Problem Set \#2

February 5, 2013
Due February 19, 2013

1 Lattices and their Determinant

(a) Prove that if $\mathcal{L} \subset \mathbb{Z}^{n}$ is a full-rank integer lattice with prime determinant, then it has no nontrivial refinements. Namely, if $\mathcal{L} \subseteq \mathcal{L}^{\prime}$ for some integer lattice \mathcal{L}^{\prime} then $\mathcal{L}^{\prime}=\mathcal{L}$ or $\mathcal{L}^{\prime}=\mathbb{Z}^{n}$.
(b) Prove the converse: if $\mathcal{L} \subset \mathbb{Z}^{n}$ is a full rank lattice and $\operatorname{det}(\mathcal{L})$ is a composite, then \mathcal{L} has a nontrivial refinement. Namely, there exists a lattice \mathcal{L}^{\prime} such that $\mathcal{L} \subsetneq \mathcal{L}^{\prime} \subsetneq \mathbb{Z}^{n}$.

2 Successive Minima and Bases

(a) Consider set of vectors in \mathbb{Z}^{n} whose entries are either all-even integers or all-odd integers,

$$
\mathcal{L}^{*}=\left\{x \in \mathbb{Z}^{n}: x_{i} \text { is odd } \forall i\right\} \cup\left\{x \in \mathbb{Z}^{n}: x_{i} \text { is even } \forall i\right\} .
$$

Prove that \mathcal{L}^{*} is a lattice and that $\lambda_{i}(\mathcal{L})=2$ for all $i=1,2, \ldots, n$.
(b) Prove that every basis for \mathcal{L}^{*} must include at least one vector of length \sqrt{n} or more. (Note that in conjunction with Part (a), this means that for $n>4$ the successive minima do not form a basis for this lattice.)

3 Gram-Schmidt, LLL, and Dual Lattices

Recall that the Gram-Schmidt orthogonalization of a basis $B=\left(b_{1}, \ldots, b_{n}\right)$ is $\tilde{B}=\left(\tilde{b_{1}}, \ldots, \tilde{b_{n}}\right)$ such that the $\tilde{b_{i}}$'s are orthogonal to each other and $b_{i}=\tilde{b}_{i}+\sum_{j<i} \mu_{i, j} \tilde{b}_{j}$, where $\mu_{i, j}=\left\langle b_{i}, \tilde{b}_{j}\right\rangle /\left\|\tilde{b_{j}}\right\|^{2}$.
Recall also that a basis $B=\left(b_{1}, \ldots, b_{n}\right)$ is LLL reduced if its Gram-Schmidt orthogonalization satisfies

$$
\begin{align*}
\forall 1 \leq j<i \leq n, & \left|\mu_{i, j}\right| \leq 1 / 2 \tag{1}\\
\quad \forall 1 \leq i<n, & \left\|\tilde{b}_{i-1}\right\|^{2} \cdot \frac{3}{4} \leq\left\|\tilde{b}_{i}+\mu_{i, i-1} \tilde{b}_{i-1}\right\|^{2} \tag{2}
\end{align*}
$$

Note that all the "smallness" properties of LLL-reduced bases actually rely on a weaker first condition, namely that

$$
\begin{equation*}
\forall 1 \leq j<n, \quad\left|\mu_{j+1, j}\right| \leq 1 / 2 \tag{3}
\end{equation*}
$$

(The stronger condition from Equation (1) is only needed to prove that the numbers do not grow too large during the LLL procedure.) Below we call a basis "effectively $L L L$-reduced" if it satisfies Equations (3) and (2).

Let $B=\left(b_{1}, \ldots, b_{n}\right)$ be a basis of a full rank lattice \mathcal{L}, let D^{\prime} be the dual basis (i.e., $\left.D^{\prime}=\left(B^{-1}\right)^{t}\right)$, and let $D=\left(d_{1}, \ldots, d_{n}\right)$ be the matrix D^{\prime} with the order of the columns reversed. Namely

$$
\left\langle b_{i}, d_{j}\right\rangle= \begin{cases}1 & \text { if } i=n+1-j \\ 0 & \text { otherwise }\end{cases}
$$

(a) Prove that the following relation holds for all i :

$$
\begin{equation*}
\tilde{b}_{i}=\tilde{d}_{n+1-i} /\left\|\tilde{d}_{n+1-i}\right\|^{2} \tag{4}
\end{equation*}
$$

(b) Using Equation (4), prove that the following relation holds for all i :

$$
\begin{equation*}
\left\langle b_{i}, \tilde{b}_{i-1}\right\rangle /\left\|\tilde{b}_{i-1}\right\|^{2}=-\left\langle d_{n+2-i}, \tilde{d}_{n+1-i}\right\rangle /\left\|\tilde{d}_{n+1-i}\right\|^{2} \tag{5}
\end{equation*}
$$

(c) Using Equations (4) and (5), prove that if B is effectively LLL-reduced then so is D.

4 Easy Lattice Problems

(a) Describe an efficient algorithm that given the bases B_{1}, B_{2} of two full-rank integer lattices $\mathcal{L}_{1}=\mathcal{L}\left(B_{1}\right), \mathcal{L}_{2}=\mathcal{L}\left(B_{2}\right) \subseteq \mathbb{Z}^{n}$, computes a basis for their sum, $\mathcal{L}_{1}+\mathcal{L}_{2}=\left\{x+y: x \in \mathcal{L}_{1}, y \in \mathcal{L}_{2}\right\}$.
(b) Describe an efficient algorithm that given the bases B_{1}, B_{2} of two full-rank integer lattices $\mathcal{L}_{1}=\mathcal{L}\left(B_{1}\right), \mathcal{L}_{2}=\mathcal{L}\left(B_{2}\right) \subseteq \mathbb{Z}^{n}$, computes a basis for their intersection, $\mathcal{L}_{1} \cap \mathcal{L}_{2}$. Hint. Consider the duals of $\mathcal{L}_{1}, \mathcal{L}_{2}$, and $\mathcal{L}_{1} \cap \mathcal{L}_{2}$.

