
Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin

Learning with Errors (LWE)
February 26, 2013 Scribe: Clément Canonne

1 Learning with Errors (LWE) [Reg05]

Parameters and Setting. We have three parameters:

– n (security parameter)
– α = 1

poly(n) (noise parameter)

– q = Ω(poly(n)), sometimes exponential in n (modulus)

For a fixed s ∈ Znq , define the distribution

LWEs
def
=
{

(a, b) ∈ Znq × Zq
∣∣∣ a ∼ UZn

q
, ρ ∼ Φαq, b

def
= 〈s, a〉+ ρ mod q

}
(1)

where Φαq is a distribution with “good” properties (for instance a continuous1 gaussian N (0, αq)).

1.1 Computational problems

Definition 1 (Search problem). In SearchLWE[n, α, q], the goal is, given oracle access to LWEs for
some fixed s ∼ UZn

q
, to find and output s.

Definition 2 (Decision problem). In DecisionLWE[n, α, q], given oracle access to some oracle O
along with the promise that it either outputs samples (a) from LWEs (for some fixed s ∼ UZn

q
) or

(b) drawn uniformly at random in Znq ×Zq, the goal is to decide which one of these two cases hold.

A distinguisher D for LWEs is said to have advantage ε if |PLWEs {D = 1 } − PU {D = 1 }| = ε.

Theorem 1. Given a distinguisher D for DecisionLWE[n, α, q] with advantage ε, one can obtain a
D′ that, for every s distinguishes LWEs from uniform with advantage 1 − e−n and runs in time
poly(n, 1/ε).

Proof. For any fixed r ∈ Znq , consider the mapping ψr : (a, b) ∈ Znq ×Zq 7→ (a, b+ 〈a, r〉) ∈ Znq ×Zq.
It is easy to check that if (a, b) ∼ LWEs, then ψr(a, b) ∼ LWEs+r; while if (a, b) ∼ U , then so does
ψr(a, b).

Reduction (distinguisher D′)

1. Use sampling to find a threshold τ such that PLWEs {D = 1 } ≥ τ+ ε
4 and PU {D = 1 } ≤ τ− ε

4 .

2. Repeat N = poly(n, 1/ε) times:

(a) draw r ∼ UZn
q
;

(b) run D, answering each query by drawing (a, b) from the oracle and giving ψr(a, b) to D;

(c) record the final decision of D as a vote vi ∈ {0, 1}.

3. return 1 if 1
N

∑N
i=1 vi > τ , and 0 otherwise.

1In which case the second component b belongs to Rq = R/Zq = [0, q) instead of Zq, and the modulo is defined
similarly as in the discrete case. In general, all the results below still hold for b ∈ Rq.

1

Analysis We deal here with the case where the oracle answers according to LWEs for an arbitrary
s; the uniform distribution case is similar.

Since ∀i ∈ [N], P{ vi = 1 } ≥ τ+ ε
4 , an (additive) Chernoff bound yields that P

{
1
N

∑N
i=1 vi ≤ τ

}
≤ e−n,

as long as N = Ω
(
n
ε2

)
.

Theorem 2. Given a distinguisher D for DecisionLWE[n, α, q] with advantage 1 − negl(n)/q, one
can construct a solver S for SearchLWE[n, α, q] that succeeds w.p. 1 − negl(n) and runs in time
q · poly(n).

Proof. For i ∈ [n] and κ, γ ∈ Zq, consider the transformation

ϕi,κ,γ : (a, b) ∈ Znq × Zq 7→ (a+ γei︸ ︷︷ ︸
a′

, b+ γκ︸ ︷︷ ︸
b′

) ∈ Znq × Zq

where ei
def
= (0, . . . , 0, 1, 0, . . . , 0).

• if b =
∑n

j=1 sjaj + ρ and si = κ, then b′ =
∑n

j=1 sjaj + γκ+ ρ =
∑n

j=1 sja
′
j + ρ

• if b =
∑n

j=1 sjaj + ρ and si = κ′ 6= κ, then b′ =
∑n

j=1 sja
′
j + ρ+ γ(κ− κ′)︸ ︷︷ ︸

u.a.r. if γ∼U

so, for any fixed i and κ, choosing γ u.a.r. changes the distribution of (a, b) to ϕi,κ,γ(a, b) according
to:

LWEs 7−→
si=κ

LWEs

LWEs 7−→
si 6=κ
U

The idea is then to try for each possible values of i, κ, repeating for each couple poly(n) times the
following: draw γ u.a.r. each time, and call D to detect if the current simulated oracle is uniform
or not. If not, then the ith component of s has been found – it is κ.

Remark 1. Theorem 2 has been extended to other classes of moduli ([Pei09]): if q =
∏`
j=1 qj where

each qj is poly(n), and all are distinct primes, the resulting solver can run in time poly(n, q1 + · · ·+ q`).
Instead of running in time proportional to q (which may be exponential), the algorithm will run in
time proportional to

∑
qi (which is much smaller, maybe even polynomial).

Theorem 3. DecisionLWE[n, α, q] remains hard even when s is drawn from the error distribution,
that is if s ∼ dΦαqc mod q.

Proof. We show that a distinguisher D for the error distribution can be turned into a distinguisher
D′ for uniform.

2

Description of D′

1. choose n samples (ai, bi)i∈[n] according to LWEs (recall that s ∼ UZn
q
), and consider the matrix

A
def
=
(
a1|. . .|an

)
(assume that A is invertible)

2. Set b
def
= (b1, . . . , bn) (so that we have b = ATs + x for some x ∼ dΦαqc), and define the

mapping

fA,b : (α, β) ∈ Znq × Zq 7→
(
−(A−1)

T
α︸ ︷︷ ︸

α′

, β −
〈

(A−1)
T
α, b
〉

︸ ︷︷ ︸
β′

)

3. Run D to distinguish LWEx from uniform, answering the queries by sampling (α, β) from the
oracle and providing D with fA,b(α, β).

Analysis

• if (α, β) ∼ UZn
q×Zq , then so is fA,b(α, β) for every A (full-rank);

• if (α, β) ∼ LWEs, it holds that

β′ = β −
〈

(A−1)
T
α, b
〉

= (〈α, s〉+ ρ)−
〈
−α′, ATs+ x

〉
= 〈α, s〉+ ρ−

〈
(A−1)

T
α,ATs

〉
+
〈
α′, x

〉
= �

��〈α, s〉+ ρ−�
��〈α, s〉+

〈
α′, x

〉
=
〈
α′, x

〉
+ ρ

with ρ ∼ dΦαqc; and therefore (α′, β′) ∼ LWEx.

2 Application: Secret-Key encryption scheme

Recall that a public-key encryption scheme is a tuple of (possibly randomized) algorithms (Keygen,Enc,Dec)
working as below – n being a security parameter given as input to the generation algorithm:

sk ← Keygenn, c← Enc(m, sk), m← Dec(c, sk)

where sk ∈ K (key space), m ∈M (message space), c ∈ C (cyphertext space), and such that

∀sk ∈ K,m ∈M, c ∈ C, P(Dec(c, sk) = m | Enc(m, sk) = c) = 1 (Correctness guarantee)

Security against Chosen-Plaintext Attacks (CPA) This is a “game” between and attacker
A and a challenger B, where, for an arbitrary fixed n,

1. A (secret) key sk is generated by B, running Keygenn;

2. A is given 1n as input, and oracle access to Enc(·, sk), and must output a pair of messages
m0,m1 of same length;

3. B chooses a random bit σ ∼ U{0,1} and computes the challenge cyphertext c← Enc(mσ, sk);

3

4. A is then given c, and continues to have oracle access to Enc(·, sk); it must output a guess
σ′ ∈ {0, 1};

5. the output of the game is 1 is A wins (i.e., if σ = σ′), 0 otherwise.

The scheme is CPA-secure if for any feasible attacker A, P{A wins } ≤ 1
2 + negl(n).

“Regev-like” cryptosystem We now describe a secret-key encryption scheme based on the
LWE hardness assumption; hereafter, n, α, q are fixed as in the LWE setting.

Definition 3. Let M = {0, 1} (messages are bits), and for key s ∈ K = Znq , define the encryption
algorithm2 Encs as follows: on input σ ∈ {0, 1},

• choose a ∼ UZn
q

and ρ ∼ Φαq

• output (a, b), where b
def
= 〈a, s〉+ ρ︸ ︷︷ ︸

(∗)

+
⌈ q
2

⌋
σ

Remark 2. information theoretically, getting encryptions of 0 is sufficient to determine s. However,
with the LWE assumption, distinguishing between (∗) and a uniform random bit is hard.

Theorem 4. If an attacker A has advantage ε in guessing σ, it can be transformed into a DecisionLWE[n, α, q]
distinguisher D with advantage ε/2.

Proof. D will draw many samples (ai, bi) from the oracle and use them to provide A with “encryp-
tions of 0” and “encryptions of 1”. Then, it chooses a random bit σ and another sample (a, b), and

provides A with the cyphertext (a, b′
def
= b +

⌈ q
2

⌋
σ). A then guesses σ′, and D outputs “uniform”

if σ 6= σ′, “LWE” otherwise.

Analysis we know that PA {σ = σ′ } ≥ 1
2 + ε, so when D has a LWE oracle it will output “LWE”

w.p. at least 1
2 + ε.

When D has a uniform oracle, then the attacker receives a cyphertext (a, b +
⌈ q
2

⌋
σ) which is

distributed u.a.r, regardless of σ – so PA {σ = σ′ } ≤ 1
2 .

Remark 3 (Decryption). The scheme is actually slightly modified (without affecting the previous
proof) – namely, the key will be (n+ 1) bits long:

sk
def
= (s||1)

c
def
= (a|| − b) (instead of (a, b))

Given this small modification, the decryption works by computing −〈sk, c〉 =
⌈ q
2

⌋
σ + ρ, and

outputting 1 if this quantity is closer to q
2 than to 0, and 0 otherwise. This succeeds w.h.p (over

the draw of ρ in the encryption).

Remark 4 (Additive homomorphism). Note that if c1 encrypts σ1 and c2 encrypts σ2, then c1 + c2
mod q decrypts to σ1 ⊕ σ2 (as long as the errors ρ1, ρ2 were not too large). Thus, albeit c1 + c2
might not be a valid cyphertext (not exactly distributed according to the output of Encs, as the
errors are also summed), we do get what is called additive homomorphism “for free”.

2The decryption algorithm will be described shortly after.

4

References

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, STOC
’05, pages 84–93, New York, NY, USA, 2005. ACM.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Proceedings of the 41st annual ACM symposium on Theory of com-
puting, STOC ’09, pages 333–342, New York, NY, USA, 2009. ACM.

5

	Learning with Errors (LWE) Regev:2005
	Computational problems

	Application: Secret-Key encryption scheme

