
Homomorphic Encryption and Lattices, Spring 2011 Instructor: Shai Halevi

FHE from LWE, without bootstrapping [BV11, Gen11]
June 9, 2011 Scribe: Reut Levi

1 Starting point: Quadratic-HE

Recall the quadratic-HE (based on Regev’s LWE-based scheme) from problem set 4:

• The secret key is a vector ~s = (1|~s′) ∈ Zn+1
q where ~s′ ∈R Znq .

• The public key is a (n + 1) ×m matrix (m ≥ 3n log q) of the form P =

(
~b
A

)
∈ Z(n+1)×m

q

where A ∈R Zn×mq and ~b = −~s′A + 2~e where ~e ∈ dΦαqcm is an error vector. Note: P is

pseudo-random under D-LWE. Also ~sP = ~b+ ~sA = 2~e.

• To encrypt m ∈ {0, 1} choose ~r ∈ {0, 1}m, output ~c = P~r + (m, 0 . . . 0) ∈ Zn+1
q . Note: If P

was random then ~c was also random, independent of P , m.

• To decrypt, set m′ = [〈~s,~c〉]q = [~s(P~r+(m, 0 . . . 0))]q = [〈2~e, ~r〉+〈~s, (m, 0 . . . 0)〉]q. If |2〈~e, ~r〉|+
1� q then m′ = 2〈~e, ~r〉+m over the integers, so m = [m′]2.

Since decryption is linear (as long as no wraparound occurs) then additive homomorphism (upto
error) is immediate. Also, one multiplication can be done via tensor (outer) product. Given two
ciphertexts ~c1,~c2, can form a ”product ciphertext” C = ~c1 ⊗ ~c2. To decrypt C set:

m′ = [~sC~st]q = [~s(~c1 ⊗ ~c2)~st]q = [〈~s,~c1〉 · 〈~c2, ~s〉]q = [(2〈~e, ~r1〉+m1)(2〈~e, ~r2〉+m2)]q

If we still have no wraparound then m′ = m1m2 (mod 2).

A different view of ”product decryption”

Note that decryption is a bilinear form in ~s: Dec~s(C) = ~sC~st. So it can be expressed as a linear
operation in the tensor product ~s⊗~s. Let vec(M) be the opening of the matrix M into a vector (in
some fixed ordering) then Dec~s(~c1⊗~c2) = 〈vec(~s⊗~s), vec(~c1⊗~c2)〉. So we have an ”extended secret
key” ~s∗ = vec(~s ⊗ ~s) and an ”extended ciphertext” ~c∗ = vec(~c1 ⊗ ~c2), but the encryption formula
remains Dec~s∗ = [〈~s∗,~c∗〉]q mod 2. This means that we can multiply more than just once, but the
dimension squares with every such product.

2 Dimension-Reduction

To be able to keep multiplying without the ”dimension explosion”, we would like to publish some
information to allow anyone to convert ”extended ciphertexts” (that can be decrypted by ”extended
secret keys”) into ”normal ciphertexts” that require only ”normal secret key” to decrypt. This can
be thought of as a form of proxy re-encryption: we want to publish some information P (~s∗ → ~t)
that lets anyone converts a ciphertext under ~s∗ into a ciphertext under ~t, without breaking semantic
security. In our case it is important that the dimension of ~t is much smaller than the dimension of
~s∗. Very roughly, we ”encrypt ~s∗ under ~t ”.

1

First try

Let ~s1 ∈ Zn1
q be an ”extended secret key” of dimension n1, and let ~s2 = (1|~s′2) ∈ Zn2

q be a ”normal

secret key” of dimension n2. We publish a matrix P ′(~s1 → ~s2) =

(
~b
A

)
∈ Zn2×n1

q , such that

A ∈R Z(n2−1)×n1
q and ~b2 = [−~s′2A2 + 2~e2 + ~s1]q ∈ Zn1

q , with ~e2 an error vector ~e2 ← dΦαqcn1 . As
before P ′(~s1 → ~s2) is pseudorandom under D-LWE (assuming that ~s2 is independent of ~s1). Note
that for any vector ~c1 ∈ Zn1

q we can set ~c2 = P ′(~s1 → ~s2) · ~c1 ∈ Zn2
q . Moreover, since

~s2 · P ′(~s1 ← ~s2) = ~b2 + ~s2A2 = 2~e2 + ~s1 (mod q) ,

then
〈~s2,~c2〉 = ~s2 · P ′(~s1 → ~s2) · ~c1 = 〈2~e2 + ~s1,~c1〉 = 2〈~e2,~c1〉+ 〈~s1,~c1〉 (mod q)

This is almost what we wanted, if we didn’t have wraparound the we would get

[〈~s2,~c2〉]q = [〈~s1,~c1〉]q (mod 2) .

But ~c1 is a long vector (in Euclidean norm) so even for the short error vector ~e2 we are likely to
get a wraparound when taking the inner-product with ~c1.

The fix

We represent a long vector in dimension n1, via a short vector in dimension even larger - n1 log q.
Denote ` = dlog qe, and let ~u ∈ {0, 1, . . . , q − 1}n1 be some vector with entries smaller than q. Let
~u0 be the vector of lsb’s in ~u, let ~u1 be the vector of 2’nd bits, etc. Namely ~u =

∑`−1
i=0 2i~ui and

~ui ∈ {0, 1}n1 . Consider the following functions.

BitDecomp(~u) = (~u0|~u1|~u2 . . . |~u`−1) ∈ {0, 1}n1·`

Powers2q(~s) = (~s|[2~s]q|[4~s]q . . . [2`−1~s]q) ∈ Zn1·`
q

(so ‖BitDecomp(~u)‖ ≤
√
`n1). Then for any ~s, ~u ∈ {0, 1, . . . , q − 1}n1 we have

〈Powers2q(~s),BitDecomp(~u)〉 =
`−1∑
i=0

〈[2i~s]q, ~ui〉 = 〈~s,
`−1∑
i=0

2i~ui〉 = 〈~s, ~u〉 (mod q)

To allow conversion from encryption under ~s1 ∈ Zn1
q to encryption under ~s2 ∈ Zn2

q , we publish

the matrix P (~s1 → ~s2) =

(
~b
A

)
∈ Zn2×(n1·`)

q where A ∈R Z(n2−1)×(n1·`)
q and ~b = −~s′2A +

2~e2 + Powers2q(~s1), where ~e is an error vector ~e ← dΦαqcn1`. Then we have ~s2 · P (~s1 → ~s2) ≡q
2~e+ Powers2q(~s1). Now for a vector ~c1 ∈ Zn1

q we set ~c2 = [P (~s1 → ~s2) · BitDecomp(~c1)]q and so

〈~s2,~c2〉 = ~s2P · BitDecomp(~c1) = 〈2~e+ Powers2q(~s1),BitDecomp(~c1)〉
= 2〈~e,BitDecomp(~c1)〉+ 〈Powers2q(~s1),BitDecomp(~c1)〉
= 2〈~e,BitDecomp(~c1)〉+ 〈~s1 + ~c1〉 (mod q) .

Now both ~e, BitDecomp(~c1) are small, we can avoid wraparound and therefore

[〈~s2, ~c2〉]q = [〈~s1, ~c1〉]q (mod 2) .

2

What do we have so far? SWHE from LWE

• Given ~c1,~c2, original ciphertext under ~s, can generate an extended ciphertext vec(~c1 ⊗ ~c2).
The noise in this extended ciphertext is roughly the product of the noises in the two ~c1,~c2.

• If we publish the matrix P (vec(~s ⊗ ~s) → ~t) then we can convert the extended ciphertext
back into a normal ciphertext under ~t. The noise only grows by an additive factor of ≈
‖~e2‖
√

log q · n.

• Put together we can multiply ciphertexts and the noise grows from size µ to size ≈ µ2 +
αqn2/3

√
log q.

• To handle d levels (degree 2d) we need to publish d such conversion matrices P ((~si ⊗ ~si) →
~si+1).

• The noise grows like µ2
d
, so cannot do more than log n levels.

3 How to get from SWHE to FHE?

Getting from SWHE to FHE can be accomplished in several ways:

1. Squashing + bootstrapping: This works, but need to assume harness of SSSP (sparse-subset-
sum problem).

2. [BV11] describe a squashing-less method to reduce decryption complexity:

• dimension-reduction can reduce the secret key dimension to any nε, if needed.

• A new modulus-reduction technique: Instead of [〈~s,~c〉]q do [〈~s′, ~c′〉]p for some p � q.

The noise in ~e′ is still below p/2, but too large for doing more multiplications. But since
we work with small dimension and small modulus then decryption has low complexity.
So we get a bootstrappable scheme.

3. [Gen11] Show how to reduce the noise so that we can do poly(n) levels.

Gentry’s technique for ”noise control”

Recall that our decryption formula is Dec~s(~c) = [[〈~s,~c〉]q]2.

Lemma 1. Let p, q be two odd moduli, and let ~c,~s ∈ Znq . Let ~c′ ∈ Zn be an integer vector, where

the i’th entry of ~c′ is just p
q · ~ci, rounded either up or down so that ~c′ ≡ ~c (mod 2). If

|[〈~s,~c〉]q| <
q

2
− q

p
· ‖~s‖1

then
[〈~s, ~c′〉]p = [〈~s,~c〉]q mod 2

and ∣∣[〈~s,~c′〉]p∣∣ < q

p
|[〈~s,~c〉]q|+ ‖~s1‖1 .

3

Proof. We have [〈~s,~c〉]q = 〈~s,~c〉 − kp for some integer k. Consider now the integer 〈~s, ~c′〉 − kp, and

we show that this integer must be in the range
(
−p

2 ,+
p
2

)
and therefore 〈~s, ~c′〉 − kp = [〈~s, ~c′〉]p.∣∣∣〈~s, ~c′〉 − kp∣∣∣ =

∣∣∣∣〈~s, pq~c〉+ 〈~s, ~c′ − p

q
~c〉 − kp

∣∣∣∣
≤

∣∣∣∣〈~s, pq~c〉 − kp
∣∣∣∣+

∣∣∣∣〈~s, ~c′ − p

q
~c〉
∣∣∣∣

≤ p

q
|〈~s,~c〉 − kq|+ ‖~s‖1 <

p

2
.

On the other hand, since ~c′ ≡ ~c (mod 2) then also 〈~s,~c〉 = 〈~s, ~c′〉 mod 2, and since both p, q are
odd then kp = kq mod 2 so we get

[〈~s, ~c′〉]p = 〈~s, ~c′〉 − kp = 〈~s,~c〉 − kp = [〈~s,~c〉]q mod 2

Example 1. Let ~s = (2, 3) and ~c = (175, 212), so 〈~s,~c〉 = 2 · 175 + 3 · 212 = 986.
Let q = 127, so [〈~s,~c〉]q = 986− 8 · 127 = −30 (= 0 mod 2), and let p = 29, so p

q ·~c ∼ (39.9, 48.4).

We need to round to get the first entry odd and the second even, we we have ~c′ = (39, 48). Now
〈~s, ~c′〉 = 2 · 39 + 3 · 48 = 222, hence [〈~s, ~c′〉]p = 222− 8 · 29 = −10 (= 0 mod 2).

Note that the ”noise” [〈~s, ~c′〉]p as a fraction of p is more than the ”noise” [〈~s,~c〉]q as a fraction
of q, so why is this useful? Because in absolute terms the noise is getting smaller, and this lets us
keep it small as we do more multiplications.

Example 2. Assume that the noise in fresh ciphertexts has magnitude N , and set the size of the
initial modulus to (say) q0 ∼ N10, and then qi ∼ N10−i.

without modulus-switching using modulus-switching

fresh ciphertext noise/modulus = N/N10 N/N10

level-1, deg=2 N2/N10 N2 · N9

N10 = N/N9

level-2, deg=4 N4/N10 N2 · N8

N9 = N/N8

level-3, deg=8 N8/N10 N2 · N7

N8 = N/N7

level-4, deg=16 decryption error! N16/N10 N2 · N6

N7 = N/N6

When using modulus switching we can evaluate #of layers which is linear in modulus-bit-size/noise-
bit-size. Without it we can do only log.

One caveat: Recall that in LWE we can choose the secret ~s ∈R Znq , so actually the ”additive
term” ‖~s‖1 is huge (> q0).

Reducing the secret-key size

First try. We proved in homework that ~s can be chosen from the error distribution, rather than
at random. This yields smaller ~s, but small enough. If we have α = 1/poly , then the bit-size of
αq0 is a constant fraction of the bit-size of q0. Thus every multiplication increases the bit-size of
the noise by a constant fraction of |q0|, so we need to reduce the modulus by at least that much,
so we cannot do more than constant many levels.

The fix. We again use BitDecomp(·), this time on the secret ~s. This is interleaved with the
dimension reduction.

4

The [Gen11] scheme

We have the security parameter n, and let d be the number of levels in the circuit that we want to
evaluate.

• Choose the moduli q0, q1 . . . qd, with qi/qi+1 ≥ B (where B is a parameter polynomial in n).

• For i = 0 . . . d choose a secret key ~si ∈R Znqi (or from the noise distribution dΦαqicn). Let

~ti = vec(~si ⊗ ~si) and ~ui = Powers2qi ∈ {0, 1}n
2 log qi .

• Let pk = P0 which is chosen as in the key-generation of quadratic-HE from the beginning
of today’s class, except with modulus q0. Then for i = 1, . . . , d let Pi = P (~ui−1 → ~si) ∈
Zn×(n

2 log2 qi)
qi .

• Given ~c1, ~c2 that we want to multiply, both encrypted with respect to the same level i, do
the following

– Multiply: compute ~c⊗ = vec(~c1 ⊗ ~c2), which is decrypted under ~ti to the correct value,
modulo qi.

– Expand: Set ~d = Powers2qi(~c
⊗) ∈ Zn

2 log qi
q , which is decrypted under ~ui to the correct

value, modulo qi.

– Switch-modulus: Set ~d′ = round
(
qi+1

qi
· ~d
)

, where rounding is so that ~d′ ≡ ~d (mod 2).

Note that since ~u is a 0-1 vector (and so ‖~u‖1 < n2 log qi) then the noise in ~d′ is small,
and so ~d′ is decrypted under ~ui to the correct value modulo qi+1.

– Reduce-dimension: Set ~c = P (~ui → ~si+1) · BitDecomp(~d′), so now ~c is decrypted under
~si+1 to the correct value modulo qi+1

If the noise in ~c1,~c2 is bounded by some µ, then the noise in ~c⊗ is bounded by µ2, and so is the
noise in ~d. Then the noise in ~d′ is bounded by µ2/B + n2 log qi, and the noise in the final ~c is
bounded by µ2/B + n2 log qi + n2 log2 qi · (αqi+1). If α is small enough and B is large enough then
this can be made at most µ, so the noise does not increase!!

References

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. Manuscript, 2011.

[Gen11] Craig Gentry. Fully homomorphic encryption without bootstrapping. Cryptology ePrint
Archive, Report 2011/277, 2011.

5

