Lattices and Homomorphic Encryption, Spring 2013

Instructors: Shai Halevi, Tal Malkin

Problem Set #3

February 19, 2013

Due March 12, 2013

1 Intersection of Spheres

Let $\mathbf{B}(\vec{c},r) \subset \mathbb{R}^n$ denote the *n*-dimensional sphere of radius r and center \vec{c} , and let $\mathcal{U}(\mathbf{B}(\vec{c},r))$ denote the uniform distribution over this sphere. In this question you can use the following fact: **Fact.** The volume of an *n*-dimensional unit sphere is $\operatorname{vol}(\mathbf{B}(\vec{c},1)) = \frac{\pi^{n/2}}{\Gamma(n/2)}$ where the function $\Gamma(x)$ satisfies $\Gamma(x+1) = x \cdot \Gamma(x)$, $\Gamma(1) = 1$, $\Gamma(1/2) = \sqrt{\pi}$, and

$$\lim_{x \to \infty} \frac{\Gamma(x + \frac{1}{2})}{\Gamma(x)} = \lim_{x \to \infty} \frac{\Gamma(x + 1)}{\Gamma(x + \frac{1}{2})} = \sqrt{x}.$$

(a) Prove that for any $\epsilon \in (0, 1)$, the intersection between two *n*-dimensional unit spheres whose centers are ϵ apart has volume at least

$$\operatorname{vol}(\mathbf{B}(\vec{0},1) \cap \mathbf{B}(\vec{c},1)) \geq \operatorname{vol}(\mathbf{B}(\vec{0},1)) \cdot \frac{\epsilon(1-\epsilon^2)^{\frac{n-1}{2}}}{3} \cdot \sqrt{n} \cdot (1-o(1))$$

(where $\vec{c} \in \mathbb{R}^n$ is any vector of Euclidean norm $\|\vec{c}\| = \epsilon$).

Hint. Show that the intersection contains a cylinder of radius $\sqrt{1-\epsilon^2}$ and height ϵ .

(b) Use Part (a) to conclude that there exists an absolute constant ϵ (independent of n) such that at any large enough dimension n and for any distance d > 0, the uniform distributions over two radius- $(\frac{1}{2}d\sqrt{n})$ spheres whose centers are $\leq d$ apart, are close up to statistical distance $\leq \epsilon$. Namely

$$\left| \mathcal{U} \big(\mathbf{B}(\vec{c}, \frac{1}{2} d\sqrt{n}) \big) - \mathcal{U} \big(\mathbf{B}(\vec{0}, \frac{1}{2} d\sqrt{n}) \big) \right| \leq \epsilon$$

for any vector $\vec{c} \in \mathbb{R}^n$ of Euclidean norm $\|\vec{c}\| \leq d$.

2 Using the Leftover Hash Lemma

Let G be a finite additive group, denote the size of G by |G|, and let $\ell \geq 3 \log |G|$. For any fixed ℓ -vector of group elements, $\vec{x} = \langle x_1, \ldots, x_\ell \rangle$, denote by $S_{\vec{x}}$ the distribution of random subset-sums of the x_i 's. Namely

$$\mathcal{S}_{\vec{x}} \stackrel{\text{def}}{=} \left\{ \sum_{i=1}^{\ell} \sigma_i x_i : \text{ the } \sigma_i \text{'s are uniform and independent in } \{0,1\} \right\}$$

Also denote by \mathcal{U}_G the uniform distribution over G and by $SD(\mathcal{D}_1, \mathcal{D}_2)$ the statistical distance between the two distributions $\mathcal{D}_1, \mathcal{D}_2$.

Prove the following lemma, asserting that for most vectors \vec{x} , the distribution $S_{\vec{x}}$ is close to uniform.

Lemma 1. For any finite group G (and $\ell \geq 3 \log |G|$), it holds for almost all vectors $\vec{x} \in G^{\ell}$, except at most a $(1/\sqrt{|G|})$ -fraction of them, that $S_{\vec{x}}$ is at most $(1/\sqrt{|G|})$ -away from the uniform distribution on G (in statistical distance). Namely,

$$\Pr_{\vec{x}\in G^{\ell}}\left[SD(\mathcal{S}_{\vec{x}}, \mathcal{U}_G) > \frac{1}{\sqrt{|G|}}\right] \leq \frac{1}{\sqrt{|G|}}$$

Hint. Consider the family of hash functions $\mathcal{H} = \{H_{\vec{x}} : \vec{x} \in G^{\ell}\}$ from $\{0,1\}^{\ell}$ to G, which are defined by $H_{\vec{x}}(\sigma_1, \ldots, \sigma_{\ell}) = \sum_i \sigma_i x_i$. Show that this is a 2-universal family of hash functions, and use the leftover-hash-lemma to show that the statistical distance between the distributions $\{(\vec{x}, H_{\vec{x}}(\vec{\sigma}))\}$ and $\{(\vec{x}, y)\}$ is at most $\frac{1}{2}\sqrt{\frac{|G|}{2^{\ell}}}$ (where $\vec{x} \in G^{\ell}, \vec{\sigma} \in \{0,1\}^{\ell}$, and $y \in G$ are all chosen uniformly at random). Use the above to prove the lemma.

3 A Partial Trapdoor

Fix the parameters n, m, q as in the SIS problem, with n the security parameter, q = poly(n) (say), and $m > 3n \log q$. Describe an efficient algorithm for generating a nearly-uniform $n \times m$ matrix Aover \mathbb{Z}_q , together with a 0-1 vector \vec{v} such that $A\vec{v} = 0 \pmod{q}$. The statistical distance between the distribution of A output by your algorithm and the uniform distribution over $\mathbb{Z}_q^{n \times m}$ should be exponentially small in n (i.e., $2^{-\Omega(n)}$). *Hint.* Use Lemma 1 above.