
Homomorphic Encryption and Lattices, Spring 2011 Instructor: Shai Halevi

Gentry’s SWHE Scheme
May 19, 2011 Scribe: Ran Cohen

In this lecture we review Gentry’s somewhat homomorphic encryption (SWHE) scheme. In
Gentry’s scheme, the plaintext space and the ciphertext space are rings (support addition and mul-
tiplication), and given encryptions of ` messages, c1, . . . , c`, where ci ← Enc(mi), and a polynomial
Q of bounded degree (and not-too-many terms), we have (except for negligible probability)

Q(m1, . . . ,m`) = Dec(Q(c1, . . . , c`)).

1 Background: GGH-type Cryptosystems

We briefly recall Micciancio’s “cleaned-up version” of GGH cryptosystems [GGH97, Mic01]. The
secret and public keys are “good” and “bad” bases of some lattice Λ. More specifically, the key-
holder generates a good basis by choosing Bsk to be a basis of short, “nearly orthogonal” vectors.

Then it sets the public key to be the Hermite normal form of the same lattice, Bpk
def
= HNF(Λ(Bsk)).

A ciphertext in a GGH-type cryptosystem is a vector ~c close to the lattice Λ(Bpk), and the
message which is encrypted in this ciphertext is somehow encoded in the distance from ~c to the
nearest lattice vector. To encrypt a message m, the sender chooses a short “error vector” ~e that
encodes m, and then computes the ciphertext as ~c ← ~e mod Bpk. Note that if ~e is short enough
(i.e., less than λ1(Λ)/2), then it is indeed the distance between ~c and the nearest lattice point.

To decrypt, the key-holder uses its “good” basis Bsk to recover ~e by setting ~e ← ~c mod Bsk,
and then recovers m from ~e. The reason decryption works is that, if the parameters are chosen
correctly, then the parallelepiped P(Bsk) of the secret key will be a “plump” parallelepiped that
contains a sphere of radius bigger than ‖~e‖, so that ~e is indeed the unique point inside P(Bsk) that
equals ~c modulo Λ. On the other hand, the parallelepiped P(Bpk) of the public key will be very
skewed, and will not contain a sphere of large radius, making it useless for solving BDDP.

More algebraically, the secret-key basis Bsk is chosen so that all the columns of B−1sk have
Eucledean length smaller than 1/2‖~e‖. Recall that ~c = ~v + ~e for some ~v ∈ Λ, so we can write
~c = ~αBsk + ~e for some integer coefficient vector ~α. Also, reducing ~c mod Bsk is done by computing

~c mod Bsk =

[·] is distance to nearest integer︷ ︸︸ ︷
[~cB−1sk] Bsk

= [(~αBsk + ~e)B−1sk]Bsk = [~α+ ~eB−1sk]Bsk
(?)
= [~eB−1sk]Bsk

where Equality (?) follows since ~α is an integer vector and [·] means taking only the fractional part.
Each entry of ~eB−1sk is the inner product of ~e with a column of B−1sk , and as the column is shorter
than 1/2‖~e‖ then that entry is smaller than 1/2 in absolute value. It follows that the fractional
part [~eB−1sk] equals ~eB−1sk exactly. Thus,

~c mod Bsk = [~eB−1sk]Bsk = ~eB−1sk Bsk = ~e.

Note that if the encoding of m into ~e is linear, then this scheme is already “somewhat” additively
homomorphic, since for two ciphertexts ~c1 = ~v1 + ~e1 and ~c2 = ~v2 + ~e2, we get that ~e = ~e1 + ~e2
encodes m1+m2. If ~e is still short enough then decryption will recover it and thus returns m1+m2.

1

For example, if in order to encode m ∈ {0, 1} we denote ~m = (m, 0, . . . , 0) ∈ {0, 1}n, choose a short
integer vector ~r and set ~e = 2~r + ~m, then

~c1 + ~c2 = (~v1 + 2~r1 + ~m1) + (~v2 + 2~r2 + ~m2) = (~v1 + ~v2) + 2(~r1 + ~r2) + (~m1 + ~m2) = ~v + ~e,

where ~v = ~v1 + ~v2 ∈ Λ, and ~e ≡ (m1 ⊕m2, 0, . . . , 0) mod 2. If ~e is short then we decrypt m1 ⊕m2.
Recall that a lattice is a discrete additive subgroup of Zn. In order to obtain an encryption

scheme that is (somewhat) homomorphic w.r.t. multiplication we need a ring structure as we have
in ideal lattices. Consider the encryption scheme from the “GGH example” above, where Λ = ΛJ
is an ideal lattice with the underlying ring Rn = Z[x]/〈xn + 1〉, then we have

~c1 × ~c2 = (~v1 + 2~r1 + ~m1)× (~v2 + 2~r2 + ~m2)

= ~v1 × (~v2 + 2~r2 + ~m2) + ~v2 × (2~r1 + ~m1)︸ ︷︷ ︸
~v

+ 2(2~r1 × ~r2 + ~r1 × ~m2 + ~m1 × ~r2) + ~m1 × ~m2︸ ︷︷ ︸
~e

where ~v ∈ ΛJ since ~v1, ~v2 ∈ ΛJ and J is an ideal. Note that if ~mi = (mi, 0, ..., 0), with the leftmost
entry being the free term in the corresponding polynomial, then we have ~m1× ~m2 = (m1m2, 0, ..., 0).
If ~e is still small enough then we can recover it by ~m1 × ~m2 ≡ ~e mod 2.

2 Gentry’s Somewhat-Homomorphic Encryption (SWHE) Scheme

The SWHE scheme that underlies Gentry’s scheme is a GGH-type cryptosystem where the public
key specifies an ideal lattice ΛJ . Here we only cover a special case of Gentry’s scheme where all
the ideals are principal and the ring that is used for polynomial arithmetic is Rn = Z[x]/〈xn + 1〉,
with n a power of two. (This is the variant that was implemented in [SV10] and [GH11].)

The relation in the ring Rn is xn ≡ −1, hence Rn is closed under “rotation-negation”, i.e. if

~v = (v0, . . . , vn−1) = v0 + v1x+ . . .+ vn−1x
n−1 ∈ Rn,

then so is

x~v = x×
n−1∑
i=0

vix
i = −vn−1 + v0x+ v1x

2 + . . .+ vn−2x
n−1 = (−vn−1, v0, . . . , vn−2).

Therefore, given ~v = (v0, . . . , vn−1) ∈ Rn, we can define the rotation basis of ~v as

V =


~v
x~v
...

xn−1~v

 =


v0 v1 . . . vn−1
−vn−1 v0 . . . vn−2

...
...

. . .
...

−v1 −v2 . . . v0

 .

Parameters: The security parameter is n = 2m, in addition we have 3 other size parameters
ρ, σ, τ that satisfy τ ≥ σn log n and τ > (ρn log n)4

√
n. For example one can set σ = n, and then

determine ρ, τ .
Key Gen: Choose ~s ← N (0, σ2)n and set ~v = (τ, 0, . . . , 0) + d~sc. Ensure that det(V) is odd

and that ‖ d~sc ‖1 < σn log n. The secret key is ~v whereas the public key is B = HNF(~v), the HNF
basis for the lattice spanned by the rows of V (corresponding to the ideal 〈~v〉).

EncryptB(m): Given m ∈ {0, 1} choose at random ~r ← N (0, ρ2)n, and set

~c = 2 d~rc+ (m, 0, . . . , 0) mod B.

2

Decrypt~v(~c): Let V be the rotation basis of ~v, compute ~m = (~c mod V) mod 2, and output
the first entry, i.e. if W = V −1, then ~m = ([~cW]V) mod 2 (where [·] is the fractional part in the
range [−1

2 ,
1
2)).

As in the GGH scheme, in order for the decryption to work we require that ‖~eW‖∞ < 1
2 , so

that we have [~eW]V = ~eWV = ~e.

Claim 1. Let ~e ∈ Rn such that ‖~e‖∞ < τ
4 , then ‖~eW‖∞ < 1

2 .

Proof. Since every entry of ~eW is an inner product of ~e with a column of W . it is enough to show
that every column of W is small enough.

Assume that ‖~eW‖∞ ≥ 1
2 , and we will show that w.h.p. ‖~e‖∞ ≥ τ

4 . Let ~t = ~eW = ~eV −1,

i.e. ~e = ~tV =
∑

j tj(x
j~v). Let i be the largest such that |ti| ≥ 1

2 . In the key generation procedure

we set ~v = (τ, 0, . . . , 0) + d~sc, therefore xj~v = (0, . . . , 0, τ, 0, . . . , 0) +
⌈
xj~s
⌋
, and the ith entry of ~e is

ei = tiτ +

i∑
j=0

tj dsi−jc −
n−1−(i+1)∑

j=0

tj+i+1 dsn−1−jc .

It follows that

|ei| = |tiτ +

i∑
j=0

tj dsi−jc −
n−1−(i+1)∑

j=0

tj+i+1 dsn−1−jc |

≥ |tiτ −
i∑

j=0

tj dsi−jc −
n−1−(i+1)∑

j=0

tj+i+1 dsn−1−jc |

≥ |tiτ −
i∑

j=0

ti dsi−jc −
n−1−(i+1)∑

j=0

ti dsn−1−jc |

= |ti||(τ −
n−1∑
j=0

dsjc)|

= |ti||(τ − ‖ d~sc ‖1)|
However, since |ti| ≥ 1

2 , ‖ d~sc ‖1 < σn log n and τ ≥ σn log n we get

|ei| ≥
1

2
|(τ − σn log n)| ≥ τ

4
.

It follows that ‖~e‖∞ ≥ τ
4 , and we get a contradiction.

The following claim explains the somewhat homomorphic nature of the encryption scheme.

Claim 2. Let Q(x1, . . . , x`) be a binary polynomial of degree at most
√
n in each variable, with

at most n2
√
n terms. For i = 1, . . . , ` let mi ∈ {0, 1} and set ~ci ← EncB(mi). In addition, set

~c = Q(~c1, . . . , ~c`) (where evaluation is over Rn). Then w.h.p. Dec(~c) ≡ Q(m1, . . . ,m`) mod 2.

Proof. With high probability each one of the ~ci is of the form ~ci = ~ui + ~ei, for some ~ui ∈ 〈~v〉, with
‖~ei‖∞ < ρ log n and ~ei ≡ (mi, 0, . . . , 0) mod 2. It follows that Q(~c1, . . . , ~c`) = ~u + Q(~e1, . . . , ~e`) for
some ~u ∈ 〈~v〉 (because the ~ui are in the ideal). Similarly, since ~ei = 2~ri+ ~mi we have Q(~e1, . . . , ~e`) =
2~r +Q(~m1, . . . , ~m`) ≡ Q(~m1, . . . , ~m`) mod 2.

Note that for ~a,~b ∈ Rn we have ‖~a×~b‖∞ ≤ n · ‖~a‖∞ · ‖~b‖∞, hence

‖~e‖∞ = ‖Q(~e1, . . . , ~e`)‖∞ ≤ (max
i
‖~ei‖∞)

√
n · n

√
n−1 · (# of terms)

≤ (ρn log n)
√
nn2
√
n < (ρn log n)4

√
n � τ/4.

So by Claim 1 decryption will recover ~e = Q(~e1, . . . , ~e`), and therefore also Q(~m1, . . . , ~m`).

3

3 Security of Gentry’s SWHE Scheme

Claim 3. The scheme is CPA-secure if for ~v ← (τ, 0, . . . , 0) +
⌈
N (0, σ2)n

⌋
it is hard to distinguish⌈

N (0, ρ2)n
⌋

mod B from a uniform integer vector modB, where B is the HNF of the lattice Λ〈~V 〉,

assuming det(V) is odd.

Before we prove the claim we need to play a bit with some algebra. Let V be the rotation
basis of ~v and denote d = det(V). We know that d 6= 0. Assume d is odd, an denote the adjoint
matrix of V by A = dV −1, A is an integer matrix as it is the adjoint of an integer matrix. Let
~a = (a0, . . . , an−1) be the first row of A. On one hand, since AV = dI we have ~aV = (d, 0, . . . , 0),
which is in fact the constant polynomial d ∈ Rn. On the other hand we have

~aV =
n−1∑
i=0

ai(x
i~v) =

n−1∑
i=0

(aix
i)× ~v mod (xn + 1) = ~a× ~v ∈ Rn.

It follows that ~a × ~v = d (the constant polynomial d). Note that x~a × ~v = xd = (0, d, 0, . . . , 0),
hence the second row of A is x~a. In fact A is the rotation basis of 〈~a〉, and ~a is the scaled inverse
of ~v.

Now, since d is odd, d−1
2 ∈ Z, and we can consider the constant polynomial d−1

2 ∈ Rn. It holds
that

~a× ~v − 2
d− 1

2
= d− (d− 1) = 1 ∈ Rn,

namely the polynomials ~v and 2 are coprime in Rn. It follows that the map ~x 7→ 2~x mod 〈~v〉 is a
permutation.

What do we actually mean by ~x 7→ 2~x mod 〈~v〉? Since 〈~v〉 is an ideal in Rn, we can consider the
quotient ring Rn/〈~v〉 and the natural projection Rn → Rn/〈~v〉. Now ~x mod 〈~v〉 is simply the image
of this projection (by abuse of notation we write ~x ∈ Rn/〈~v〉 for the equivalence class [~x] ∈ Rn/〈~v〉).
We can look at the doubling map over Rn/〈~v〉, sending ~x ∈ Rn/〈~v〉 to 2~x ∈ Rn/〈~v〉. Since 2 and
〈~v〉 are coprime in Rn, 2 has an inverse 1−d

2 ∈ Rn/〈~v〉. Thus doubling induces a permutation on
Rn/〈~v〉:

2~x× 1− d
2

= ~x× (1− ~a× ~v) = ~x mod 〈~v〉.

Two polynomials ~a,~b ∈ Rn are congruent mod〈~v〉 if ~a−~b ∈ 〈~v〉, i.e. there is some ~u ∈ Rn such
that ~a = ~b + ~u~v, however ~u~v = ~uV , hence ~a,~b are congruent mod〈~v〉 iff ~a,~b are congruent modV ,
and we can conclude that the mapping ~x 7→ 2~x mod V is a permutation on Rn/〈~v〉. We are now
ready to prove claim 3.

Proof of Claim 3. Let A be a CPA adversary with advantage ε. We will show how to utilize it
and construct a distinguisher between (

⌈
N (0, ρ2)n

⌋
mod B) from a uniform integer vector in P(B),

where ~v is chosen as in the key generation algorithm of the scheme and B is the HNF basis of 〈~v〉.
Given B and ~x, we need to decide if ~x is uniform modB or Gaussian modB. We give A the

basis B as public key, and A gives us two bits m0,m1. We choose a random bit b ∈R {0, 1}, and
give A the ciphertext ~c = 2~x+ (mb, 0, . . . , 0) mod B. When A returns a bit b′ we output 1 if b = b′

and 0 otherwise.
If ~x is Gaussian then this is a perfect simulation of the scheme, hence A guesses correctly with

probability 1
2 + ε.

If ~x is uniform modB then 2~x mod B = (2~x mod V) mod B, and since ~x mod V is uniform in
P(V) and doubling is a permutation, then 2~x mod V is also uniform in P(V), hence 2~x mod B is
uniform in P(B). It follows that 2~x + ~mb mod B is uniform in P(B) regardless of b. Therefore A
guesses correctly in this case with probability 1

2 .

4

So how hard is it to distinguish between uniform and Gaussian modB? We don’t really know,
however one way is to solve the BDD problem for the Gaussian case. Note that when ~x is Gaussian
then w.h.p. ‖~x‖ ∼ ρ, whereas

det(Λ(V)) ≤
n−1∏
i=0

‖xi~v‖ ≤ (τ + σ log n)n < (2τ)n.

It follows that the ratio between the error distance (~c,Λ) and n
√

det(Λ) is

n
√

det(Λ)

ρ
<

2τ

ρ
< 24

√
n,

and we do not know how to solve BDD with this ratio.

References

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from
lattice reduction problems. In Burton S. Kaliski Jr., editor, Advances in Cryptology
- CRYPTO 1997, volume 1294 of Lecture Notes in Computer Science, pages 112–131.
Springer, 1997.

[GH11] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Advances in Cryptology - EUROCRYPT’11, volume 6632 of Lecture Notes
in Computer Science, pages 129–148. Springer, 2011. Full version available on-line from
http://eprint.iacr.org/2010/520.

[Mic01] Daniele Micciancio. Improving lattice based cryptosystems using the hermite normal
form. In CaLC’01, volume 2146 of Lecture Notes in Computer Science, pages 126–145.
Springer, 2001.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Phong Q. Nguyen and David Pointcheval, editors, Public
Key Cryptography - PKC 2010, volume 6056 of Lecture Notes in Computer Science, pages
420–443. Springer, 2010.

5

