
Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin

Ideal Lattices and NTRU
April 23-30, 2013 Scribe: Kina Winoto

1 Algebraic Background (Reminders)

Definition 1. A commutative ring with unity (R,+,×) satisfies the following properties:

• (R,+) is an abelian group;

• (R,×) is associative, commutative and has unity;

• × distributes over +

(Similar to a field, except not every non-zero element has an inverse)

Examples: Z,Z [x]

Definition 2. An ideal I ⊆ R is a subset that satisfies:

• (I,+) is a subgroup of (R,+);

• I is closed under multiplication by R (i× r ∈ I ∀i ∈ I, r ∈ R).

Definition 3. We say that an ideal is finitely generated if there is a finite set of generators
{i1, . . . , it} s.t. I = {

∑
rj × ij} = 〈i1, . . . , it〉.

Definition 4. For a ring R and an ideal I we can define the quotient ring to be the set Q = R/I =
{[r]I : r ∈ R} where [r]I = {r + i : i ∈ I} .

Examples:
Z5 = Z/5Z, Z [x] /

〈
x4 + 1

〉
, Z5 [x] /

〈
x4 + 1

〉
= Z [x] /

〈
5, x4 + 1

〉
.

We will mostly be interested in rings of the forms Z [x] / 〈f〉 and Zp [x] / 〈f〉 for some monic
polynomial f . Note that if f is not irreducible, then Z [x] / 〈f〉 has zero divisors: a × b = f ,
0 < deg a, b < deg f , therefore a, b ∈ Z [x] / 〈f〉. Thus we will mostly be interested in quotient rings
over irreducible polynomials.

We can represent an element of R = Z [x] / 〈f〉 by the vector of its coefficients:

(deg ≤ n− 1) -polynomial g ∈ R ⇐⇒ vector ~g ∈ Zn

additive subgroup of R ⇐⇒ lattice in Zn

Other representations are also possible, but we do not deal with them here.

Definition 5. A lattice Λ ∈ Zn is an ideal lattice if there exist a ring R = Z [x] / 〈f〉 and an ideal
I ⊆ R s.t. Λ is associated with I.

For example:

Λ =
{

coeff. vector of g () | ∃h () s.t. g (x) = h (x)×
(
x2 + 5

)
(mod

(
x4 + 1, 8

)
)
}
⊂ Z4

is associated with the ideal 〈
x2 + 5

〉
⊂ Z8[X]/

〈
x4 + 1

〉
1

Lemma 1. Z [X] is a Unique Factorization Domain (UFD)

Proof. Follows since (a) Z is a UFD; and (b) if a ring R is a UFD then so is R [X].

Corollary 1. If f ∈ Z [X] is irreducible and f | g × h then f | g or f | h.

Lemma 2. If f is irreducible and I ⊆ Z [X] / 〈f〉 is a non-zero ideal then ΛI is a full-rank lattice
in Zn.

Proof. Let R = Z[X]/〈f〉 and I ⊆ R and let g ∈ I be a non-zero element. We will show that
the coefficient vectors of

{
g, X × g , . . . , Xn−1 × g

}
⊂ R are linearly independent. Assume

∑
hi ·

(Xi × g(X)) = 0 ∈ R, and we show that the hi’s must be all be zeros. Since the coefficient vectors
of Xi × g(X) are all integer vectors, then we can assume w.l.o.g. that the hi’s are all rational
coefficients, and by multiplying by the common denominator we can assume that they are in fact
integers.

Denote h(X) =
∑
hiX

i. Then h× g = 0 in the ring, (which is the same as f | h× g, since we
are working modulo f). Thus by the previous corollary, and since g 6= 0, we have that h = 0 in the
ring, so hi = 0 for all i.

Definition 6. For any polynomial f we define:

θ (f) = max
a∈Z[X]/〈f〉, i<deg f

∥∥Xi × a mod f
∥∥
∞

‖a‖∞
For any two polynomials a, b ∈ Z [X] / 〈f〉:

‖a× b mod f‖∞ ≤ ‖a‖∞ · ‖b‖∞ · nθ (f)

Lemma 3. If f is an n-degree irreducible polynomial and I ⊆ Z [X] / 〈f〉 is a non-zero ideal then

λ∞n (ΛI) ≤ λ∞1 (ΛI) · θ (f)

Proof. Let ~g be the shortest vector in Λ, and g (X) the corresponding polynomial. Then the vectors
that correspond to

{
gi (X) = Xi × g (X)

}
are linearly independent. Clearly,

λ∞n (ΛI) ≤
n−1
max
i=0
‖~gi‖∞ ≤ ‖~g‖∞ · θ (f) = λ∞1 (ΛI) · θ (f)

2 The Shortest Vector Problem in Ideal Lattices

Just as in any lattice, we can ask how easy / hard it is to find a (good approximaiton of) the
shortest vector in the lattice. Note that if θ (f) is small, then by the previous lemma estimating
the size of the smallest vector is easy:

1√
n
λ1 (Λ) ≤ det (Λ)

1/n

≤ λn (Λ)

≤
√
nλ∞n (Λ)

≤
√
nλ∞1 (Λ) · θ (f)

≤
√
nλ1 (Λ) · θ (f)

Still, finding the shortest vectors themselves seems hard. In particular, we don’t know of methods
that do much better on ideal lattices than on regular lattices. (Sometimes we can do slightly better,
for example in [GS02] they are able to reduce an ideal lattice problem in dimension 2n to a non-ideal
lattice problem in dimension n.)

2

2.1 The f-SVPγ Problem

For a family of polynomials f = {fn} (with deg fn = n): Given a lattice ΛI corresponding to ideal
I ⊆ Z [x] / 〈fn〉, find a non-zero vector ~v ∈ ΛI s.t. ‖~v‖ ≤ γλ1 (n). (Can also be stated with l∞ or
any other lp norm).

Below we will typically use fn (x) = xn + 1, where n is a power of 2. Thus fn (x) is irreducible.
Also, θ (f) = 1 because:

• For any g (x) with coefficient vector (g1, g2, . . . , gn), we have that the coefficient vector of
x× g (x) is (−gn, g1, . . . , gn−1).

• This means that lattices over Z [x] / 〈fn〉 are “almost circular”: If (vi) ∈ ΛI , then also(
sign (i− k − 1) · vi−k (mod n)

)
∈ ΛI .

3 The NTRU Cryptosystem [HPS98]

Below we describe a variant similar to [SS11] and [LTV12]. This variant is also somewhat similar
to Regev’s crypto system with dimension 1, but it uses LSB to encode the message rather MSB.
Namely, whereas in Regev’s scheme we recover upon decryption something like small-error + m q

2 ,
in NTRU we get 2 · small-error +m. (We can easily get a variant of Regev with LSB encoding, but
getting a variant of NTRU with MSB encoding is a little tricky.) This NTRU variant is defined as
follows:

Parameters:

• n - security parameter

• q - modulus

• error distribution

We assume that n is power of two so xn + 1 is irreducible, we consider R = Z[X]/(xn + 1) and
Rq = R(mod q), i.e. Rq = Zq[X]/(xn + 1). We assume that q is odd (and sometimes it is even
convenient to assume q = 1 (mod 2n)).

Key Generation. Choose at random the coefficients for the polynomials g, f ′ from the error
distribution (so coefficients are small): ~g, ~f ′ ← DZn,σ. (Note that ~g, ~f ′ are now the coefficient
vectors of functions g, f ′.) Set f = 2f ′ + 1 so that f is small and f = 1 (mod 2). If f is not
irreducible in Rq, then try again. (If f was random in Rq, it would have been invertible with
probability at least 1 − n

q . For small f this still holds with high probability, see proof in [SS11].
The public key is h = g/f ∈ Rq and the secret key is f .

Note the analogy between this cryptosystem and Regev’s: In Regev’s system, we have public
key A, secret key ~s, and sA=small. In NTRU, we have public key h, secret key f , and f ×h = g =
small.

Enccypth(m ∈ R2). Choose a small element ~s← DZn,σ. The ciphertext is c = 2s×h+m mod q.

Decryptf (c). Set a = f×c mod q, and output a mod 2. (In fact this is exactly the same procedure
as in the LSB-variant of Regev’s cryptosustem, except product is in the ring Rq.)

3

Correctness. Since s, g,m, f are all small then a = 2s × g + m × f holds also in R, not just in
Rq. Hence a = m× f = m× (2f ′ + 1) = m (mod 2).

Security. We don’t have much to say about the security of the variant above, except that we do
not know how to break it. (We also do not know how to reduce its security to “better known”
hardness assumptions.)

Note, however, that decryption works even if we encrypt using c = 2(s×h+ e) +m, for a small
e. In this case we would get f × c = 2s× g+ 2e× f + f ×m = m (mod 2). This version is secure if
(h, s× h+ e) is pseudorandom, which is similar to “ring-LWE” except h is not uniformly random.

• But if you also assume that h = g/f itself is pseudorandom (this is called the “NTRU
assumption”), then you get security. So “NTRU Assumption + ring-LWE” ⇒ the NTRU
cryptosystem is secure.

[SS11] proved that if σ > q
1
2
+ε (and also n is a power of two and q = 1 mod 2n), then choosing f, g

– where ~f,~g ← DZn,σ – to be invertible in Rq and setting h = g/f , h is close to uniform among all
invertible elements. Hence with these parameters you get security under ring-LWE by itself. (We
note that these parameters will not be enough to get homomorphic encryption, though.)

3.1 Homomorphic NTRU

Note that c is a valid encryption of m if f × c = 2e + m for small e. This is the same as the
expression you get for the LSB variant of Regev’s scheme, and indeed you can get a homomorphic
scheme from NTRU in the same way that you do for Regev’s cryptosystem. As usual, additive
homomorphism is easy: If f×ci = 2ei+mi , i = 1, 2 then f×(c1+c2) = 2(e1+e2+e′)+(m1⊕m2).
Also for multiplicative homomorphism we have

f2 × (c1 × c2) = (2e1 +m1)(2e2 +m2)

= 2(2e1e2 +m1e2 + e1m2) +m1m2 = 2e′′ +m1m2

The noise doubles on addition, gets squared on multiplication. This is worse than what we had
before, where the noise doubles on addition and ×poly(n) for multiplication. It means that we can
only support depth Ω(log log q). This is an artifact of the LSB-encoding method (we have the same
issue with the LSB variant of Regev’s crytosystem), and we will see how to handle it shortly.

Note also that we do not have the dimension explosion that we had with tensor products in
Regev’s cryptosystem. The dimension stays 1, but the size of the key grows: f, f2, f4, This
too limits the applicability to depth: Ω(log log q). Controlling the secret key growth is done using
key-switching. For the other problem we use a different trick called “modulus switching”.

Key Switching. We add to the public key an “encryption of f2 under f”, namely w such that
w × f = 2e+ qf2 (mod Q), for Q = q2. Then, given c∗ such that c∗ × f2 = 2e∗ +m (mod q), we
set c′ = c× w mod Q. Therefore:

c′ × f = c∗ × w × f = c∗ × (2e+ qf2)

= (2c∗ × e) + (qc∗ × f2) = (2c∗ × e) + q(2e∗ +m+ kq)

= 2(c∗ × e+ qe∗) + qm+ kQ = 2

(
c∗ × e+ qe∗ +

q − 1

2
m

)
+m (mod Q)

Call
(
c∗ × e+ qe∗ + q−1

2 m
)

= e′, where we note that ‖e′‖ � Q since Q = q2, ‖c∗‖ ∼ q, and

‖e‖, ‖e∗‖, ‖m‖ � q. So we now have a ciphertext c′ valid relative to f and Q.

4

Modulus switching. Given c′ such that c′× f = 2e′+m (mod Q) with ‖e′‖ � Q and ‖f‖ � q,
we set c′′ = round(c′ · qQ), where rounding is done so c′′ = c′ (mod 2).

Note that c′′ = c′ · qQ + ε where ε is the rounding error, ‖ε‖ ≤ 1. Let k′ be the factor of Q,

namely c′ × f − kQ = (c′ × f mod Q) = 2e′ +m. Then we have

c′′ × f − kq = (
q

Q
c′ × f + ε× f)− q

Q
· kQ =

q

Q
(c′ × f − kQ) + ε× f =

q

Q
(

�Q︷ ︸︸ ︷
2e′ +m)︸ ︷︷ ︸
�q

+ ε× f︸ ︷︷ ︸
�q

Hence ‖c′′× f − kq‖ � q and therefore c′′× f − kq = (c′′× f mod q). But c′′ = c′ (mod 2) and also
q = Q = 1 (mod 2), so c′′ × f − kq = c′ × f − kQ (mod 2). We conclude that (c′′ × f mod q) =
(c′ × f mod Q) = m (mod 2). Hence c′′ × f = 2e′′ +m, where ‖2e′′ +m‖ ≤ q

Q‖2e
′ +m‖+ ‖ε× f‖.

Note: We did not use here that Q = q2; we can modulo switch to any other q′ and the “noise
term” decreases from ‖2e′ + m‖ to ≤ q′

Q‖2e
′
m‖ + ‖ε × f‖. This can be used to control the noise:

start from qi, then after every multiplication switch from qi to qi+1 � qi, decreasing the noise.

Multi-key Homomorphic Encryption [LTV12]. Suppose we have two ciphertexts encrypted
relative to two different keys (and the same q): ci × fi = 2ei + mi (and recall that fi = 2f ′i + 1),
then clearly we get:

(c1 × c2)× f1f2 = 2(2e1e2 + e1m2 + e2m1) +m1m2

But also for addition we get:

(c1 + c2)× f1f2 = c1 × f1 × f2 + c2 × f2 × f1
= (2e1 +m1)(2f

′
2 + 1) + (2e2 +m2)(2f

′
1 + 1)

= 2(2e1f
′
2 +m1f

′
2 + 2e2f

′
1 +m2f

′
1 + e2) +m1 +m2

= 2e′ + (m1 ⊕m2)

So we can add/multiply cipher texts relative to different keys, then decrypt using the products of
the keys.

Note that if we have a complicated circuit, we can get ciphertexts relative to keys like f31 × f2×
f53 We can reduce the degree in each fi separately to 1, by putting in the public key the terms
w[f2i ⇒ fi], and reduce everything back to a ciphertext relative to f1 × f2 × ...× ft, but we cannot
reduce anymore without interaction between the key-holders.

References

[GS02] Craig Gentry and Michael Szydlo, Cryptanalysis of the revised ntru signature scheme,
Advances in Cryptology - EUROCRYPT’02, Lecture Notes in Computer Science, vol.
2332, Springer, 2002, pp. 299–320.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and JosephH. Silverman, Ntru: A ring-based public key cryp-
tosystem, Algorithmic Number Theory (JoeP. Buhler, ed.), Lecture Notes in Computer
Science, vol. 1423, Springer Berlin Heidelberg, 1998, pp. 267–288.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan, On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption, Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC’12, ACM, 2012, pp. 1219–1234.

5

[SS11] Damien Stehlé and Ron Steinfeld, Making ntru as secure as worst-case problems over ideal
lattices, Advances in Cryptology - EUROCRYPT’11, Lecture Notes in Computer Science,
vol. 6632, Springer, 2011, pp. 27–47.

6

