Learning with Errors (LWE)

February 26, 2013
Scribe: Clément Canonne

1 Learning with Errors (LWE) Reg05]

Parameters and Setting. We have three parameters:

- n (security parameter)
$-\alpha=\frac{1}{\text { poly }(n)}$ (noise parameter)
- $q=\Omega(\operatorname{poly}(n))$, sometimes exponential in n (modulus)

For a fixed $s \in \mathbb{Z}_{q}^{n}$, define the distribution

$$
\begin{equation*}
\mathrm{LWE}_{s} \stackrel{\text { def }}{=}\left\{(a, b) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \mid a \sim \mathcal{U}_{\mathbb{Z}_{q}^{n}}, \rho \sim \Phi_{\alpha q}, b \stackrel{\text { def }}{=}\langle s, a\rangle+\rho \bmod q\right\} \tag{1}
\end{equation*}
$$

where $\Phi_{\alpha q}$ is a distribution with "good" properties (for instance a continuous ${ }^{1}$ gaussian $\mathcal{N}(0, \alpha q)$).

1.1 Computational problems

Definition 1 (Search problem). In SearchLWE[n, $\alpha, q]$, the goal is, given oracle access to LWE $_{s}$ for some fixed $s \sim \mathcal{U}_{\mathbb{Z}_{q}^{n}}$, to find and output s.
Definition 2 (Decision problem). In DecisionLWE[n, $\alpha, q]$, given oracle access to some oracle \mathcal{O} along with the promise that it either outputs samples (a) from LWE_{s} (for some fixed $s \sim \mathcal{U}_{\mathbb{Z}_{q}^{n}}$) or (b) drawn uniformly at random in $\mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$, the goal is to decide which one of these two cases hold.

A distinguisher D for LWE_{s} is said to have advantage ε if $\left|\mathbb{P}_{\operatorname{LWE}_{s}}\{D=1\}-\mathbb{P}_{\mathcal{U}}\{D=1\}\right|=\varepsilon$.
Theorem 1. Given a distinguisher D for DecisionLWE $[n, \alpha, q]$ with advantage ε, one can obtain a D^{\prime} that, for every s distinguishes LWE_{s} from uniform with advantage $1-e^{-n}$ and runs in time $\operatorname{poly}(n, 1 / \varepsilon)$.

Proof. For any fixed $r \in \mathbb{Z}_{q}^{n}$, consider the mapping $\psi_{r}:(a, b) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \mapsto(a, b+\langle a, r\rangle) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}$. It is easy to check that if $(a, b) \sim \operatorname{LWE}_{s}$, then $\psi_{r}(a, b) \sim \operatorname{LWE}_{s+r}$; while if $(a, b) \sim \mathcal{U}$, then so does $\psi_{r}(a, b)$.
Reduction (distinguisher D^{\prime})

1. Use sampling to find a threshold τ such that $\mathbb{P}_{\text {LWE }_{s}}\{D=1\} \geq \tau+\frac{\varepsilon}{4}$ and $\mathbb{P}_{\mathcal{U}}\{D=1\} \leq \tau-\frac{\varepsilon}{4}$.
2. Repeat $N=\operatorname{poly}(n, 1 / \varepsilon)$ times:
(a) draw $r \sim \mathcal{U}_{\mathbb{Z}_{q}^{n}}$;
(b) run D, answering each query by drawing (a, b) from the oracle and giving $\psi_{r}(a, b)$ to D;
(c) record the final decision of D as a vote $v_{i} \in\{0,1\}$.
3. return 1 if $\frac{1}{N} \sum_{i=1}^{N} v_{i}>\tau$, and 0 otherwise.
[^0]Analysis We deal here with the case where the oracle answers according to LWE_{s} for an arbitrary s; the uniform distribution case is similar.
Since $\forall i \in[N], \mathbb{P}\left\{v_{i}=1\right\} \geq \tau+\frac{\varepsilon}{4}$, an (additive) Chernoff bound yields that $\mathbb{P}\left\{\frac{1}{N} \sum_{i=1}^{N} v_{i} \leq \tau\right\} \leq e^{-n}$, as long as $N=\Omega\left(\frac{n}{\varepsilon^{2}}\right)$.

Theorem 2. Given a distinguisher D for DecisionLWE $[n, \alpha, q]$ with advantage $1-\operatorname{negl}(n) / q$, one can construct a solver S for SearchLWE $[n, \alpha, q]$ that succeeds w.p. $1-\operatorname{negl}(n)$ and runs in time $q \cdot \operatorname{poly}(n)$.

Proof. For $i \in[n]$ and $\kappa, \gamma \in \mathbb{Z}_{q}$, consider the transformation

$$
\varphi_{i, \kappa, \gamma}:(a, b) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \mapsto(\underbrace{a+\gamma e_{i}}_{a^{\prime}}, \underbrace{b+\gamma \kappa}_{b^{\prime}}) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}
$$

where $e_{i} \stackrel{\text { def }}{=}(0, \ldots, 0,1,0, \ldots, 0)$.

- if $b=\sum_{j=1}^{n} s_{j} a_{j}+\rho$ and $s_{i}=\kappa$, then $b^{\prime}=\sum_{j=1}^{n} s_{j} a_{j}+\gamma \kappa+\rho=\sum_{j=1}^{n} s_{j} a_{j}^{\prime}+\rho$
- if $b=\sum_{j=1}^{n} s_{j} a_{j}+\rho$ and $s_{i}=\kappa^{\prime} \neq \kappa$, then $b^{\prime}=\sum_{j=1}^{n} s_{j} a_{j}^{\prime}+\rho+\underbrace{\gamma\left(\kappa-\kappa^{\prime}\right)}_{\text {u.a.r. if } \gamma \sim \mathcal{U}}$
so, for any fixed i and κ, choosing γ u.a.r. changes the distribution of (a, b) to $\varphi_{i, \kappa, \gamma}(a, b)$ according to:

$$
\begin{aligned}
& \text { LWE }_{s} \underset{s_{i} \neq \kappa}{\longrightarrow} \\
& \text { LWE }_{s} \underset{s_{i} \neq \kappa}{\longrightarrow}
\end{aligned}
$$

The idea is then to try for each possible values of i, κ, repeating for each couple poly (n) times the following: draw γ u.a.r. each time, and call D to detect if the current simulated oracle is uniform or not. If not, then the $i^{\text {th }}$ component of s has been found - it is κ.

Remark 1. Theorem 2 has been extended to other classes of moduli ($\mathrm{Pei09}])$: if $q=\prod_{j=1}^{\ell} q_{j}$ where each q_{j} is poly (n), and all are distinct primes, the resulting solver can run in time poly $\left(n, q_{1}+\cdots+q_{\ell}\right)$. Instead of running in time proportional to q (which may be exponential), the algorithm will run in time proportional to $\sum q_{i}$ (which is much smaller, maybe even polynomial).

Theorem 3. DecisionLWE $[n, \alpha, q]$ remains hard even when s is drawn from the error distribution, that is if $s \sim\left\lceil\Phi_{\alpha q}\right\rfloor \bmod q$.

Proof. We show that a distinguisher D for the error distribution can be turned into a distinguisher D^{\prime} for uniform.

Description of D^{\prime}

1. choose n samples $\left(a_{i}, b_{i}\right)_{i \in[n]}$ according to LWE_{s} (recall that $s \sim \mathcal{U}_{\mathbb{Z}_{q}^{n}}$), and consider the matrix $A \xlongequal{\text { def }}\left(a_{1}|\ldots| a_{n}\right)$ (assume that A is invertible)
2. Set $b \stackrel{\text { def }}{=}\left(b_{1}, \ldots, b_{n}\right)$ (so that we have $b=A^{\mathrm{T}} s+x$ for some $\left.x \sim\left\lceil\Phi_{\alpha q}\right\rfloor\right)$, and define the mapping

$$
f_{A, b}:(\alpha, \beta) \in \mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q} \mapsto(\underbrace{-\left(A^{-1}\right)^{\mathrm{T}} \alpha}_{\alpha^{\prime}}, \underbrace{\beta-\left\langle\left(A^{-1}\right)^{\mathrm{T}} \alpha, b\right\rangle}_{\beta^{\prime}})
$$

3. Run D to distinguish LWE_{x} from uniform, answering the queries by sampling (α, β) from the oracle and providing D with $f_{A, b}(\alpha, \beta)$.

Analysis

- if $(\alpha, \beta) \sim \mathcal{U}_{\mathbb{Z}_{q}^{n} \times \mathbb{Z}_{q}}$, then so is $f_{A, b}(\alpha, \beta)$ for every A (full-rank);
- if $(\alpha, \beta) \sim \operatorname{LWE}_{s}$, it holds that

$$
\begin{aligned}
\beta^{\prime} & =\beta-\left\langle\left(A^{-1}\right)^{\mathrm{T}} \alpha, b\right\rangle=(\langle\alpha, s\rangle+\rho)-\left\langle-\alpha^{\prime}, A^{\mathrm{T}} s+x\right\rangle \\
& =\langle\alpha, s\rangle+\rho-\left\langle\left(A^{-1}\right)^{\mathrm{T}} \alpha, A^{\mathrm{T}} s\right\rangle+\left\langle\alpha^{\prime}, x\right\rangle \\
& =\langle\alpha, s\rangle+\rho-\langle\alpha, s\rangle+\left\langle\alpha^{\prime}, x\right\rangle \\
& =\left\langle\alpha^{\prime}, x\right\rangle+\rho
\end{aligned}
$$

with $\rho \sim\left\lceil\Phi_{\alpha q}\right\rfloor$; and therefore $\left(\alpha^{\prime}, \beta^{\prime}\right) \sim \operatorname{LWE}_{x}$.

2 Application: Secret-Key encryption scheme

Recall that a public-key encryption scheme is a tuple of (possibly randomized) algorithms (Keygen, Enc, Dec) working as below - n being a security parameter given as input to the generation algorithm:

$$
s_{k} \leftarrow \operatorname{Keygen}_{n}, \quad c \leftarrow \operatorname{Enc}\left(m, s_{k}\right), \quad m \leftarrow \operatorname{Dec}\left(c, s_{k}\right)
$$

where $s_{k} \in \mathcal{K}$ (key space), $m \in \mathcal{M}$ (message space), $c \in \mathcal{C}$ (cyphertext space), and such that

$$
\forall s_{k} \in \mathcal{K}, m \in \mathcal{M}, c \in \mathcal{C}, \quad \mathbb{P}\left(\operatorname{Dec}\left(c, s_{k}\right)=m \mid \operatorname{Enc}\left(m, s_{k}\right)=c\right)=1 \quad \text { (Correctness guarantee) }
$$

Security against Chosen-Plaintext Attacks (CPA) This is a "game" between and attacker \mathcal{A} and a challenger \mathcal{B}, where, for an arbitrary fixed n,

1. A (secret) key s_{k} is generated by \mathcal{B}, running Keygen $_{n}$;
2. \mathcal{A} is given 1^{n} as input, and oracle access to $\operatorname{Enc}\left(\cdot, s_{k}\right)$, and must output a pair of messages m_{0}, m_{1} of same length;
3. \mathcal{B} chooses a random bit $\sigma \sim \mathcal{U}_{\{0,1\}}$ and computes the challenge cyphertext $c \leftarrow \operatorname{Enc}\left(m_{\sigma}, s_{k}\right)$;
4. \mathcal{A} is then given c, and continues to have oracle access to $\operatorname{Enc}\left(\cdot, s_{k}\right)$; it must output a guess $\sigma^{\prime} \in\{0,1\} ;$
5. the output of the game is 1 is \mathcal{A} wins (i.e., if $\sigma=\sigma^{\prime}$), 0 otherwise.

The scheme is $C P A$-secure if for any feasible attacker $\mathcal{A}, \mathbb{P}\{\mathcal{A}$ wins $\} \leq \frac{1}{2}+\operatorname{negl}(n)$.
"Regev-like" cryptosystem We now describe a secret-key encryption scheme based on the LWE hardness assumption; hereafter, n, α, q are fixed as in the LWE setting.

Definition 3. Let $\mathcal{M}=\{0,1\}$ (messages are bits), and for key $s \in \mathcal{K}=\mathbb{Z}_{q}^{n}$, define the encryption algorithm ${ }^{2}$ Enc c_{s} as follows: on input $\sigma \in\{0,1\}$,

- choose $a \sim \mathcal{U}_{\mathbb{Z}_{q}^{n}}$ and $\rho \sim \Phi_{\alpha q}$
- output (a, b), where $b \stackrel{\text { def }}{=} \underbrace{\langle a, s\rangle+\rho}_{(*)}+\left\lceil\frac{q}{2}\right\rfloor \sigma$

Remark 2. information theoretically, getting encryptions of 0 is sufficient to determine s. However, with the LWE assumption, distinguishing between (*) and a uniform random bit is hard.

Theorem 4. If an attacker \mathcal{A} has advantage ε in guessing σ, it can be transformed into a DecisionLWE[n, $\alpha, q]$ distinguisher D with advantage $\varepsilon / 2$.

Proof. D will draw many samples $\left(a_{i}, b_{i}\right)$ from the oracle and use them to provide \mathcal{A} with "encryptions of 0 " and "encryptions of 1 ". Then, it chooses a random bit σ and another sample (a, b), and provides \mathcal{A} with the cyphertext $\left(a, b^{\prime} \stackrel{\text { def }}{=} b+\left\lceil\frac{q}{2}\right\rfloor \sigma\right)$. \mathcal{A} then guesses σ^{\prime}, and D outputs "uniform" if $\sigma \neq \sigma^{\prime}$, "LWE" otherwise.

Analysis we know that $\mathbb{P}_{\mathcal{A}}\left\{\sigma=\sigma^{\prime}\right\} \geq \frac{1}{2}+\varepsilon$, so when D has a LWE oracle it will output "LWE" w.p. at least $\frac{1}{2}+\varepsilon$.

When D has a uniform oracle, then the attacker receives a cyphertext $\left(a, b+\left\lceil\frac{q}{2}\right\rfloor \sigma\right)$ which is distributed u.a.r, regardless of σ - so $\mathbb{P}_{\mathcal{A}}\left\{\sigma=\sigma^{\prime}\right\} \leq \frac{1}{2}$.

Remark 3 (Decryption). The scheme is actually slightly modified (without affecting the previous proof) - namely, the key will be ($n+1$) bits long:

$$
s_{k} \stackrel{\text { def }}{=}(s \| 1)
$$

$$
c \stackrel{\text { def }}{=}(a \|-b) \quad \quad \text { (instead of }(a, b))
$$

Given this small modification, the decryption works by computing $-\left\langle s_{k}, c\right\rangle=\left\lceil\frac{q}{2}\right\rfloor \sigma+\rho$, and outputting 1 if this quantity is closer to $\frac{q}{2}$ than to 0 , and 0 otherwise. This succeeds w.h.p (over the draw of ρ in the encryption).
Remark 4 (Additive homomorphism). Note that if c_{1} encrypts σ_{1} and c_{2} encrypts σ_{2}, then $c_{1}+c_{2}$ $\bmod q$ decrypts to $\sigma_{1} \oplus \sigma_{2}$ (as long as the errors ρ_{1}, ρ_{2} were not too large). Thus, albeit $c_{1}+c_{2}$ might not be a valid cyphertext (not exactly distributed according to the output of Enc_{s}, as the errors are also summed), we do get what is called additive homomorphism "for free".

[^1]
References

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, STOC '05, pages 84-93, New York, NY, USA, 2005. ACM.
[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In Proceedings of the 41st annual ACM symposium on Theory of computing, STOC '09, pages 333-342, New York, NY, USA, 2009. ACM.

[^0]: ${ }^{1}$ In which case the second component b belongs to $\mathbb{R}_{q}=\mathbb{R} / \mathbb{Z}_{q}=[0, q)$ instead of \mathbb{Z}_{q}, and the modulo is defined similarly as in the discrete case. In general, all the results below still hold for $b \in \mathbb{R}_{q}$.

[^1]: ${ }^{2}$ The decryption algorithm will be described shortly after.

