LWE-based Homomorphic Encryption

April 12-16, 2013
Scribe: Kina Winoto, Clément Canonne
We are going to describe the LWE-based homomorphic encryption scheme based on the works from Gen09, BV11, BGV12, Bra12.

Parameters : Let n^{\prime} be the security parameter, and we have $m=\operatorname{poly}\left(n^{\prime}\right), q>\operatorname{super}-\operatorname{poly}\left(n^{\prime}\right)$, and error bound $\sigma=\operatorname{poly}\left(n^{\prime}\right)$. In general we think of q as "large" and all the other parameters as "small". Recall the following variant of the Regev LWE-based cryptosystem:

Key-Generation. Choose at random $A^{\prime} \in_{R} \mathbb{Z}_{q}^{n^{\prime} \times m}$ (random A^{\prime}), $\overrightarrow{s^{\prime}} \leftarrow \mathcal{D}_{\mathbb{Z}^{n^{\prime}, \sigma}}$ (small $\left.\vec{s}^{\prime}\right)$, and $\overrightarrow{e^{\prime}} \leftarrow \mathcal{D}_{\mathbb{Z}^{m}, \sigma}$ (small $\left.\vec{e}^{\prime}\right)$. Set $\overrightarrow{a^{\prime}}=\overrightarrow{s^{\prime}} A^{\prime}+\overrightarrow{e^{\prime}} \bmod q$. We denote $n=n^{\prime}+1$,

$$
A=\binom{A^{\prime}}{\vec{a}^{\prime}} \in \mathbb{Z}_{q}^{n \times m}
$$

and $\vec{s}=\left(\vec{s}^{\prime} \mid-1\right) \in \mathbb{Z}_{q}^{n}$. The public key is $p k=A$ and the secret key if $s k=\vec{s}$. Note that both \vec{s} and $\vec{s} A \bmod q=\overrightarrow{e^{\prime}}$ are short vectors.
$\operatorname{Encrypt}_{A}(b \in\{0,1\})$. Denote $\vec{b}=\left\lfloor\frac{q}{2}\right\rfloor \cdot(0 \ldots 0 b)^{T} \in \mathbb{Z}_{q}^{m}$. Choose $\vec{r} \leftarrow \mathcal{D}_{\mathbb{Z}^{m}, \sigma}$, and output the ciphertext $\vec{c}=A \vec{r}+\vec{b} \in \mathbb{Z}_{q}^{n}$.
$\operatorname{Decrypt}_{\vec{s}}(\vec{c})$. Compute the inner-product $d=\langle\vec{s}, \vec{c}\rangle \bmod q$. Output 1 if $|d|>\frac{q}{4}$ and 0 if $|d|<\frac{q}{4}$.
Correctness. We note that $\langle\vec{s}, \vec{c}\rangle=\vec{s}(A \vec{r}+\vec{b})=(\vec{s} A) \vec{r}+\langle\vec{s}, \vec{b}\rangle=\langle\vec{e}, \vec{r}\rangle+\langle\vec{s}, \vec{b}\rangle(\bmod q)$. Since \vec{e} and \vec{r} were chosen from an error distribution then they are both small and hence $|\langle\vec{e}, \vec{r}\rangle| \ll q$. At the same time $\langle\vec{s}, \vec{b}\rangle=-b\left\lfloor\frac{q}{2}\right\rfloor$, hence $\langle\vec{e}, \vec{r}\rangle+\langle\vec{s}, \vec{b}\rangle$ is closer to 0 when $b=0$ and closer to $q / 2$ when $b=1$.

Security. If A was truly random then $A \vec{r}$ was close to random, even given A (because $\vec{r} \mapsto A \vec{r}$ is a good randomness extractor with seed A, and \vec{r} has high min-entropy). Hence if A was random then the ciphertext would have no information on b, so guessing b implies distinguishing A from a random matrix, which is hard under the decision LWE assumption.

1 Homomorphic Encryption From Regev's Cryptosystem

Let $\vec{c}_{i}, i=1,2$ be two ciphertexts where \vec{c}_{i} decrypts to $b_{i} \in\{0,1\}$. Namely, we have

$$
\left\langle s, c_{i}\right\rangle=\operatorname{noise}_{i}+b_{i}\lfloor q / 2\rfloor \quad(\bmod q)
$$

for a small \mid noise $_{i} \mid \ll q$. It is easy to see that the scheme is additively homomorphic, if we set $\vec{c}=\overrightarrow{c_{1}}+\overrightarrow{c_{2}} \bmod q$ we have

$$
\begin{aligned}
\langle\vec{s}, \vec{c}\rangle & =\left(\text { noise }_{1}+b_{1}\left\lfloor\frac{q}{2}\right\rfloor\right)+\left(\text { noise }_{2}+b_{2}\left\lfloor\frac{q}{2}\right\rfloor\right) \\
& =\text { noise }_{1}+\text { noise }_{2}+\text { rounding-error }+\left(b_{1} \oplus b_{2}\right)\left\lfloor\frac{q}{2}\right\rfloor
\end{aligned}
$$

This as long as the accumulated noise remain below $q / 4$, we get have a valid encryption of $b_{1} \oplus b_{2}$.

1.1 Multiplicative Homomorphism

Tensor products. Recall the tensor (outer) product between two vectors: if $\vec{a}=\left\langle a_{1}, \ldots, a_{s}\right\rangle \in \mathbb{Z}^{s}$ and $\vec{b}=\left\langle b_{1}, \ldots, b_{t}\right\rangle \in \mathbb{Z}^{t}$, then $\vec{a} \otimes \vec{b}=\left(a_{i} b_{j}\right)_{(i, j) \in[s] \times[t]} \in \mathbb{Z}^{s t}$. Furthermore, we have the mixed product property:

$$
\begin{equation*}
\langle\vec{a}, \vec{b}\rangle \cdot\langle\vec{c}, \vec{d}\rangle=\langle\vec{a} \otimes \vec{c}, \vec{b} \otimes \vec{d}\rangle \tag{1}
\end{equation*}
$$

Multiplication, step 1 For \vec{c}_{i} valid encryption of $b_{i}(i \in\{1,2\})$, define $\vec{c}^{*} \stackrel{\text { def }}{=} \vec{c}_{1} \otimes \vec{c}_{2}$ and $\vec{s}^{*} \stackrel{\text { def }}{=} \vec{s} \otimes \vec{s}$. Then,

$$
\begin{aligned}
\left\langle\vec{s}^{*}, \frac{2}{q} \vec{c}^{*}\right\rangle & =\frac{2}{q}\left\langle\vec{s}, \vec{c}_{1}\right\rangle \cdot\left\langle\vec{s}, \vec{c}_{2}\right\rangle=\frac{2}{q}\left(b_{1} \cdot \frac{q}{2}+e_{1}+k_{1} q\right)\left(b_{2} \cdot \frac{q}{2}+e_{2}+k_{2} q\right) \\
& =b_{1} b_{2} \cdot \frac{q}{2}+\underbrace{\left(2 k_{1}+b_{1}\right) e_{1}+\left(2 k_{2}+b_{2}\right) e_{2}+\frac{2 e_{1} e_{2}}{q}}_{e^{\prime \prime}}+\underbrace{\left(2 k_{1} k_{2}+k_{1} b_{2}+k_{2} b_{1}\right)}_{k^{\prime \prime}} \cdot q .
\end{aligned}
$$

(Note however that $\frac{2}{q} \vec{c}^{*}$ is no longer an integer vector, but one with rational entries.)
Since the k_{i} 's are small, $e^{\prime \prime}$ is only a small factor larger than $e_{1}+e_{2}\left(\right.$ certainly $\left.\left|e^{\prime \prime}\right|<n^{3}\left(\left|e_{1}\right|+\left|e_{2}\right|\right)\right)$; to get a valid ciphertext, we round \vec{c}^{*}. Let $\vec{\delta}$ be the rounding error:

$$
\left\langle\vec{s}^{*},\left\lceil\frac{2}{q} \vec{c}^{*}\right\rfloor\right\rangle=\left\langle\vec{s}^{*}, \frac{2}{q} \vec{c}^{*}\right\rangle+\left\langle\vec{s}^{*}, \delta\right\rangle=b_{1} b_{2} \cdot \frac{q}{2}+e^{\prime \prime}+k^{\prime \prime} \cdot q+\left\langle\vec{s}^{*}, \delta\right\rangle
$$

Now, as $\vec{\delta}$ is small $\left(\|\vec{\delta}\|_{\infty}<1 / 2\right)$ and $\left\|\vec{s}^{*}\right\|_{\infty}=\|\vec{s} \otimes \vec{s}\|_{\infty}=\|\vec{s}\|_{\infty}^{2}$, the extra term $\left\langle\vec{s}^{*}, \delta\right\rangle$ is small; reducing modulo q, we set

$$
\begin{equation*}
\vec{c}^{\prime \prime} \stackrel{\text { def }}{=}\left\lceil\frac{2}{q} \vec{c}^{*}\right\rfloor \quad \bmod q \tag{2}
\end{equation*}
$$

so that

$$
\left\langle\vec{s}^{*}, \vec{c}^{\prime \prime}\right\rangle=b_{1} b_{2} \cdot \frac{q}{2}+e^{*}+k^{*} \cdot q
$$

for $e^{*}=e^{\prime \prime}+\left\langle\vec{s}^{*}, \delta\right\rangle$. As before, $\left|\left\langle\vec{s}^{*}, \vec{c}^{\prime \prime}\right\rangle\right| \ll q^{2}$ (since \vec{s}^{*} is small and $\left\|\vec{c}^{\prime \prime}\right\|_{\infty}<q$) so $k^{*} \ll q$. Therefore, $\vec{c}^{\prime \prime}$ is a valid encryption of $b_{1} b_{2}$ relative to \vec{s}^{*} (but with squared dimension).
Remark 1. to compute $\vec{c}^{\prime \prime}$, we just used the two ciphertexts \vec{c}_{1}, \vec{c}_{2} : nothing leaked from b_{1}, b_{2}.
Multiplication, step 2 (reducing the dimension). The idea is to add to the public key a "gadget" that will allow us to translate the high-dimensional $\vec{c}^{\prime \prime}$ (wrt \vec{s}^{*}) back to a low-dimensional \vec{c} (wrt \vec{s}). Roughly, this gadget will be an encryption of \vec{s}^{*} under \vec{s}, but relative to a larger modulus $Q \stackrel{\text { def }}{=} q^{2}$: For every entry i of \vec{s}^{*}, we add to the public key a vector $\vec{w}_{i} \in \mathbb{Z}_{Q}^{n}$ s.t.

$$
\left\langle\vec{s}, \vec{w}_{i}\right\rangle=k_{i} Q+\vec{s}_{i}^{*} q+e_{i}
$$

with $e_{i} \ll q=\sqrt{Q}$. Putting these vectors together in a matrix, we get $W \in \mathbb{Z}_{Q}^{n \times n^{2}}$ with

$$
\begin{equation*}
\vec{s} W=Q \vec{k}+q \vec{s}^{*}+\vec{e} \tag{3}
\end{equation*}
$$

where $\vec{k}, \vec{e} \in \mathbb{Z}^{n^{2}}$ and $\|k\|_{\infty},\|e\|_{\infty} \ll q$. We next show how to convert any valid encryption of some bit b relative to \vec{s}^{*} (and q) into a valid encryption of b relative to \vec{s} (and q):

Input \vec{c}^{*} s.t. $\left\langle\vec{s}^{*}, \vec{c}^{*}\right\rangle=b \cdot \frac{q}{2}+k^{*} q+e^{*}\left(\right.$ with $\left.\left|e^{*}\right|,\left|k^{*}\right| \ll q\right)$.

Output $\vec{c} \stackrel{\text { def }}{=}\left[\frac{1}{q} \vec{c}^{*} W^{\mathrm{T}}\right\rfloor \bmod q$.
Correctness: let $\vec{\delta}$ and $q \vec{k}^{\prime}$ denote respectively the rounding error and the " $\bmod q$ term".

$$
\begin{aligned}
\langle\vec{s}, \vec{c}\rangle & =\left\langle\vec{s}, \frac{1}{q} \vec{c}^{*} W^{\mathrm{T}}-\vec{\delta}-q \vec{k}^{\prime}\right\rangle=\frac{1}{q} \vec{s} W\left(\vec{c}^{*}\right)^{\mathrm{T}}-\langle\vec{s}, \vec{\delta}\rangle-q\left\langle\vec{s}, \vec{k}^{\prime}\right\rangle \\
& \stackrel{\text { Eq.(3) }}{=} \frac{1}{q}\left\langle q^{2} \vec{k}+q \vec{s}^{*}+\vec{e}, \vec{c}^{*}\right\rangle-\langle\vec{s}, \vec{\delta}\rangle-q\left\langle\vec{s}, \vec{k}^{\prime}\right\rangle \\
& =\left\langle\vec{s}^{*}, \vec{c}^{*}\right\rangle+q\left\langle\vec{k}, \vec{c}^{*}\right\rangle-q\left\langle\vec{s}, \vec{k}^{\prime}\right\rangle+\frac{1}{q}\left\langle\vec{e}, \vec{c}^{*}\right\rangle-\langle\vec{s}, \vec{\delta}\rangle \\
& =b \cdot \frac{q}{2}+q \underbrace{\left(k^{*}+\left\langle\vec{k}, \vec{c}^{*}\right\rangle-\left\langle\vec{s}, \vec{k}^{\prime}\right\rangle\right)}_{\tilde{k}}+\underbrace{\left(e^{*}+\frac{1}{q}\left\langle\vec{e}, \vec{c}^{*}\right\rangle-\langle\vec{s}, \vec{\delta}\rangle\right)}_{\tilde{e}}
\end{aligned}
$$

where \tilde{e} is small (as a sum of three small terms); finally, since $\langle\vec{s}, \vec{c}\rangle=\tilde{k} q+b \cdot \frac{q}{2}+\tilde{e}$ with \tilde{e} small and \vec{s} small then $|\langle\vec{s}, \vec{c}\rangle| \ll Q=q^{2}$, so we also have $\tilde{k} \ll q$. Hence, \vec{c} is a valid encryption of b wrt. \vec{s} and q.

Parameters. We consider the "error" in the ciphertext to be the value $\langle\vec{s}, \vec{c}\rangle-q / 2 \bmod q$. The error grows with homomorphic operations, where for addition we have $|e| \simeq\left|e_{1}\right|+\left|e_{2}\right|$. For multiplication the noise grows a bit faster, and we have:

- $(\operatorname{step} 1)\left|e^{*}\right| \simeq\left(\left|e_{1}\right|+\left|e_{2}\right|\right) n^{3}$
- (step 2$)|\tilde{e}| \simeq\left|e^{*}\right|+O\left(n^{3}\right)$

We see that no matter what operation, the error grows by at most a polynomial factor. How does that propagate in the circuit?

At level i, we get an error which can be as big as $n^{3 i}$, and for correctness we require that the error at the output node be smaller than $\frac{q}{4}$. We thus need $q>4 n^{3 d}$, that is $\log q=\Omega(3 d \log n)$ (recall that the scheme also requires $q \gg \operatorname{poly}(n)$, and that for security one must have $q \leq 2^{o(n)}$ (so that LLL cannot be used to break it)). Furthermore, we need D-LWE to be hard even modulo $Q=q^{2}$; all taken into account, $n \geq \log ^{2} q$ (say) is sufficient.

Key-Switching security: we have to explain why adding the W matrix to the public key does not compromise security. At first glance,

$$
\vec{s} W=q \vec{s}^{*}+\vec{e} \quad \bmod Q
$$

looks like a LWE problem, but the reduction to LWE that we used for the original cryptosystem does not work, because \vec{s}^{*} is a function of \vec{s}. There are two common solutions to this issue:

- Solution 1: we can have a different secret key for each level i of the circuit, and encrypt \vec{s}_{i}^{*} wrt. \vec{s}_{i+1} (thus resolving the dependence, so that the reduction can be applied). The public key would contain all gadgets $W_{\vec{s}_{i}^{*} \rightarrow \vec{s}_{i+1}}$.
- Solution 2: define this as a new hardness assumption, the "circular security assumption".

2 Bootstrapping

The homomorphic encryption scheme above has one drawback - in order to use it (set the parameters, and so on) the depth d of the circuit the ciphertexts will be fed into must be known and fixed in advance. How to have one cryptosystem which allows us evaluate any circuit - without committing on d beforehand?

Suppose we had a homomorphic cryptosystem with decryption circuit D_{K}, which can evaluate (without errors) the circuits

Then, we could "bootstrap" to any circuit by

- adding an encryption of the secret key to the public one (using the circular security assumption to argue it does not compromise security);
- then, given two ciphertexts $\mathrm{CT}_{1}, \mathrm{CT}_{2}$ that we want to add or multiply, considering the following two circuits $C_{\text {add }}, C_{\text {mult }}$:

where $\operatorname{Dec}_{\mathrm{CT}}$ is D_{K} with the ciphertext CT hard-wired; it takes as input an allowed secret key and tries to use it to decrypt ${ }^{1}$. When evaluating $C_{\text {add }}$ on the encrypted bits of the secret key (which we get in the public key), what we get is an encryption of $C_{\text {add }}\left(\mathrm{CT}_{1}, \mathrm{CT}_{2} ; s_{K}\right)$ (as we can by assumption homomorphically evaluate the sum of two D_{K} 's): if $\mathrm{CT}_{1}, \mathrm{CT}_{2}$ are valid encryptions of b_{1}, b_{2}, then $C_{\text {add }}\left(\mathrm{CT}_{1}, \mathrm{CT}_{2} ; s_{K}\right)=b_{1} \oplus b_{2}$, so we obtain an encryption of $b_{1} \oplus b_{2}$ (and similarly for $C_{\text {mult }}\left(\mathrm{CT}_{1}, \mathrm{CT}_{2} ; s_{K}\right)$).

Wrapping it up All that remains to prove is that we have such a cryptosystem, which is able to homomorphically handle its own decryption. Consider the decryption algorithm given by

$$
\operatorname{Dec}_{\vec{s}}(\vec{c}) \stackrel{\text { def }}{=}\left[\begin{array}{ll}
\frac{2}{q}(\langle\vec{s}, \vec{c}\rangle & \bmod q)
\end{array}\right]
$$

where $\vec{s}, \vec{c} \in \mathbb{Z}_{q}^{n}$ (each entry needs $\log q$ bits). The input size is $n \log q$; since arithmetic is in NC1, then decryption is in NC1; and therefore our decryption circuit has depth $O(\log (n \log q))=O(\log n)$ (as we require (a) $q=2^{o(n)}$ for security). Because we need to support these $O(\log n)$ levels, q must also satisfy (b) $q>n^{O(\log n)}$. There is no inconsistency between (a) and (b), so this decryption algorithm is a good candidate for D_{K}.

References

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, Fully homomorphic encryption without bootstrapping, ITCS, 2012, pp. 97-106.
[Bra12] Zvika Brakerski, Fully homomorphic encryption without modulus switching from classical gapsvp, Advances in Cryptology - CRYPTO'12, Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 868-886.
[BV11] Zvika Brakerski and Vinod Vaikuntanathan, Efficient fully homomorphic encryption from (standard) LWE, FOCS, 2011, pp. 97-106.
[Gen09] Craig Gentry, Fully homomorphic encryption using ideal lattices, STOC, 2009, pp. 169178.

[^0]
[^0]: ${ }^{1} D_{K}$ takes as input both a ciphertext and a secret key; here, we fix some of its inputs.

