### 4.1 Computing $g(z) \bmod z^{2}$

We denote $U_{0}(x) \equiv 1$ and $V_{0}(x)=v(x)$, and for $j=0,1, \ldots, \log n$ we denote $n_{j}=n / 2^{j}$. We proceed in $m=\log n$ steps to compute the polynomials $U_{j}(x), V_{j}(x)(j=1,2, \ldots, m)$, such that the degrees of $U_{j}, V_{j}$ are at most $n_{j}-1$, and moreover the polynomial $g_{j}(z)=\prod_{i=0}^{n_{j}-1}\left(V_{j}\left(\rho_{i}^{2^{j}}\right)-z U_{j}\left(\rho_{i}^{2 j}\right)\right)$ has the same first two coefficients as $g(z)$. Namely,

$$
\begin{equation*}
g_{j}(z) \stackrel{\text { def }}{=} \prod_{i=0}^{n_{j}-1}\left(V_{j}\left(\rho_{i}^{2^{j}}\right)-z U_{j}\left(\rho_{i}^{2^{j}}\right)\right)=g(z) \quad\left(\bmod z^{2}\right) . \tag{8}
\end{equation*}
$$

Equation (8) holds for $j=0$ by definition. Assume that we computed $U_{j}, V_{j}$ for some $j<m$ such that Equation (8) holds, and we show how to compute $U_{j+1}$ and $V_{j+1}$. From Equation (6) we know that $\left(\rho_{i+n_{j} / 2}\right)^{2^{j}}=-\rho_{i}^{2^{j}}$, so we can express $g_{j}$ as

$$
\begin{aligned}
g_{j}(z) & =\prod_{i=0}^{n_{j} / 2-1}\left(V_{j}\left(\rho_{i}^{2^{j}}\right)-z U_{j}\left(\rho_{i}^{2^{j}}\right)\right)\left(V_{j}\left(-\rho_{i}^{2^{j}}\right)-z U_{j}\left(-\rho_{i}^{2^{j}}\right)\right) \\
& =\prod_{i=0}^{n_{j} / 2-1}(\underbrace{V_{j}\left(\rho_{i}^{2 j}\right) V_{j}\left(-\rho_{i}^{2^{j}}\right)}_{=A_{j}\left(\rho_{i}^{2 j}\right)}-z(\underbrace{U_{j}\left(\rho_{i}^{2^{j}}\right) V_{j}\left(-\rho_{i}^{2^{j}}\right)+U_{j}\left(-\rho_{i}^{2^{j}}\right) V_{j}\left(\rho_{i}^{2^{j}}\right)}_{=B_{j}\left(\rho_{i}^{2 j}\right)}))\left(\bmod z^{2}\right)
\end{aligned}
$$

Denoting $f_{n_{j}}(x) \stackrel{\text { def }}{=} x^{n_{j}}+1$ and observing that $\rho_{i}^{2 j}$ is a root of $f_{n_{j}}$ for all $i$, we next consider the polynomials:

$$
\begin{aligned}
& A_{j}(x) \stackrel{\text { def }}{=} V_{j}(x) V_{j}(-x) \bmod f_{n_{j}}(x) \quad\left(\text { with coefficients } a_{0}, \ldots, a_{n_{j}-1}\right) \\
& B_{j}(x) \stackrel{\text { def }}{=} U_{j}(x) V_{j}(-x)+U_{j}(-x) V_{j}(x) \bmod f_{n_{j}}(x) \quad \text { (with coefficients } b_{0}, \ldots, b_{n_{j}-1} \text { ) }
\end{aligned}
$$

and observe the following:

- Since $\rho_{i}{ }^{j}$ is a root of $f_{n_{j}}$, then the reduction modulo $f_{n_{j}}$ makes no difference when evaluating $A_{j}, B_{j}$ on $\rho_{i}^{2^{j}}$. Namely we have $A_{j}\left(\rho_{i}^{2^{j}}\right)=V_{j}\left(\rho_{i}^{2^{j}}\right) V_{j}\left(-\rho_{i}^{2^{j}}\right)$ and similarly $B_{j}\left(\rho_{i}^{2^{j}}\right)=$ $U_{j}\left(\rho_{i}^{2 j}\right) V_{j}\left(-\rho_{i}^{2 j}\right)+U_{j}\left(-\rho_{i}^{2 j}\right) V_{j}\left(\rho_{i}^{2 j}\right)$ (for all $i$ ).
- The odd coefficients of $A_{j}, B_{j}$ are all zero. For $A_{j}$ this is because it is obtained as $V_{j}(x) V_{j}(-x)$ and for $B_{j}$ this is because it is obtained as $R_{j}(x)+R_{j}(-x)$ (with $R_{j}(x)=U_{j}(x) V_{j}(-x)$ ). The reduction modulo $f_{n_{j}}(x)=x^{n_{j}}+1$ keeps the odd coefficients all zero, because $n_{j}$ is even.
We therefore set

$$
U_{j+1}(x) \stackrel{\text { def }}{=} \sum_{t=0}^{n_{j} / 2-1} b_{2 t} \cdot x^{t}, \text { and } V_{j+1}(x) \stackrel{\text { def }}{=} \sum_{t=0}^{n_{j} / 2-1} a_{2 t} \cdot x^{t}
$$

so the second bullet above implies that $U_{j+1}\left(x^{2}\right)=B_{j}(x)$ and $V_{j+1}\left(x^{2}\right)=A_{j}(x)$ for all $x$. Combined with the first bullet, we have that

$$
\begin{aligned}
g_{j+1}(z) & \stackrel{\text { def }}{=} \prod_{i=0}^{n_{j} / 2-1}\left(V_{j+1}\left(\rho_{i}^{2 j+1}\right)-z \cdot U_{j+1}\left(\rho_{i}^{2 j+1}\right)\right) \\
& =\prod_{i=0}^{n_{j} / 2-1}\left(A_{j}\left(\rho_{i}^{2^{j}}\right)-z \cdot B_{j}\left(\rho_{i}^{2^{j}}\right)\right)=g_{j}(z) \quad\left(\bmod z^{2}\right) .
\end{aligned}
$$

By the induction hypothesis we also have $g_{j}(z)=g(z)\left(\bmod z^{2}\right)$, so we get $g_{j+1}(z)=g(z)$ $\left(\bmod z^{2}\right)$, as needed.

### 4.2 Recovering the scaled inverse $w$

Once we reach we last step above, we have two constant polynomials $U_{m}, V_{m}$ such that $g(z)=$ $V_{m}-z U_{m}\left(\bmod z^{2}\right)$. It follows that $d=\operatorname{resultant}\left(v, f_{n}\right)=V_{m}$, and the free term of the scaled inverse $w(x)=d \cdot\left(v^{-1}(x) \bmod f_{n}(x)\right)$ is $w_{0}=-U_{m} / n$.

We can now use the same technique to recover all the other coefficients of $w$ : Note that since we work modulo $f_{n}(x)=x^{n}+1$, then the coefficient $w_{i}$ is the free term of the scaled inverse of $x^{i} \times v\left(\bmod f_{n}\right)$.

In our case we only need to recover the first two coefficients, however, since we are only interested in the case where $w_{1} / w_{0}=w_{2} / w_{1}=\cdots=w_{n-1} / w_{n-2}=-w_{0} / w_{n-1}(\bmod d)$, where $d=\operatorname{resultant}\left(v, f_{n}\right)$. After recovering $w_{0}, w_{1}$ and $d=\operatorname{resultant}\left(v, f_{n}\right)$, we therefore compute the ratio $r=w_{1} / w_{0} \bmod d$ and verify that $r^{n}=-1(\bmod d)$. Then we recover as many coefficients of $w$ as we need (via $w_{i+1}=\left[w_{i} \cdot r\right]_{d}$ ), until we find one coefficient which is an odd integer, and that coefficient is the secret key.

