Problem Set \#1

January 22, 2013

1. Consider the following 2×3 matrix,

$$
A=\left(\begin{array}{lll}
2 & 1 & 2 \\
2 & 3 & 0
\end{array}\right)
$$

and the set $\mathcal{L}(A)=\left\{A x: x \in \mathbb{Z}^{3}\right\} \subset \mathbb{R}^{2}$. Is $\mathcal{L}(A)$ a lattice? If so, find a basis for it, its determinant, its successive minima and vectors that relize them.
2. Prove or disprove: for every 2×3 matrix A, the set $\mathcal{L}(A)=\left\{A x: x \in \mathbb{Z}^{3}\right\} \subset \mathbb{R}^{2}$ is a lattice.
3. Let $\mathcal{L}=\mathcal{L}\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$ be a full-rank lattice and let $\tilde{b}_{1}, \ldots, \tilde{b}_{n}$ be the Gram-Schmidt orthogonalization b_{1}, \ldots, b_{n}.
(a) Show that it is not true in general that $\lambda_{n}(\mathcal{L}) \geq \max _{i}\left\|\tilde{b}_{i}\right\|$.
(b) Show that for any $j=1, \ldots, n, \lambda_{j}(\mathcal{L}) \geq \min _{i=j, \ldots, n}\left\|\tilde{b}_{i}\right\|$.
4. A subset of the Euclidean space $\mathcal{L} \subset \mathbb{R}^{n}$ is called discrete if there exists $\epsilon>0$ such that the distance between any two points in \mathcal{L} is at least ϵ. Prove that every discrete additive subset $\mathcal{L} \subset \mathbb{R}^{n}$ that spans the entire space \mathbb{R}^{n} is a full-rank lattice with a basis.

Hint. Construct a basis b_{1}, \ldots, b_{n} for \mathcal{L} inductively such that the following property holds for each i : If F_{i} is the linear span of b_{1}, \ldots, b_{i} then every point $u \in \mathcal{L} \cap F_{i}$ is an integer linear combination of b_{1}, \ldots, b_{i}.
5. Let $A \in \mathbb{Z}^{m \times n}$ be a (not necessarily square) integer matrix, and let $q \in \mathbb{Z}$ be an integer larger than one. Prove that the set $S=\left\{x \in \mathbb{Z}^{n}: A x \equiv 0(\bmod q)\right\}$ is a full-rank lattice.

