4.1 Computing g(z) mod 2>
We denote Up(z) = 1 and Vy(z) = v(z), and for j = 0,1,...,logn we denote n; = n/27. We proceed
in m = logn steps to compute the polynomials Uj(x), Vj(x) (j = 1,2,...,m), such that the degrees
of Uj;,V; are at most n; — 1, and moreover the polynomial g;(z) = Hgal(%(pf]) — 2U;(p?)) has
the same first two coefficients as g(z). Namely,

n;—1

def j j
gi(2) © T (vito?) = 20367)) = 9(2) (mod 22). (8)

i=0
Equation (8) holds for j = 0 by definition. Assume that we computed Uj, V; for some j < m such
that Equation (8) holds, and we show how to compute Uj11 and V1. From Equation (6) we know

that (pi+nj /2)23 = —p?, 50 we can express gj as
nj/2—1
0= =TI (Vite?)==use)) (Vil=?) = 2Us(=67))
njl/:20—1
= T (%) (T + GERVE)))  (mod 2
= 4,07 5, ()
Denoting fp; () et + 1 and observing that pin is a root of f,, for all 7, we next consider the
polynomials:
Aj(z) e Vi(z)Vj(—x) mod fp,(x) (with coefficients ao, ... ,anj_l)
Bj(x) def Uj(x)Vj(—x) + Uj(—x)Vj(z) mod f,,(z) (with coefficients by, ..., bnjfl)

and observe the following:

e Since ,oin is a root of f,;, then the reduction modulo f,, makes no difference when evalu-
ating A;, B; on p%. Namely we have A;(p?') = V;(p?' )V;(—p?) and similarly B;(p?') =
Us(p? Wi(=pF) +Uj(=p? )V (pF') (for all d).

e The odd coefficients of A;, B; are all zero. For A; this is because it is obtained as Vj(z)V;(—x)
and for B; this is because it is obtained as R;(x) + R;j(—x) (with R;(z) = U;(x)Vj(—x)). The
reduction modulo f,; (z) = 2™ + 1 keeps the odd coefficients all zero, because n; is even.

We therefore set

TL]'/2—1 nj/2—1
def t def t
Uj+1(x) = E by, 2", and ‘/}+1(x) = E Ay~ T,
t=0 t=0

so the second bullet above implies that U;11(2?) = Bj(x) and V;41(2%) = A;(z) for all z. Combined
with the first bullet, we have that

n;/2—1

def 41 41
gi+1(z) = H (Vj+1(P?] )=z Uja(p ))
i=0
n;/2—1

= II (406 -2Bi()) = g(:) (mod 22).

=0
By the induction hypothesis we also have g;(z2) = g¢(z) (mod 2?), so we get gj+1(2) = g(z)
(mod 2?), as needed.
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4.2 Recovering the scaled inverse w

Once we reach we last step above, we have two constant polynomials U,,, V;, such that ¢g(z) =
Vin — 2Uy, (mod 22). Tt follows that d = resultant(v, f,) = Vi, and the free term of the scaled
inverse w(z) = d- (v=!(x) mod f,(z)) is wo = —Uy,/n.

We can now use the same technique to recover all the other coefficients of w: Note that since
we work modulo f,,(z) = 2™ + 1, then the coefficient w; is the free term of the scaled inverse of
' x v (mod f,).

In our case we only need to recover the first two coefficients, however, since we are only in-
terested in the case where wi/wy = wo/wy = -+ = wp_1/wWp—2 = —wo/wyp—1 (mod d), where
d = resultant(v, f,,). After recovering wg,w; and d = resultant(v, f,), we therefore compute the
ratio r = wy/wp mod d and verify that ™ = —1 (mod d). Then we recover as many coefficients
of w as we need (via w;t+1 = [w; - r]g), until we find one coefficient which is an odd integer, and
that coefficient is the secret key.
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