Problem Set \#3

February 19, 2013
Due March 12, 2013

1 Intersection of Spheres

Let $\mathbf{B}(\vec{c}, r) \subset \mathbb{R}^{n}$ denote the n-dimensional sphere of radius r and center \vec{c}, and let $\mathcal{U}(\mathbf{B}(\vec{c}, r))$ denote the uniform distribution over this sphere. In this question you can use the following fact:
Fact. The volume of an n-dimensional unit sphere is $\operatorname{vol}(\mathbf{B}(\vec{c}, 1))=\frac{\pi^{n / 2}}{\Gamma(n / 2)}$ where the function $\Gamma(x)$ satisfies $\Gamma(x+1)=x \cdot \Gamma(x), \Gamma(1)=1, \Gamma(1 / 2)=\sqrt{\pi}$, and

$$
\lim _{x \rightarrow \infty} \frac{\Gamma\left(x+\frac{1}{2}\right)}{\Gamma(x)}=\lim _{x \rightarrow \infty} \frac{\Gamma(x+1)}{\Gamma\left(x+\frac{1}{2}\right)}=\sqrt{x}
$$

(a) Prove that for any $\epsilon \in(0,1)$, the intersection between two n-dimensional unit spheres whose centers are ϵ apart has volume at least

$$
\operatorname{vol}(\mathbf{B}(\overrightarrow{0}, 1) \cap \mathbf{B}(\vec{c}, 1)) \geq \operatorname{vol}(\mathbf{B}(\overrightarrow{0}, 1)) \cdot \frac{\epsilon\left(1-\epsilon^{2}\right)^{\frac{n-1}{2}}}{3} \cdot \sqrt{n} \cdot(1-o(1))
$$

(where $\vec{c} \in \mathbb{R}^{n}$ is any vector of Euclidean norm $\|\vec{c}\|=\epsilon$).
Hint. Show that the intersection contains a cylinder of radius $\sqrt{1-\epsilon^{2}}$ and height ϵ.
(b) Use Part (a) to conclude that there exists an absolute constant ϵ (independent of n) such that at any large enough dimension n and for any distance $d>0$, the uniform distributions over two radius- $\left(\frac{1}{2} d \sqrt{n}\right)$ spheres whose centers are $\leq d$ apart, are close upto statistical distance $\leq \epsilon$. Namely

$$
\left|\mathcal{U}\left(\mathbf{B}\left(\vec{c}, \frac{1}{2} d \sqrt{n}\right)\right)-\mathcal{U}\left(\mathbf{B}\left(\overrightarrow{0}, \frac{1}{2} d \sqrt{n}\right)\right)\right| \leq \epsilon
$$

for any vector $\vec{c} \in \mathbb{R}^{n}$ of Euclidean norm $\|\vec{c}\| \leq d$.

2 Using the Leftover Hash Lemma

Let G be a finite additive group, denote the size of G by $|G|$, and let $\ell \geq 3 \log |G|$. For any fixed ℓ-vector of group elements, $\vec{x}=\left\langle x_{1}, \ldots, x_{\ell}\right\rangle$, denote by $\mathcal{S}_{\vec{x}}$ the distribution of random subset-sums of the x_{i} 's. Namely

$$
\mathcal{S}_{\vec{x}} \stackrel{\text { def }}{=}\left\{\sum_{i=1}^{\ell} \sigma_{i} x_{i}: \text { the } \sigma_{i}^{\prime} \text { 's are uniform and independent in }\{0,1\}\right\}
$$

Also denote by \mathcal{U}_{G} the uniform distribution over G and by $S D\left(\mathcal{D}_{1}, \mathcal{D}_{2}\right)$ the statistical distance between the two distributions $\mathcal{D}_{1}, \mathcal{D}_{2}$.
Prove the following lemma, asserting that for most vectors \vec{x}, the distribution $\mathcal{S}_{\vec{x}}$ is close to uniform.
Lemma 1. For any finite group G (and $\ell \geq 3 \log |G|)$, it holds for almost all vectors $\vec{x} \in G^{\ell}$, except at most $a(1 / \sqrt{|G|})$-fraction of them, that $\mathcal{S}_{\vec{x}}$ is at most $(1 / \sqrt{|G|})$-away from the uniform distribution on G (in statistical distance). Namely,

$$
\operatorname{Pr}_{\vec{x} \in G^{\ell}}\left[S D\left(\mathcal{S}_{\vec{x}}, \mathcal{U}_{G}\right)>\frac{1}{\sqrt{|G|}}\right] \leq \frac{1}{\sqrt{|G|}}
$$

Hint. Consider the family of hash functions $\mathcal{H}=\left\{H_{\vec{x}}: \vec{x} \in G^{\ell}\right\}$ from $\{0,1\}^{\ell}$ to G, which are defined by $H_{\vec{x}}\left(\sigma_{1}, \ldots, \sigma_{\ell}\right)=\sum_{i} \sigma_{i} x_{i}$. Show that this is a 2-universal family of hash functions, and use the leftover-hash-lemma to show that the statistical distance between the distributions $\left\{\left(\vec{x}, H_{\vec{x}}(\vec{\sigma})\right)\right\}$ and $\{(\vec{x}, y)\}$ is at most $\frac{1}{2} \sqrt{\frac{|G|}{2^{\ell}}}$ (where $\vec{x} \in G^{\ell}, \vec{\sigma} \in\{0,1\}^{\ell}$, and $y \in G$ are all chosen uniformly at random). Use the above to prove the lemma.

3 A Partial Trapdoor

Fix the parameters n, m, q as in the SIS problem, with n the security parameter, $q=\operatorname{poly}(n)$ (say), and $m>3 n \log q$. Describe an efficient algorithm for generating a nearly-uniform $n \times m$ matrix A over \mathbb{Z}_{q}, together with a 0-1 vector \vec{v} such that $A \vec{v}=0(\bmod q)$. The statistical distance between the distribution of A output by your algorithm and the uniform distribution over $\mathbb{Z}_{q}^{n \times m}$ should be exponentially small in n (i.e., $2^{-\Omega(n)}$). Hint. Use Lemma 1 above.

