
4.1 Computing g(z) mod z2

We denote U0(x) ≡ 1 and V0(x) = v(x), and for j = 0, 1, . . . , log n we denote nj = n/2j . We proceed
in m = log n steps to compute the polynomials Uj(x), Vj(x) (j = 1, 2, . . . ,m), such that the degrees

of Uj , Vj are at most nj − 1, and moreover the polynomial gj(z) =
∏nj−1

i=0 (Vj(ρ
2j
i )− zUj(ρ

2j
i )) has

the same first two coefficients as g(z). Namely,

gj(z)
def
=

nj−1∏
i=0

(
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2j

i )− zUj(ρ
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i )
)

= g(z) (mod z2). (8)

Equation (8) holds for j = 0 by definition. Assume that we computed Uj , Vj for some j < m such
that Equation (8) holds, and we show how to compute Uj+1 and Vj+1. From Equation (6) we know

that
(
ρi+nj/2

)2j
= −ρ2

j

i , so we can express gj as
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=
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i )︸ ︷︷ ︸
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−z
(
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i )Vj(ρ
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i )︸ ︷︷ ︸
=Bj(ρ2
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))
(mod z2)

Denoting fnj (x)
def
= xnj + 1 and observing that ρ 2j

i is a root of fnj for all i, we next consider the
polynomials:

Aj(x)
def
= Vj(x)Vj(−x) mod fnj (x) (with coefficients a0, . . . , anj−1)

Bj(x)
def
= Uj(x)Vj(−x) + Uj(−x)Vj(x) mod fnj (x) (with coefficients b0, . . . , bnj−1)

and observe the following:

• Since ρ 2j
i is a root of fnj , then the reduction modulo fnj makes no difference when evalu-

ating Aj , Bj on ρ 2j
i . Namely we have Aj(ρ

2j
i ) = Vj(ρ

2j
i )Vj(−ρ2

j

i ) and similarly Bj(ρ
2j
i ) =

Uj(ρ
2j
i )Vj(−ρ2

j

i ) + Uj(−ρ2
j

i )Vj(ρ
2j
i ) (for all i).

• The odd coefficients of Aj , Bj are all zero. For Aj this is because it is obtained as Vj(x)Vj(−x)
and for Bj this is because it is obtained as Rj(x)+Rj(−x) (with Rj(x) = Uj(x)Vj(−x)). The
reduction modulo fnj (x) = xnj + 1 keeps the odd coefficients all zero, because nj is even.

We therefore set

Uj+1(x)
def
=

nj/2−1∑
t=0

b2t · xt, and Vj+1(x)
def
=

nj/2−1∑
t=0

a2t · xt,

so the second bullet above implies that Uj+1(x
2) = Bj(x) and Vj+1(x

2) = Aj(x) for all x. Combined
with the first bullet, we have that

gj+1(z)
def
=

nj/2−1∏
i=0

(
Vj+1(ρ

2j+1

i )− z · Uj+1(ρ
2j+1

i )
)

=

nj/2−1∏
i=0

(
Aj(ρ

2j

i )− z ·Bj(ρ
2j

i )
)

= gj(z) (mod z2).

By the induction hypothesis we also have gj(z) = g(z) (mod z2), so we get gj+1(z) = g(z)
(mod z2), as needed.
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4.2 Recovering the scaled inverse w

Once we reach we last step above, we have two constant polynomials Um, Vm such that g(z) =
Vm − zUm (mod z2). It follows that d = resultant(v, fn) = Vm, and the free term of the scaled
inverse w(x) = d · (v−1(x) mod fn(x)) is w0 = −Um/n.

We can now use the same technique to recover all the other coefficients of w: Note that since
we work modulo fn(x) = xn + 1, then the coefficient wi is the free term of the scaled inverse of
xi × v (mod fn).

In our case we only need to recover the first two coefficients, however, since we are only in-
terested in the case where w1/w0 = w2/w1 = · · · = wn−1/wn−2 = −w0/wn−1 (mod d), where
d = resultant(v, fn). After recovering w0, w1 and d = resultant(v, fn), we therefore compute the
ratio r = w1/w0 mod d and verify that rn = −1 (mod d). Then we recover as many coefficients
of w as we need (via wi+1 = [wi · r]d), until we find one coefficient which is an odd integer, and
that coefficient is the secret key.
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