Homomorphic Encryption and Lattices, Spring 2011	Instructor: Shai Halevi
Lecture 6: Lattice Trapdoor Constructions	
April 7, 2011	Scribe: Nir Bitansky

April 7, 2011
Scribe: Nir Bitansky

This lecture is based on the trapdoor constructions due to Ajtai [Ajt99], Alwen-Peikert[AP11], and Micciancio-Peikert [MP11].
In previous lectures, we have seen that, given a random matrix $A \in_{R} \mathbb{Z}_{q}^{n \times m}$ (with $q \geq \operatorname{poly}(n)$ and $m \geq n \log q)$, finding a short vector \vec{v} such that $A \vec{v}=0(\bmod q)$ is at least as hard as obtaining a good SIVP approximation algorithm. (Where short means of size $O(\sqrt{m})$ and good means up to poly factors.)

We would like to generate A together with a short basis S for the lattice

$$
\Lambda_{q}^{\perp}(A) \stackrel{\text { def }}{=}\left\{\vec{x} \in \mathbb{Z}^{m}: A \vec{x}=0 \quad(\bmod q)\right\}
$$

Such a short basis can then be used to construct various cryptographic schemes, such as signatures, encryption, identity-based encryption and more.

We first note that $\operatorname{det} \Lambda_{q}^{\perp}(A) \leq q^{n}$.
Proof sketch. For any $\vec{u} \in[q-1]^{n}$ Consider the co-set

$$
\vec{u}+\Lambda_{q}^{\perp}(A)=\left\{\vec{x} \in \mathbb{Z}^{m}: A \vec{x}=\vec{u} \quad(\bmod q)\right\}
$$

Then, $\operatorname{det} \Lambda_{q}^{\perp}(A)$ is the number of such distinct co-sets, which is at most q^{n} (and exactly q^{n} if A is of full rank).
Therefore, by Minkowski, there exist vectors in $\Lambda_{q}^{\perp}(A)$ of size at most $\sqrt{m} q^{\frac{n}{m}}$. Our goal is to obtain a short basis $S \in \mathbb{Z}^{m \times m}$, where all vectors are of size $O\left(\sqrt{m} q^{\frac{n}{m}}\right)$. We would also like m to be as small as possible, preferably $O(n \log q)$.
Easy exercise: Generate A with a single short vector $\vec{v} \in \Lambda_{q}^{\perp}(A)$. For this purpose, we can simply choose a random short vector $\vec{v} \in\{0,1\}^{m}$, and then choose a random A such that $A \vec{v}=0(\bmod q)$. Equivalently, choose the first $m-1$ columns of A at random, and the last column to be a random subset sum of the first columns. By the left over hash lemma (LOHL), A is statistically close to random, so long that $m>3 n \log q$.
Still easy: Generate A with t short vectors $\vec{v}_{1}, \ldots, \vec{v}_{t} \in \Lambda_{q}^{\perp}(A)$. Choose a random $A_{1} \in_{R} \mathbb{Z}^{n \times m_{1}}$, where $m_{1}=m-t$. Then choose $A_{2}=-A_{1} R$, where $R \in_{R}\{0,1\}^{m_{1} \times t}$. By LOHL, A is still statistically close to random, so long that $m_{1}>3 n \log q$.
In general, using this naive method, we will always be $\Omega(n \log q)$ vectors short.
Starting with $A_{1} \in \mathbb{Z}^{n \times m_{1}}$, can we add a single dimension and obtain two short vectors? This is actually almost as hard as finding a short vector for the initial A_{1}. Indeed, assume we add \vec{a}, and obtain short $\left(\vec{u}_{1}, \vec{u}_{2}\right)=\left(\left(\vec{v}_{1}, \gamma_{1}\right),\left(\vec{v}_{2}, \gamma_{2}\right)\right)$ such that

$$
\left(A_{1} \mid \vec{a}\right)\left(\begin{array}{cc}
\vec{v}_{1} & \vec{v}_{2} \\
\gamma_{1} & \gamma_{2}
\end{array}\right)=0 \quad(\bmod q)
$$

Then, $A_{1}\left(\gamma_{2} \vec{v}_{1}-\gamma_{1} \vec{v}_{2}\right)=0(\bmod q)$, and the vector $\gamma_{2} \vec{v}_{1}-\gamma_{1} \vec{v}_{2}$ is short and non-zero (since \vec{u}_{1}, \vec{u}_{2} are independent). This still does not mean that we can not extend A_{1} to obtain a short basis; namely, it is possible that if we add t dimensions we might obtain even more than t short vectors.

The Alwen-Peikert Construction

Let $m_{1}+m_{2}=m$. As a first step, let us try to extend a given $A_{1} \in \mathbb{Z}^{n \times m_{1}}$ to $\left(A_{1} \mid A_{2}\right) \in \mathbb{Z}^{n \times m}$ together with a short basis $S \in \mathbb{Z}^{m \times m}$, allowing $A_{2} \in \mathbb{Z}^{n \times m_{2}}$ not to be random. We require that

$$
\left(\begin{array}{l|l}
A_{1} & A_{2}
\end{array}\right)\left(\begin{array}{c|c}
V & W \\
\hline U & P
\end{array}\right)=0 \quad(\bmod q)
$$

For now we shall work with $W=0$. After seeing that $U=I$ does not suffice, we will slightly augment the choice of U, while keeping it invertible. In what follows all equalities are done modulo q.

To obtain $A_{1} V+A_{2} U=0$ we need $A_{2}=-A_{1} V U^{-1}$. Let $G=V U^{-1}$. To obtain $A_{1} W+A_{2} P=0$ we need $-A_{1} G P=0$. Let $H=G P$. We wish to obtain:

$$
S=\left(\begin{array}{c|c}
G U & 0 \\
\hline U & P
\end{array}\right)
$$

such that $U, G U, P$ are small (i.e., with small entries) and $H=G P \in \Lambda_{q}^{\perp}\left(A_{1}\right)$. Since we can not find short vectors in $\Lambda_{q}^{\perp}\left(A_{1}\right)$, H will be large. Adding the fact that P should be small, we deduce that G must also be large. That is, we are interested in finding small U and large G, such that $G U$ is small.

First attempt: Consider

$$
U=\left(\begin{array}{cccr}
1 & -1 & & \\
& \ddots & \ddots & \\
& & \ddots & -1 \\
& & & 1
\end{array}\right)
$$

then

$$
\left(\vec{g}_{1}|\ldots| \vec{g}_{t}\right) U=\left(\vec{g}_{1}\left|\vec{g}_{2}-\vec{g}_{1}\right| \ldots \mid \vec{g}_{t}-\vec{g}_{t-1}\right)
$$

This is not good enough since any column of G is a subset sum of columns in $G U$, implying that $\|G\|_{\infty} \leq t\|G U\|_{\infty}$, and hence $G U$ has large entries.
Second attempt: Consider

$$
U=\left(\begin{array}{rrrr}
1 & -2 & & \\
& \ddots & \ddots & \\
& & \ddots & -2 \\
& & & 1
\end{array}\right)
$$

then

$$
\left(\vec{g}_{1}|\ldots| \vec{g}_{t}\right) U=\left(\vec{g}_{1}\left|\vec{g}_{2}-2 \vec{g}_{1}\right| \ldots \mid \vec{g}_{t}-2 \vec{g}_{t-1}\right)
$$

Now we can have $\left\|\vec{g}_{i+1}\right\|_{\infty} \approx 2\left\|\vec{g}_{i}\right\|_{\infty}$ and $G U$ can still potentially be small. Our final U will be based on the above. Let us for now denote by T_{ℓ} a matrix such as the above of dimension $\ell \times \ell$. For a given vector \vec{h}, let $\ell=\log \|\vec{h}\|_{\infty}$ (the maximum bit size of entries in \vec{h}). We define:

$$
G[\vec{h}] \stackrel{\text { def }}{=}\left(\begin{array}{lll}
\left\lfloor\frac{\vec{h}}{2^{-1}}\right\rfloor & \ldots & \lfloor\vec{h} \\
4 \\
\frac{1}{2} \\
2
\end{array} \quad \vec{h}\right)
$$

Note that:

$$
G[\vec{h}] T_{\ell}=\left(\left\lfloor\frac{\vec{h}}{2^{\ell-1}}\right\rfloor \ldots\left\lfloor\left\lfloor\frac{\vec{h}}{2^{i}}\right\rfloor-2\left\lfloor\frac{\vec{h}}{2^{i+1}}\right\rfloor \ldots \quad \vec{h}-2\left\lfloor\frac{\vec{h}}{2}\right\rfloor\right)\right.
$$

Which is just the binary representation of \vec{h}. Similarly, for a matrix $H=\left(\vec{h}_{1}|\ldots| \vec{h}_{t}\right)$, define:

$$
G[H]=\left(G\left[\vec{h}_{1}\right]|\ldots| G\left[\vec{h}_{t}\right]\right)
$$

Then, for $\ell_{i}=\log \left\|\vec{h}_{i}\right\|_{\infty}$, we set

$$
U=\left(\begin{array}{ccc}
T_{\ell_{1}} & & \\
& \ddots & \\
& & T_{\ell_{t}}
\end{array}\right)
$$

The corresponding $G[H] \times U$ is a zero-one matrix. Recall that for a given H, we would like to get $G P=H$, where P is also small. We thus set $G=G[H]$, and choose P to be a block-diagonal zeroone matrix, which selects the rightmost column of every block $G\left[\vec{h}_{i}\right]$. That is, for $\vec{p}_{i}=(0, \ldots, 0,1)^{T}$ of dimension i, set:

$$
P=\left(\begin{array}{ccc}
\vec{p}_{\ell_{1}} & & \\
& \ddots & \\
& & \vec{p}_{\ell_{t}}
\end{array}\right)
$$

So that

$$
G[H] \times P=\left(G\left[\vec{h}_{1}\right] \times \vec{p}_{\ell_{1}}|\ldots| G\left[\vec{h}_{t}\right] \times \vec{p}_{\ell_{t}}\right)=\left(\vec{h}_{1}|\ldots| \vec{h}_{t}\right)
$$

To satisfy $H=G P \in \Lambda_{q}^{\perp}\left(A_{1}\right)$, we choose H to be any basis of $\Lambda_{q}^{\perp}\left(A_{1}\right)$ (e.g. $H=\operatorname{HNF}\left(\Lambda_{q}^{\perp}\left(A_{1}\right)\right.$). Now, set $A_{2}=-A_{1} \times G[H]$, and get:

$$
\left(A_{1} \mid A_{2}\right) S=\left(A_{1} \mid A_{2}\right)\left(\begin{array}{c|c}
G[H] \times U & 0 \\
\hline U & P
\end{array}\right)=\left(\left(A_{1} G-A_{1} G\right) U \mid-A_{1} G P\right)=0 \quad(\bmod q)
$$

So what did we achieve so far? At this point, given $A_{1} \in \mathbb{Z}^{n \times m_{1}}$, we can extend it with $A_{2} \in \mathbb{Z}^{n \times m_{2}}$ and find a small $S \in\{-2,0,1\}^{m \times m}$, such that $\left(A_{1} \mid A_{2}\right) S=0(\bmod q)$. However, A_{2} is completely determined by A_{1}, can we get back to $A_{2}=-A_{1} R$, for a random R, so that A_{2} will be (close to) random given A_{1} ?
Randomizing the matrix. Instead of setting $A_{2}=-A_{1} G$, let us set $A_{2}=-A_{1}(G+R)$, where R is random. This already guarantees (by LOHL) that ($A_{1} \mid A_{2}$) is close to random. Now, we adapt the rest of the construction accordingly. We require that

$$
\left(\begin{array}{c|c}
A_{1} & A_{2}
\end{array}\right)\left(\begin{array}{c|c}
(G+R) U & W \\
\hline U & P
\end{array}\right)=0 \quad(\bmod q)
$$

Which already zeros out the left part of the product. For the right part, we should zero out

$$
A_{1} W+A_{2} P=A_{1} W-A_{1}(G+R) P
$$

Choosing G and P as before, it holds that $A_{1} G P=0$, and hence to zero out the above, it suffices to set $W=R P$. It is left to check: (a) S is still small; (b) S is indeed a basis. The first check follows easily. Indeed, since R is a zero-one matrix and P simply selects a subset of its columns, then W is also a zero-one matrix. In addition, $(G+R) U=G U+R U$ is also small, since $G U$ is small as before, and $R U$ has entries of magnitude at most 3 . We now show the second.
Claim 1. S is a basis of $\Lambda_{q}^{\perp}(A)$ iff H is a basis of $\Lambda_{q}^{\perp}\left(A_{1}\right)$.

Proof. Using linear-algebraic facts regarding the determinant of block matrices, we get for an invertible U :

$$
\operatorname{det} S=\operatorname{det}\left(\begin{array}{c|c}
V & W \\
\hline U & P
\end{array}\right)=\operatorname{det} U \operatorname{det}\left(V U^{-1} P-W\right)=1 \cdot \operatorname{det}((G+R) P-W)=\operatorname{det} G P=\operatorname{det} H
$$

Now since both A_{1} and A have full rank n, then $\operatorname{det} \Lambda_{q}^{\perp}\left(A_{1}\right)=\operatorname{det} \Lambda_{q}^{\perp}(A)=q^{n}$. Hence, S is a basis for $\Lambda_{q}^{\perp}(A)$ iff $\operatorname{det} S=q^{n}$ iff $\operatorname{det} H=q^{n}$ iff H is a basis for $\Lambda_{q}^{\perp}\left(A_{1}\right)$.
Parameters. We started with $A_{1} \in \mathbb{Z}^{n \times m_{1}}$, where $m_{1}=\Omega(n \log q)$ (allowing use of LOHL). H has entries as large as q and so the number of columns in $G[H]$ is $m_{2} \leq m_{1} \log q=O\left(n \log ^{2} q\right)$. Consequently, $m=m_{1}+m_{2}=O\left(n \log ^{2} q\right)$. The entries of S are all bounded by a constant and hence all vectors in S are of size $O(\sqrt{m})$.

Variants.

1. Instead of setting $G P=H \in \Lambda_{q}^{\perp}\left(A_{1}\right)$ in the above construction, set $G P=H-\Delta$ for some fixed Δ, and use $G[H-\Delta]$ rather than $G[H]$. Like the original construction, this construction can also be shown to satisfy our requirements. It turns out that for some choices of Δ (e.g. $\Delta=I$) result in improved parameters.
2. Alwen-Peikert also show a slightly different technique that achieves $m=O(n \log q)$. Their idea is to represent rows of H rather than columns, and use the fact that H has many small rows.

The Miccancio-Peikert Construction

Generate a random A with a trapdoor T that allows sampling random "short" vectors \vec{x} such that $A \vec{x}=\vec{u}(\bmod q)$ for any given \vec{u}. This is done in two steps: (1) start from a special lattice $G \in \mathbb{Z}^{n \times m_{1}}$, for which the above sampling is possible; (2) Use the trapdoor to translate the random A to the special G.

For a matrix $B \in \mathbb{Z}^{n \times m}$, denote $f_{B}(\vec{x})=A \vec{x}(\bmod q)$. Our goal is to generate A with a trapdoor T that allows sampling short pre-images of a given \vec{u} under f_{A}.

Step 1: In homework. Yields $G \in \mathbb{Z}_{q}^{m_{2}}$, where $m_{2}=n\lceil\log q\rceil$.
Step 2: Choose $A_{1} \in_{R} \mathbb{Z}_{q}^{n \times m_{1}}$, where $m_{1}=\lceil 3 n \log q\rceil$. Set $A_{2}=-A_{1} R+G(\bmod q)$ for $R \in_{R}$ $\{0,1\}^{m_{1} \times m_{2}}$. Output the matrix and trapdoor

$$
A=\left(A_{1} \mid A_{2}\right) \quad T=\left(\begin{array}{cc}
I & R \\
0 & I
\end{array}\right)
$$

Sampling: given $\vec{u} \in \mathbb{Z}_{q}^{n}$, do the following:

1. Sample a short $\vec{z}_{1} \in \mathbb{Z}^{m_{1}}$ (e.g. from a sphere or Gaussian).
2. Set $\vec{v}=\vec{u}-A_{1} \vec{z}_{1}(\bmod q)$.
3. Sample a short pre-image \vec{z}_{2} of \vec{u} under f_{G}.
4. Output $\vec{w}=\binom{\vec{w}_{1}}{\vec{w}_{2}}=T\binom{\vec{z}_{1}}{\vec{z}_{2}}=\binom{\vec{z}_{1}+R \vec{z}_{2}}{\vec{z}_{2}}$
\vec{z}_{1}, \vec{z}_{2} are short by construction, and so is R; hence, \vec{w} is short. In addition,

$$
\begin{gathered}
A \vec{w}=\left(A_{1} \mid G-A_{1} R\right)\left(\begin{array}{cc}
I & R \\
0 & I
\end{array}\right)\binom{\vec{z}_{1}}{\vec{z}_{2}}=\left(A_{1} \mid G\right)\binom{\vec{z}_{1}}{\vec{z}_{2}}= \\
A_{1} \vec{z}_{1}+G \vec{z}_{2}=A_{1} \vec{z}_{1}+\vec{v}=A_{1} \vec{z}_{1}+\left(\vec{u}-A_{1} \vec{z}_{1}\right)=\vec{u} \quad(\bmod q)
\end{gathered}
$$

Remark: If \vec{z}_{1}, \vec{z}_{2} are chosen from a spherical distribution, \vec{w} is chosen from a "skewed" distribution, due to the effect of T (which can be fixed with some extra effort).

References

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP'99, volume 1644 of Lecture Notes in Computer Science, pages 1-9. Springer, 1999.
[AP11] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. Theory Comput. Syst., 48(3):535-553, 2011.
[MP11] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In manuscript, 2011.

