Lattices and Homomorphic Encryption, Spring 2013

Instructors: Shai Halevi, Tal Malkin

Learning with Errors (LWE)

February 26, 2013

Scribe: Clément Canonne

1 Learning with Errors (LWE) [Reg05]

Parameters and Setting. We have three parameters:

- -n (security parameter)
- $-\alpha = \frac{1}{\text{poly}(n)}$ (noise parameter)
- $-q = \Omega(\text{poly}(n))$, sometimes exponential in $n \pmod{1}$

For a fixed $s \in \mathbb{Z}_q^n$, define the distribution

$$\text{LWE}_{s} \stackrel{\text{def}}{=} \left\{ (a,b) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \mid a \sim \mathcal{U}_{\mathbb{Z}_{q}^{n}}, \ \rho \sim \Phi_{\alpha q}, \ b \stackrel{\text{def}}{=} \langle s,a \rangle + \rho \mod q \right\}$$
(1)

where $\Phi_{\alpha q}$ is a distribution with "good" properties (for instance a continuous¹ gaussian $\mathcal{N}(0, \alpha q)$).

1.1 Computational problems

Definition 1 (Search problem). In SearchLWE[n, α, q], the goal is, given oracle access to LWE_s for some fixed $s \sim \mathcal{U}_{\mathbb{Z}_n^n}$, to find and output s.

Definition 2 (Decision problem). In DecisionLWE[n, α, q], given oracle access to some oracle \mathcal{O} along with the promise that it either outputs samples (a) from LWE_s (for some fixed $s \sim \mathcal{U}_{\mathbb{Z}_q^n}$) or (b) drawn uniformly at random in $\mathbb{Z}_q^n \times \mathbb{Z}_q$, the goal is to decide which one of these two cases hold.

A distinguisher D for LWE_s is said to have advantage ε if $|\mathbb{P}_{LWE_s} \{ D = 1 \} - \mathbb{P}_{\mathcal{U}} \{ D = 1 \}| = \varepsilon$.

Theorem 1. Given a distinguisher D for DecisionLWE[n, α, q] with advantage ε , one can obtain a D' that, for every s distinguishes LWE_s from uniform with advantage $1 - e^{-n}$ and runs in time poly $(n, 1/\varepsilon)$.

Proof. For any fixed $r \in \mathbb{Z}_q^n$, consider the mapping $\psi_r : (a, b) \in \mathbb{Z}_q^n \times \mathbb{Z}_q \mapsto (a, b + \langle a, r \rangle) \in \mathbb{Z}_q^n \times \mathbb{Z}_q$. It is easy to check that if $(a, b) \sim \text{LWE}_s$, then $\psi_r(a, b) \sim \text{LWE}_{s+r}$; while if $(a, b) \sim \mathcal{U}$, then so does $\psi_r(a, b)$.

Reduction (distinguisher D')

- 1. Use sampling to find a threshold τ such that $\mathbb{P}_{LWE_s} \{ D = 1 \} \geq \tau + \frac{\varepsilon}{4}$ and $\mathbb{P}_{\mathcal{U}} \{ D = 1 \} \leq \tau \frac{\varepsilon}{4}$.
- 2. Repeat $N = \text{poly}(n, 1/\varepsilon)$ times:
 - (a) draw $r \sim \mathcal{U}_{\mathbb{Z}^n}$;
 - (b) run D, answering each query by drawing (a, b) from the oracle and giving $\psi_r(a, b)$ to D;
 - (c) record the final decision of D as a vote $v_i \in \{0, 1\}$.
- 3. return 1 if $\frac{1}{N} \sum_{i=1}^{N} v_i > \tau$, and 0 otherwise.

¹In which case the second component b belongs to $\mathbb{R}_q = \mathbb{R}/\mathbb{Z}_q = [0,q)$ instead of \mathbb{Z}_q , and the modulo is defined similarly as in the discrete case. In general, all the results below still hold for $b \in \mathbb{R}_q$.

Analysis We deal here with the case where the oracle answers according to LWE_s for an arbitrary s; the uniform distribution case is similar.

Since $\forall i \in [N]$, $\mathbb{P}\{v_i = 1\} \ge \tau + \frac{\varepsilon}{4}$, an (additive) Chernoff bound yields that $\mathbb{P}\left\{\frac{1}{N}\sum_{i=1}^{N} v_i \le \tau\right\} \le e^{-n}$, as long as $N = \Omega\left(\frac{n}{\varepsilon^2}\right)$.

Theorem 2. Given a distinguisher D for $\text{DecisionLWE}[n, \alpha, q]$ with advantage 1 - negl(n)/q, one can construct a solver S for $\text{SearchLWE}[n, \alpha, q]$ that succeeds w.p. 1 - negl(n) and runs in time $q \cdot \text{poly}(n)$.

Proof. For $i \in [n]$ and $\kappa, \gamma \in \mathbb{Z}_q$, consider the transformation

$$\varphi_{i,\kappa,\gamma}\colon (a,b)\in \mathbb{Z}_q^n\times\mathbb{Z}_q\mapsto (\underbrace{a+\gamma e_i}_{a'},\underbrace{b+\gamma\kappa}_{b'})\in\mathbb{Z}_q^n\times\mathbb{Z}_q$$

where $e_i \stackrel{\text{def}}{=} (0, \dots, 0, 1, 0, \dots, 0).$

• if
$$b = \sum_{j=1}^{n} s_j a_j + \rho$$
 and $s_i = \kappa$, then $b' = \sum_{j=1}^{n} s_j a_j + \gamma \kappa + \rho = \sum_{j=1}^{n} s_j a'_j + \rho$
• if $b = \sum_{j=1}^{n} s_j a_j + \rho$ and $s_i = \kappa' \neq \kappa$, then $b' = \sum_{j=1}^{n} s_j a'_j + \rho + \underbrace{\gamma(\kappa - \kappa')}_{\text{u.a.r. if } \gamma \sim \mathcal{U}}$

so, for any fixed i and κ , choosing γ u.a.r. changes the distribution of (a, b) to $\varphi_{i,\kappa,\gamma}(a, b)$ according to:

$$\begin{split} \mathrm{LWE}_s & \underset{s_i = \kappa}{\longmapsto} \mathrm{LWE}_s \\ \mathrm{LWE}_s & \underset{s_i \neq \kappa}{\longmapsto} \mathcal{U} \end{split}$$

The idea is then to try for each possible values of i, κ , repeating for each couple poly(n) times the following: draw γ u.a.r. each time, and call D to detect if the current simulated oracle is uniform or not. If not, then the i^{th} component of s has been found – it is κ .

Remark 1. Theorem 2 has been extended to other classes of moduli ([Pei09]): if $q = \prod_{j=1}^{\ell} q_j$ where each q_j is poly(n), and all are distinct primes, the resulting solver can run in time poly $(n, q_1 + \cdots + q_{\ell})$. Instead of running in time proportional to q (which may be exponential), the algorithm will run in time proportional to $\sum q_i$ (which is much smaller, maybe even polynomial).

Theorem 3. DecisionLWE[n, α, q] remains hard even when s is drawn from the error distribution, that is if $s \sim \lceil \Phi_{\alpha q} \rfloor \mod q$.

Proof. We show that a distinguisher D for the error distribution can be turned into a distinguisher D' for uniform.

Description of D'

- 1. choose *n* samples $(a_i, b_i)_{i \in [n]}$ according to LWE_s (recall that $s \sim \mathcal{U}_{\mathbb{Z}_q^n}$), and consider the matrix $A \stackrel{\text{def}}{=} (a_1 | \dots | a_n)$ (assume that A is invertible)
- 2. Set $b \stackrel{\text{def}}{=} (b_1, \ldots, b_n)$ (so that we have $b = A^{\mathrm{T}}s + x$ for some $x \sim \lceil \Phi_{\alpha q} \rfloor$), and define the mapping

$$f_{A,b} \colon (\alpha,\beta) \in \mathbb{Z}_q^n \times \mathbb{Z}_q \mapsto \left(\underbrace{-(A^{-1})^{\mathrm{T}}\alpha}_{\alpha'}, \underbrace{\beta - \left\langle (A^{-1})^{\mathrm{T}}\alpha, b \right\rangle}_{\beta'}\right)$$

3. Run *D* to distinguish LWE_x from uniform, answering the queries by sampling (α, β) from the oracle and providing *D* with $f_{A,b}(\alpha, \beta)$.

Analysis

- if $(\alpha, \beta) \sim \mathcal{U}_{\mathbb{Z}_q^n \times \mathbb{Z}_q}$, then so is $f_{A,b}(\alpha, \beta)$ for every A (full-rank);
- if $(\alpha, \beta) \sim LWE_s$, it holds that

$$\begin{split} \beta' &= \beta - \left\langle \left(A^{-1}\right)^{\mathrm{T}} \alpha, b \right\rangle = \left(\langle \alpha, s \rangle + \rho\right) - \left\langle -\alpha', A^{\mathrm{T}} s + x \right\rangle \\ &= \left\langle \alpha, s \right\rangle + \rho - \left\langle \left(A^{-1}\right)^{\mathrm{T}} \alpha, A^{\mathrm{T}} s \right\rangle + \left\langle \alpha', x \right\rangle \\ &= \left\langle \alpha, s \right\rangle + \rho - \left\langle \alpha, s \right\rangle + \left\langle \alpha', x \right\rangle \\ &= \left\langle \alpha', x \right\rangle + \rho \end{split}$$

with $\rho \sim \left\lceil \Phi_{\alpha q} \right\rfloor$; and therefore $(\alpha', \beta') \sim \text{LWE}_x$.

2 Application: Secret-Key encryption scheme

Recall that a *public-key encryption scheme* is a tuple of (possibly randomized) algorithms (Keygen, Enc, Dec) working as below -n being a security parameter given as input to the generation algorithm:

$$s_k \leftarrow \mathsf{Keygen}_n, \ c \leftarrow \mathsf{Enc}(m, s_k), \ m \leftarrow \mathsf{Dec}(c, s_k)$$

where $s_k \in \mathcal{K}$ (key space), $m \in \mathcal{M}$ (message space), $c \in \mathcal{C}$ (cyphertext space), and such that

$$\forall s_k \in \mathcal{K}, m \in \mathcal{M}, c \in \mathcal{C}, \qquad \mathbb{P}(\mathsf{Dec}(c, s_k) = m \mid \mathsf{Enc}(m, s_k) = c) = 1 \quad (\mathsf{Correctness guarantee})$$

Security against Chosen-Plaintext Attacks (CPA) This is a "game" between and attacker \mathcal{A} and a challenger \mathcal{B} , where, for an arbitrary fixed n,

- 1. A (secret) key s_k is generated by \mathcal{B} , running Keygen_n;
- 2. \mathcal{A} is given 1^n as input, and oracle access to $\mathsf{Enc}(\cdot, s_k)$, and must output a pair of messages m_0, m_1 of same length;
- 3. \mathcal{B} chooses a random bit $\sigma \sim \mathcal{U}_{\{0,1\}}$ and computes the challenge cyphertext $c \leftarrow \mathsf{Enc}(m_{\sigma}, s_k)$;

- 4. \mathcal{A} is then given c, and continues to have oracle access to $\mathsf{Enc}(\cdot, s_k)$; it must output a guess $\sigma' \in \{0, 1\}$;
- 5. the output of the game is 1 is \mathcal{A} wins (i.e., if $\sigma = \sigma'$), 0 otherwise.

The scheme is *CPA-secure* if for any feasible attacker \mathcal{A} , $\mathbb{P}\{\mathcal{A} \text{ wins}\} \leq \frac{1}{2} + \operatorname{negl}(n)$.

"Regev-like" cryptosystem We now describe a secret-key encryption scheme based on the LWE hardness assumption; hereafter, n, α, q are fixed as in the LWE setting.

Definition 3. Let $\mathcal{M} = \{0,1\}$ (messages are bits), and for key $s \in \mathcal{K} = \mathbb{Z}_q^n$, define the encryption algorithm² Enc_s as follows: on input $\sigma \in \{0,1\}$,

- choose $a \sim \mathcal{U}_{\mathbb{Z}_a^n}$ and $\rho \sim \Phi_{\alpha q}$
- output (a, b), where $b \stackrel{\text{def}}{=} \underbrace{\langle a, s \rangle + \rho}_{(*)} + \left\lceil \frac{q}{2} \right\rfloor \sigma$

Remark 2. information theoretically, getting encryptions of 0 is sufficient to determine s. However, with the LWE assumption, distinguishing between (*) and a uniform random bit is hard.

Theorem 4. If an attacker \mathcal{A} has advantage ε in guessing σ , it can be transformed into a DecisionLWE[n, α, q] distinguisher D with advantage $\varepsilon/2$.

Proof. D will draw many samples (a_i, b_i) from the oracle and use them to provide \mathcal{A} with "encryptions of 0" and "encryptions of 1". Then, it chooses a random bit σ and another sample (a, b), and provides \mathcal{A} with the cyphertext $(a, b' \stackrel{\text{def}}{=} b + \lceil \frac{q}{2} \rfloor \sigma)$. \mathcal{A} then guesses σ' , and D outputs "uniform" if $\sigma \neq \sigma'$, "LWE" otherwise.

Analysis we know that $\mathbb{P}_{\mathcal{A}} \{ \sigma = \sigma' \} \geq \frac{1}{2} + \varepsilon$, so when *D* has a LWE oracle it will output "LWE" w.p. at least $\frac{1}{2} + \varepsilon$.

When D has a uniform oracle, then the attacker receives a cyphertext $(a, b + \lceil \frac{q}{2} \rfloor \sigma)$ which is distributed u.a.r, regardless of σ – so $\mathbb{P}_{\mathcal{A}} \{ \sigma = \sigma' \} \leq \frac{1}{2}$.

Remark 3 (Decryption). The scheme is actually slightly modified (without affecting the previous proof) – namely, the key will be (n + 1) bits long:

$$s_k \stackrel{\text{def}}{=} (s||1)$$

$$c \stackrel{\text{def}}{=} (a||-b) \qquad (\text{instead of } (a,b))$$

Given this small modification, the decryption works by computing $-\langle s_k, c \rangle = \left\lceil \frac{q}{2} \right\rfloor \sigma + \rho$, and outputting 1 if this quantity is closer to $\frac{q}{2}$ than to 0, and 0 otherwise. This succeeds w.h.p (over the draw of ρ in the encryption).

Remark 4 (Additive homomorphism). Note that if c_1 encrypts σ_1 and c_2 encrypts σ_2 , then $c_1 + c_2 \mod q$ decrypts to $\sigma_1 \oplus \sigma_2$ (as long as the errors ρ_1, ρ_2 were not too large). Thus, albeit $c_1 + c_2$ might not be a valid cyphertext (not exactly distributed according to the output of Enc_s , as the errors are also summed), we do get what is called *additive homomorphism* "for free".

²The decryption algorithm will be described shortly after.

References

- [Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, STOC '05, pages 84–93, New York, NY, USA, 2005. ACM.
- [Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In Proceedings of the 41st annual ACM symposium on Theory of computing, STOC '09, pages 333–342, New York, NY, USA, 2009. ACM.