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5 Supplementary material

Below are two supplemental sections in support of the main article. The first
provides descriptive statistics for our main variables, and the second details
three robustness tests for our elasticity estimates.

5.1 Descriptive statistics

Table A2 on page 34 and Table A3 on page 35 show some descriptive statistics
for our key block group-level variables.

5.2 Robustness tests for elasticity estimate

In order to calculate elasticities suitable for projections, we have simplified our
approach by capturing all the variation in street-network sprawl through a sin-
gle measure, namely the mean degree or the fraction of 4T nodes. This may
overestimate the road network connectivity elasticity of automobility because
other aspects of urban form correlated with network connectivity, but which
may vary separately and for separate reasons, are folded into our independent
variable. For instance, nodal density is correlated with our connectivity mea-
sures but is in principle independent; dense urban cores and rural farm roads
may both be gridded.

We have already taken two precautions to isolate the effect of interest: (1)
only urban block groups are included in our regressions, and (2) the instrumental
variables approach ought to isolate the effect of street connectivity. Nevertheless,
as a robustness test we recalculate below the elasticities controlling for nodal
density. This estimate is likely to underestimate the effect of nodal degree on
automobility, because the factors which encourage higher nodal degree will also
shift other metrics of urban form such as nodal density. Thus, we gain increased
confidence in our estimates if they are robust to the nodal density control.

Population density is a second aspect of urban form which is likely to be
correlated with our network connectivity metrics but which may be related to
automobility through channels other than the connectivity itself. Regardless of
streetnetwork connectivity, people living in low density areas are likely to need
to travel longer distances, and are also more likely to be able to afford, and
have available, a private parking space. For this reason, we also include it as a
control in our revised estimates.

Table A1 on page 34 presents estimates of a model which controls for the log
nodal density and the log population density in each block group. As expected,
our elasticity estimates for the independent effects of the fraction of 4T nodes
and nodal degree are attenuated slightly. Nodal density has an independent
effect of the same type as our primary channel of interest, while population
density is, maybe surprisingly, associated with more vehicle ownership. Notably,
our primary estimate on which we rely in our later projections, changes only
from —0.15 to —0.11.
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logvehicles/HH
OLS v OLS Iv. OLS IV OLS v
m @16 @ [6 6|7 8

logdegree —.547 —. 54| — 55T — .93
(.016) (.068) | (.016) (.067)
logfourway|—.090f —.111 |—.092F —.18f
(.003) (.014) (.003) (.014)
logPopDensity| .046T .041f | .027t .011* |.049T .0497| .031T .022f
(.003) (.005) (.003) (.003) (.003) (.005) (.003) (.003)
logNodeDensity| —.107 —.093%|—.074t —.033%|—.10" —.10f|—.0711 —.042°
(.004) (.010) (.003) (.007) (.004)  (.009) (.003) (.006)
Instrumented (terrain) Y Y Y Y

f.e./demean| state state |county county |state state |county county
Nelusters| 2371 2371 2371 2371 | 2371 2371 | 2371 2371
Weak ID F 542 668 612 512
F| 101 681 852 822 96.9 702 882 734
R2(adj) .238 77 154 .089 241  .183 157 126
obs.| 63360 63360 | 63360 63360 [63480 63480 | 63480 63480

Significance: 0.1%" 1%* 5% 10%*

Table Al: Elasticity estimates with controls for nodal and population
densities. The estimates are similar to those of Table 3 on page 23, but have
the added control variables.

[Variable [Mean[Std.Dev.[ min[max[ Obs.]
fourway .20 .14 0 1|74580
logfourway —1.86 .72|—5.2 0[74380
degree 2.7 35| 1.43|  4|74580
logdegree .99 13| .36|1.39(74580
vehicles/HH 1.79 38| 11| 4.3|64950
logvehicles/HH| .56 .23|—2.2|1.46|64950
mean slope 5.5 5.6 0/67.6|74560
fraction >10° .15 .20 0| .99|74560

Table A2: Means and standard deviations of key variables

One other concern with our main estimate is spatial dependence. If street
connectivity, car ownership and travel in one block group are affected by those
same variables in nearby block groups or by other unmeasured variables which
are correlated across nearby block groups, spatial autocorrelation may lead to
bias in our estimates. Even though our standard error estimates are clustered at
the county level, this may not capture more local-level spatial dependency, nor
dependency across county lines. We therefore consider a more general model
which allows both for spatial lags in the dependent variable and spatial auto-
correlation in the error term. Conceptually, the local measure of automobility
A for a given block group is now

A = pw-A+BXo+ b1 Xi+p (7)
poo= Awz-fi+§ (8)

where A is a vector of the automobility measure in nearby block groups, wy is a
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fourway 90T .85T[ .83T[ —.35T[ —.35T[—.227 [—.23T
<1075|<107%|<10~°%|<10~°|<10~°|<10~%|<10~°
logfourway .81t .80f| —.357| —.351|—.24" |—.25"
<107%<107°|<107°|<107°|<10~°|<10~®
degree 1.00t| —.38%| —.38"|—.29% |—.30%
<1075|<107%|<107°%|<10~°|<10~°
logdegree —.38%| —.37f|—.29" |—.311
<107%|<107°|<107?|<10~°
vehicles/HH .98f|.11t |11t
<10~°|<10~°|<10~°
logvehicles/HH a1t aaat
<107°|<107°
mean slope .94t
<105

Table A3: Raw correlations between key variables measured at the
blockgroup level

spatial weighting vector, p is the coefficient for the spatial lag effect, and the X’s
and (’s are as before. The unmodeled component, or error term, of observed
A for the given block group is p, and it is related to the error fi in nearby
block groups through the coupling vector ws and the spatial autocorrelation
coefficient A\. The remaining idiosyncratic error is the spatially independent
error term £. This model is known as a combined spatial-lag (for p) and spatial
error (for A\) model. We estimate this specification for our data using, as before,
an instrumental variable in which X, our measure of road connectivity, is first
projected on the instruments and X; before being used to estimate A.

We estimate this IV spatial-lag spatial-error model using the estimator im-
plemented in the PySAL software package’s GM-Combo routine [6]. In general,
spatial weights matrices are imposed based on reasonable assumptions, and we
use the same symmetric matrix W to account for all the linkages w; and ws.

We experiment with three commonly used spatial weights matrices: 10-
nearest neighbors, and inverse distance weights within a 2km and 5km band
respectively. In all cases, our estimated elasticities are similar to those in Table
3 on page 23, and lie between —0.18 and —0.15. The standard errors are smaller
than those in Table 3 on page 23. We conclude that while theoretically an issue,
spatial dependence does not influence our estimates in practice.

A third line of robustness testing!? relates to the linearity of the relation-
ship between log (D4+) and the log of vehicles/household. In order to test for
variation in this elasticity across different types of neighborhoods, we separate
our sample into three terciles according to the value of D**. Within each sub-

12We thank a reviewer for suggesting an investigation along these lines.

35



Fourway (D?T) range
0.00-0.12 0.12-0.21 0.21-1.00
(1) (2) 3)
logfourway —.21f| —47f] —as8*
(.060) (.27) (.055)
v Y Y Y
Nelusters 1562 1934 2151
Weak ID F' 90.8 47.1 377
F 13.8 20.8 21.5
R2(adj) —.037 .033 139
obs. 19870 21170 22320
log likelihood 5008 3972 469

Significance: 0.1%t 1%* 5% 10%*

Table A4: Elasticity estimates for different street-network sprawl
regimes. The estimates are similar to those in Table 3 on page 23 but are

calculated for subsets of the sample, separated into terciles of street connectiv-
ity (D*).

sample, we estimate the IV model, as in Table 3 on page 23. The elasticities
are not individually statistically different from that calculated for the whole
sample, and the large standard errors, particularly with the estimate for the
central tercile, mean that there is no statistically significant trend across the
three terciles. Also, the point estimates for elasticity in each of these smaller
samples is at least as high as our primary estimate used below for projections.
Table A4 on page 36 presents these results.
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