = GU + RU is also small, since GU is
small as before, and RU has entries of magnitude at most 3. We now show the second.

Claim 1. S is a basis of Λ⊥q (A) iff H is a basis of Λ⊥q (A1).
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Proof. Using linear-algebraic facts regarding the determinant of block matrices, we get for an
invertible U :

detS = det

(
V W

U P

)
= detU det

(
V U−1P −W

)
= 1 · det ((G+R)P −W ) = detGP = detH

Now since both A1 and A have full rank n, then det Λ⊥q (A1) = det Λ⊥q (A) = qn. Hence, S is a basis

for Λ⊥q (A) iff detS = qn iff detH = qn iff H is a basis for Λ⊥q (A1).

Parameters. We started with A1 ∈ Zn×m1 , where m1 = Ω(n log q) (allowing use of LOHL). H
has entries as large as q and so the number of columns in G[H] is m2 ≤ m1 log q = O(n log2 q).
Consequently, m = m1 + m2 = O(n log2 q). The entries of S are all bounded by a constant and
hence all vectors in S are of size O(

√
m).

Variants.

1. Instead of setting GP = H ∈ Λ⊥q (A1) in the above construction, set GP = H −∆ for some
fixed ∆, and use G[H−∆] rather than G[H]. Like the original construction, this construction
can also be shown to satisfy our requirements. It turns out that for some choices of ∆ (e.g.
∆ = I) result in improved parameters.

2. Alwen-Peikert also show a slightly different technique that achieves m = O(n log q). Their
idea is to represent rows of H rather than columns, and use the fact that H has many small
rows.

The Miccancio-Peikert Construction

Generate a random A with a trapdoor T that allows sampling random “short” vectors ~x such
that A~x = ~u (mod q) for any given ~u. This is done in two steps: (1) start from a special lattice
G ∈ Zn×m1 , for which the above sampling is possible; (2) Use the trapdoor to translate the random
A to the special G.

For a matrix B ∈ Zn×m, denote fB(~x) = A~x (mod q). Our goal is to generate A with a trapdoor
T that allows sampling short pre-images of a given ~u under fA.

Step 1: In homework. Yields G ∈ Zm2
q , where m2 = n dlog qe.

Step 2: Choose A1 ∈R Zn×m1
q , where m1 = d3n log qe. Set A2 = −A1R + G (mod q) for R ∈R

{0, 1}m1×m2 . Output the matrix and trapdoor

A =
(
A1 A2

)
T =

(
I R
0 I

)
Sampling: given ~u ∈ Zn

q , do the following:

1. Sample a short ~z1 ∈ Zm1 (e.g. from a sphere or Gaussian).

2. Set ~v = ~u−A1~z1 (mod q).

3. Sample a short pre-image ~z2 of ~u under fG.

4. Output ~w =

(
~w1

~w2

)
= T

(
~z1
~z2

)
=

(
~z1 +R~z2

~z2

)
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~z1, ~z2 are short by construction, and so is R; hence, ~w is short. In addition,

A~w =
(
A1 G−A1R

)( I R
0 I

)(
~z1
~z2

)
=
(
A1 G

)( ~z1
~z2

)
=

A1~z1 +G~z2 = A1~z1 + ~v = A1~z1 + (~u−A1~z1) = ~u (mod q)

Remark: If ~z1, ~z2 are chosen from a spherical distribution, ~w is chosen from a “skewed” distribu-

tion, due to the effect of T (which can be fixed with some extra effort).
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