
Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin

LWE-based Homomorphic Encryption
April 12-16, 2013 Scribe: Kina Winoto, Clément Canonne

We are going to describe the LWE-based homomorphic encryption scheme based on the works
from [Gen09, BV11, BGV12, Bra12].

Parameters : Let n′ be the security parameter, and we have m = poly(n′), q > super-poly(n′),
and error bound σ = poly(n′). In general we think of q as “large” and all the other parameters as
“small”. Recall the following variant of the Regev LWE-based cryptosystem:

Key-Generation. Choose at random A′ ∈R Zn′×mq (random A′), ~s′ ← DZn′ ,σ (small ~s′), and

~e′ ← DZm,σ (small ~e′). Set ~a′ = ~s′A′ + ~e′ mod q. We denote n = n′ + 1,

A =

(
A′

~a′

)
∈ Zn×mq ,

and ~s = (~s′ | − 1) ∈ Znq . The public key is pk = A and the secret key if sk = ~s. Note that both ~s

and ~sA mod q = ~e′ are short vectors.

EncryptA(b ∈ {0, 1}). Denote ~b =
⌊ q
2

⌋
· (0 . . . 0 b)T ∈ Zmq . Choose ~r ← DZm,σ, and output the

ciphertext ~c = A~r +~b ∈ Znq .

Decrypt~s(~c). Compute the inner-product d = 〈~s,~c〉 mod q. Output 1 if |d| > q
4 and 0 if |d| < q

4 .

Correctness. We note that 〈~s,~c〉 = ~s(A~r+~b) = (~sA)~r+〈~s,~b〉 = 〈~e′, ~r〉+〈~s,~b〉 (mod q). Since
~e′ and ~r were chosen from an error distribution then they are both small and hence |〈~e′, ~r〉| � q.
At the same time 〈~s,~b〉 = −bb q2c, hence 〈~e′, ~r〉 + 〈~s,~b〉 is closer to 0 when b = 0 and closer to q/2
when b = 1.

Security. If A was truly random then A~r was close to random, even given A (because ~r 7→ A~r is
a good randomness extractor with seed A, and ~r has high min-entropy). Hence if A was random
then the ciphertext would have no information on b, so guessing b implies distinguishing A from a
random matrix, which is hard under the decision LWE assumption.

1 Homomorphic Encryption From Regev’s Cryptosystem

Let ~ci, i = 1, 2 be two ciphertexts where ~ci decrypts to bi ∈ {0, 1}. Namely, we have

〈s, ci〉 = noisei + bibq/2c (mod q)

for a small |noisei| � q. It is easy to see that the scheme is additively homomorphic, if we set
~c = ~c1 + ~c2 mod q we have

〈~s,~c〉 =
(

noise1 + b1

⌊q
2

⌋)
+
(

noise2 + b2

⌊q
2

⌋)
= noise1 + noise2 + rounding-error + (b1 ⊕ b2)

⌊q
2

⌋
This as long as the accumulated noise remain below q/4, we get have a valid encryption of b1 ⊕ b2.

1

1.1 Multiplicative Homomorphism

Tensor products. Recall the tensor (outer) product between two vectors: if ~a = 〈a1, . . . , as〉 ∈ Zs
and ~b = 〈b1, . . . , bt〉 ∈ Zt, then ~a ⊗ ~b = (aibj)(i,j)∈[s]×[t] ∈ Zst. Furthermore, we have the mixed
product property : 〈

~a,~b
〉
·
〈
~c, ~d
〉

=
〈
~a⊗ ~c , ~b⊗ ~d

〉
(1)

Multiplication, step 1 For ~ci valid encryption of bi (i ∈ {1, 2}), define ~c∗
def
= ~c1 ⊗ ~c2 and

~s∗
def
= ~s⊗ ~s. Then,〈

~s∗,
2

q
~c∗
〉

=
2

q
〈~s,~c1〉 · 〈~s,~c2〉 =

2

q

(
b1 ·

q

2
+ e1 + k1q

)(
b2 ·

q

2
+ e2 + k2q

)
= b1b2 ·

q

2
+ (2k1 + b1)e1 + (2k2 + b2)e2 +

2e1e2
q︸ ︷︷ ︸

e′′

+ (2k1k2 + k1b2 + k2b1)︸ ︷︷ ︸
k′′

·q.

(Note however that 2
q~c
∗ is no longer an integer vector, but one with rational entries.)

Since the ki’s are small, e′′ is only a small factor larger than e1+e2 (certainly |e′′| < n3 (|e1|+ |e2|));
to get a valid ciphertext, we round ~c∗. Let ~δ be the rounding error:〈

~s∗,

⌈
2

q
~c∗
⌋〉

=

〈
~s∗,

2

q
~c∗
〉

+ 〈~s∗, δ〉 = b1b2 ·
q

2
+ e′′ + k′′ · q + 〈~s∗, δ〉

Now, as ~δ is small (‖~δ ‖∞ < 1/2) and ‖~s∗ ‖∞ = ‖~s⊗ ~s ‖∞ = ‖~s ‖2∞, the extra term 〈~s∗, δ〉 is
small; reducing modulo q, we set

~c ′′
def
=

⌈
2

q
~c∗
⌋

mod q (2)

so that 〈
~s ∗,~c ′′

〉
= b1b2 ·

q

2
+ e∗ + k∗ · q

for e∗ = e′′ + 〈~s∗, δ〉. As before, |〈~s∗,~c′′〉| � q2 (since ~s∗ is small and ‖~c′′ ‖∞ < q) so k∗ � q.
Therefore, ~c′′ is a valid encryption of b1b2 relative to ~s∗ (but with squared dimension).

Remark 1. to compute ~c′′, we just used the two ciphertexts ~c1, ~c2: nothing leaked from b1, b2.

Multiplication, step 2 (reducing the dimension). The idea is to add to the public key a
“gadget” that will allow us to translate the high-dimensional ~c′′ (wrt ~s∗) back to a low-dimensional
~c (wrt ~s). Roughly, this gadget will be an encryption of ~s∗ under ~s, but relative to a larger modulus

Q
def
= q2: For every entry i of ~s∗, we add to the public key a vector ~wi ∈ ZnQ s.t.

〈~s, ~wi〉 = kiQ+ ~s∗i q + ei

with ei � q =
√
Q. Putting these vectors together in a matrix, we get W ∈ Zn×n

2

Q with

~sW = Q~k + q~s∗ + ~e (3)

where ~k,~e ∈ Zn2
and ‖k ‖∞, ‖e ‖∞ � q. We next show how to convert any valid encryption of some

bit b relative to ~s∗ (and q) into a valid encryption of b relative to ~s (and q):

Input ~c∗ s.t. 〈~s∗,~c∗〉 = b · q2 + k∗q + e∗ (with |e∗|, |k∗| � q).

2

Output ~c
def
=
⌈
1
q~c
∗WT

⌋
mod q.

Correctness: let ~δ and q~k′ denote respectively the rounding error and the “mod q term”.

〈~s,~c〉 =

〈
~s,

1

q
~c∗WT − ~δ − q~k′

〉
=

1

q
~sW (~c∗)T −

〈
~s, ~δ
〉
− q

〈
~s,~k′

〉
Eq.(3)

=
1

q

〈
q2~k + q~s∗ + ~e,~c∗

〉
−
〈
~s, ~δ
〉
− q

〈
~s,~k′

〉
= 〈~s∗,~c∗〉+ q

〈
~k,~c∗

〉
− q

〈
~s,~k′

〉
+

1

q
〈~e,~c∗〉 −

〈
~s, ~δ
〉

= b · q
2

+ q

(
k∗ +

〈
~k,~c∗

〉
−
〈
~s,~k′

〉)
︸ ︷︷ ︸

k̃

+

(
e∗ +

1

q
〈~e,~c∗〉 −

〈
~s, ~δ
〉)

︸ ︷︷ ︸
ẽ

where ẽ is small (as a sum of three small terms); finally, since 〈~s,~c〉 = k̃q + b · q2 + ẽ with ẽ small

and ~s small then |〈~s,~c〉| � Q = q2, so we also have k̃ � q. Hence, ~c is a valid encryption of b wrt.
~s and q.

Parameters. We consider the “error” in the ciphertext to be the value 〈~s,~c〉 − q/2 mod q. The
error grows with homomorphic operations, where for addition we have |e| ' |e1|+ |e2|. For multi-
plication the noise grows a bit faster, and we have:

• (step 1) |e∗| ' (|e1|+ |e2|)n3

• (step 2) |ẽ| ' |e∗|+O(n3)

We see that no matter what operation, the error grows by at most a polynomial factor. How does
that propagate in the circuit?

output: need error < q
4

circuit, depth d

inputs: error say n3

At level i, we get an error which can be as big as n3i, and for correctness we require that the
error at the output node be smaller than q

4 . We thus need q > 4n3d, that is log q = Ω(3d log n)

(recall that the scheme also requires q � poly(n), and that for security one must have q ≤ 2o(n)

(so that LLL cannot be used to break it)). Furthermore, we need D-LWE to be hard even modulo

Q = q2; all taken into account, n ≥ log2 q (say) is sufficient.

3

Key-Switching security: we have to explain why adding the W matrix to the public key does
not compromise security. At first glance,

~sW = q~s∗ + ~e mod Q

looks like a LWE problem, but the reduction to LWE that we used for the original cryptosystem
does not work, because ~s∗ is a function of ~s. There are two common solutions to this issue:

• Solution 1: we can have a different secret key for each level i of the circuit, and encrypt ~s∗i
wrt. ~si+1 (thus resolving the dependence, so that the reduction can be applied). The public
key would contain all gadgets W~s∗i→~si+1

.

• Solution 2: define this as a new hardness assumption, the “circular security assumption”.

2 Bootstrapping

The homomorphic encryption scheme above has one drawback – in order to use it (set the param-
eters, and so on) the depth d of the circuit the ciphertexts will be fed into must be known and
fixed in advance. How to have one cryptosystem which allows us evaluate any circuit – without
committing on d beforehand?

Suppose we had a homomorphic cryptosystem with decryption circuit DK , which can evaluate
(without errors) the circuits

⊕

DK DK

⊗

DK DK

Then, we could “bootstrap” to any circuit by

• adding an encryption of the secret key to the public one (using the circular security assumption
to argue it does not compromise security);

• then, given two ciphertexts CT1, CT2 that we want to add or multiply, considering the
following two circuits Cadd, Cmult:

⊕

DecCT1

sK

DecCT2

sK

⊗

DecCT1

sK

DecCT2

sK

4

where DecCT is DK with the ciphertext CT hard-wired; it takes as input an allowed secret
key and tries to use it to decrypt1. When evaluating Cadd on the encrypted bits of the secret
key (which we get in the public key), what we get is an encryption of Cadd(CT1,CT2; sK)
(as we can by assumption homomorphically evaluate the sum of two DK ’s): if CT1, CT2 are
valid encryptions of b1, b2, then Cadd(CT1,CT2; sK) = b1⊕ b2, so we obtain an encryption of
b1 ⊕ b2 (and similarly for Cmult(CT1,CT2; sK)).

Wrapping it up All that remains to prove is that we have such a cryptosystem, which is able
to homomorphically handle its own decryption. Consider the decryption algorithm given by

Dec~s(~c)
def
=

⌈
2

q
(〈~s,~c〉 mod q)

⌋
where ~s,~c ∈ Znq (each entry needs log q bits). The input size is n log q; since arithmetic is in NC1,
then decryption is in NC1; and therefore our decryption circuit has depth O(log(n log q)) = O(log n)
(as we require (a) q = 2o(n) for security). Because we need to support these O(log n) levels, q must
also satisfy (b) q > nO(logn). There is no inconsistency between (a) and (b), so this decryption
algorithm is a good candidate for DK .

References

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, Fully homomorphic encryp-
tion without bootstrapping, ITCS, 2012, pp. 97–106.

[Bra12] Zvika Brakerski, Fully homomorphic encryption without modulus switching from classical
gapsvp, Advances in Cryptology - CRYPTO’12, Lecture Notes in Computer Science, vol.
7417, Springer, 2012, pp. 868–886.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan, Efficient fully homomorphic encryption from
(standard) LWE, FOCS, 2011, pp. 97–106.

[Gen09] Craig Gentry, Fully homomorphic encryption using ideal lattices, STOC, 2009, pp. 169–
178.

1DK takes as input both a ciphertext and a secret key; here, we fix some of its inputs.

5

	Homomorphic Encryption From Regev's Cryptosystem
	Multiplicative Homomorphism

	Bootstrapping

