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You Could Have
Invented Spectral

Sequences
Timothy Y. Chow

Introduction
The subject of spectral sequences has a reputation
for being difficult for the beginner. Even G. W.
Whitehead (quoted in John McCleary [4]) once re-
marked, “The machinery of spectral sequences,
stemming from the algebraic work of Lyndon and
Koszul, seemed complicated and obscure to many
topologists.”

Why is this? David Eisenbud [1] suggests an ex-
planation: “The subject of spectral sequences is el-
ementary, but the notion of the spectral sequence
of a double complex involves so many objects and
indices that it seems at first repulsive.” I have
heard others make similar complaints about the
proliferation of subscripts and superscripts.

My own explanation, however, is that spectral se-
quences are often not taught in a way that explains
how one might have come up with the definition
in the first place. For example, John McCleary’s ex-
cellent text [4] says, “The user, however, needs to
get acquainted with the manipulation of these gad-
gets without the formidable issue of their origins.”
Without an understanding of where spectral se-
quences come from, one naturally finds them mys-
terious. Conversely, if one does see where they
come from, the notation should not be a stum-
bling block.

Fools rush in where angels fear to tread, so my
goal below is to make you, the reader, feel that you
could have invented spectral sequences (on a very
good day, to be sure!). I assume familiarity with ho-
mology groups, but little more. Everything here is
known to the cognoscenti, but my hope is to make
the ideas accessible to more than the lucky few who
are able to have the right conversation with the right
expert at the right time.

Readers who are interested in the history of
spectral sequences and how they were in fact in-
vented should read [3], which gives a definitive ac-
count.

Simplifying Assumptions
Throughout, we work over a field. All chain groups
are finite-dimensional, and all filtrations (explained
below) have only finitely many levels. In the “real
world”, these assumptions may fail, but the es-
sential ideas are easier to grasp in this simpler
context.

Graded Complexes
Chain complexes that occur “in nature” often come
with extra structure in addition to the boundary
map. Certain kinds of extra structure are particu-
larly common, so it makes sense to find a system-
atic method for exploiting such features. Then we
do not have to reinvent the wheel each time we want
to compute a homology group.
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Here is a simple example. Suppose we have a
chain complex

· · · ∂−→ Cd+1
∂−→ Cd

∂−→ Cd−1
∂−→ ·· ·

that is “graded”, i.e., each Cd splits into a direct sum

Cd =
n⊕

p=1

Cd,p

and moreover the boundary map ∂ respects the
grading in the sense that ∂Cd,p ⊆ Cd−1,p for all d
and p. Then the grading allows us to break up the
computation of the homology into smaller pieces:
simply compute the homology in each grade in-
dependently and then sum them all up to obtain
the homology of the original complex.

Unfortunately, in practice we are not always so
lucky as to have a grading on our complex. What
we frequently have instead is a filtered complex, i.e.,
each Cd comes equipped with a nested sequence
of submodules

0 = Cd,0 ⊆ Cd,1 ⊆ Cd,2 ⊆ · · · ⊆ Cd,n = Cd

and the boundary map respects the filtration in the
sense that

(1) ∂Cd,p ⊆ Cd−1,p

for all d and p. (Note: The index p is called the fil-
tration degree. Here it has a natural meaning only
if 0 ≤ p ≤ n, but throughout this paper, we some-
times allow indices to “go out of bounds,” with the
understanding that the objects in question are
zero in that case. For example, Cd,−1 = 0.)

Although a filtered complex is not quite the
same as a graded complex, it is similar enough
that we might wonder if a similar “divide and con-
quer” strategy works here. For example, is there a
natural way to break up the homology groups of a
filtered complex into a direct sum? The answer
turns out to be yes, but the situation is surprisingly
complicated. As we shall now see, the analysis
leads directly to the concept of a spectral sequence.

Let us begin by trying naïvely to “reduce” this
problem to the previously solved problem of graded
complexes. To do this we need to express each Cd
as a direct sum. Now, Cd is certainly not a direct
sum of the Cd,p; indeed, Cd,n is already all of Cd.
However, because Cd is a finite-dimensional vector
space (recall the assumptions we made at the out-
set), we can obtain a space isomorphic to Cd by
modding out by any subspace U and then direct
summing with U; that is to say, Cd � (Cd/U)⊕U .
In particular, we can take U = Cd,n−1. Then we can
iterate this process to break U itself down into a
direct sum, and continue all the way down. More
formally, define

(2) E0
d,p

def
= Cd,p/Cd,p−1

for all d and p. (Warning: There exist different in-
dexing conventions for spectral sequences; most
authors write E0

p,q where q = d − p is called the
complementary degree. The indexing convention I
use here is the one that I feel is clearest pedagog-
ically.) Then

(3) Cd �
n⊕

p=1

E0
d,p.

The nice thing about this direct sum decomposi-
tion is that the boundary map ∂ naturally induces
a map

∂0 :
n⊕

p=1

E0
d,p →

n⊕

p=1

E0
d−1,p

such that ∂0E0
d,p ⊆ E0

d−1,p for all d and p. The rea-
son is that two elements of Cd,p that differ by an
element of Cd,p−1 get mapped to elements of
Cd−1,p that differ by an element of
∂Cd,p−1 ⊆ Cd−1,p−1, by equation (1).

Therefore we obtain a graded complex that splits
up into n pieces:

(4)
· · · ∂0

�→ E0
d+1,n

∂0
�→ E0

d,n
∂0
�→ E0

d−1,n
∂0
�→ ·· ·

· · · ∂0
�→ E0

d+1,n−1
∂0
�→ E0

d,n−1
∂0
�→ E0

d−1,n−1
∂0
�→ ·· ·

...
...

...

· · · ∂0
�→ E0

d+1,1
∂0
�→ E0

d,1
∂0
�→ E0

d−1,1
∂0
�→ ·· ·

Now let us define E1
d,p to be the pth graded piece

of the homology of this complex:

(5) E1
d,p

def= Hd(E0
d,p) =

ker∂0 : E0
d,p → E0

d−1,p

im ∂0 : E0
d+1,p → E0

d,p

(For those comfortable with relative homology,
note that E1

d,p is just the relative homology group
Hd(Cp,Cp−1).) Still thinking naïvely, we might hope
that

(6)
n⊕

p=1

E1
d,p

is the homology of our original complex. Unfortu-
nately, this is too simple to be true. Although each
term in the the complex (

⊕
p E0

d,p, ∂
0)—known as

the associated graded complex of our original fil-
tered complex (Cd, ∂)—is isomorphic to the corre-
sponding term in our original complex, this does
not guarantee that the two complexes will be iso-
morphic as chain complexes. So although 

⊕
p E1

d,p
does indeed give the homology of the associated
graded complex, it may not give the homology of
the original complex.
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Analyzing the Discrepancy
This is a little disappointing, but let’s not give up
just yet. The associated graded complex is so closely
related to the original complex that even if its ho-
mology isn’t exactly what we want, it ought to be
a reasonably good approximation. Let’s carefully
examine the discrepancy to see if we can fix the
problem.

Moreover, to keep things as simple as possible,
let us begin by considering the case n = 2. Then the
array in diagram (4) has only two levels, which we
shall call the “upstairs” (p = 2) and “downstairs”
(p = 1) levels.

The homology group Hd that we really want is
Zd/Bd , where Zd is the space of cycles in Cd and
Bd is the space of boundaries in Cd. Since Cd is fil-
tered, there is also a natural filtration on Zd and Bd :

0 = Zd,0 ⊆ Zd,1 ⊆ Zd,2 = Zd
and

0 = Bd,0 ⊆ Bd,1 ⊆ Bd,2 = Bd.

Recall that we have been trying to find a natural
way of decomposing Hd into a direct sum. Just as
we observed before that Cd is not a direct sum of
Cd,1 and Cd,2, we observe now that Zd/Bd is not a
direct sum of Zd,1/Bd,1 and Zd,2/Bd,2 ; indeed,
Zd,2/Bd,2 by itself is already the entire homology
group. But again we can use the same trick of mod-
ding out by the “downstairs part” and then direct
summing with the “downstairs part” itself:

Zd
Bd
� Zd + Cd,1
Bd + Cd,1

⊕ Zd ∩ Cd,1
Bd ∩ Cd,1

= Zd,2 + Cd,1
Bd,2 + Cd,1

⊕ Zd,1
Bd,1

.

Now, the naïve hope would be that

(7) E1
d,2

?� Zd,2 + Cd,1
Bd,2 + Cd,1

and

(8) E1
d,1

?� Zd,1
Bd,1

,

and even that the numerators and denominators
in equations (7) and (8) are precisely the “cycles”
and “boundaries” in the definition (equation (5)
above) of E1

d,p. For then expression (6) would give
us a direct sum decomposition of Hd. Unfortu-
nately, in general, neither (7) nor (8) holds. Cor-
rections are needed.

Let us first look “downstairs” at E1
d,1. The

“cycles” of E1
d,1 are the cycles in E0

d,1, and the
“boundaries” are the image I of the map

∂0 : E0
d+1,1 → E0

d,1.

The space of cycles in E0
d,1 is Zd,1, which is the nu-

merator in equation (8). However, the image I is
not Bd,1, for Bd,1 is the part of Bd that lies in Cd,1,

and while this contains I, it may also contain other
things. Specifically, the map ∂ may carry some el-
ements x ∈ Cd+1 down from “upstairs” to “down-
stairs,” whereas I only captures boundaries of el-
ements that were already downstairs to begin with.
Therefore, Zd,1/Bd,1 is a quotient of E1

d,1.
Now let us look “upstairs” at E1

d,2. In this case,
the space of “boundaries” of E1

d,2 is Bd,2 + Cd,1,
which is the denominator in equation (7). How-
ever, the space of “cycles” in this case is the ker-
nel K of the map

∂0 : E0
d,2 → E0

d−1,2,

which, by definition of E0, is the map

∂0 :
Cd,2
Cd,1

→ Cd−1,2

Cd−1,1
.

Thus we see that K contains not only chains that
∂ sends to zero but also any chains that ∂ sends
“downstairs” to Cd−1,1 . In contrast, the elements
of Zd,2 + Cd,1 are more special: their boundaries are
boundaries of chains that come from Cd,1. Hence

Zd,2 + Cd,1
Bd,2 + Cd,1

is a subspace of E1
d,2, the subspace of elements

whose boundaries are boundaries of Cd,1-chains.
Intuitively, the problem is that the associated

graded complex only “sees” activity that is confined
to a single horizontal level; everything above and
below that level is chopped off. But in the original
complex, the boundary map ∂ may carry things
down one or more levels (it cannot carry things up
one or more levels because ∂ respects the filtration),
and one must therefore correct for this inter-level
activity.

The Emergence of Spectral Sequences
The beautiful fact that makes the machinery of
spectral sequences work is that both of the above
corrections to the homology groups E1

d,p can be re-
garded as “homology groups of homology groups”!

Notice that ∂ induces a natural map—let us call
it ∂1—from E1

d+1,2 to E1
d,1, for all d, for the bound-

ary of any element in E1
d+1,2 is a cycle that lies

in Cd,1, and thus it defines an element of E1
d,1. The

key claims (for n = 2) are the following.
• Claim 1. If we take E1

d,1 and mod out by the
image of ∂1, then we obtain Zd,1/Bd,1 . To see
this, just check that the image of ∂1 gives all the
boundaries that lie in Cd,1.

• Claim 2. The kernel of ∂1 is a subspace of E1
d,2

isomorphic to

Zd+1,2 + Cd+1,1

Bd+1,2 + Cd+1,1
.



Again, simply check that the kernel consists
just of those elements whose boundary equals
a boundary of some element of Cd+1,1.
We can visualize these claims by drawing the fol-

lowing diagram.

Diagram (9) is a collection of chain complexes; it’s
just that the chain complexes do not run horizon-
tally as in diagram (4), but slant downwards at a
45◦ angle, and each complex has just two nonzero
terms. (Reminder: Our indexing convention is dif-
ferent from that of most authors, whose diagrams
will therefore look “skewed” relative to diagram (9).)
If we now define E2

d,p to be the homology, i.e.,

(10) E2
d,p

def= Hd(E1
d,p) =

ker∂1 : E1
d,p → E1

d−1,p−1

im ∂1 : E1
d+1,p+1 → E1

d,p
,

then the content of Claim 1 and Claim 2 is that
E2
d,1 ⊕ E2

d,2 is (finally!) the correct homology of our
original filtered complex.

For the case n = 2, this completes the story. The
sequence of terms E0, E1, E2 is the spectral se-
quence of our filtered complex when n = 2. We
may regard E1 as giving a first-order approxima-
tion of the desired homology, and E2 as giving a
second-order approximation—which, when n = 2,
is not just an approximation but the true answer.

What if n > 2? The definitions (2), (5), and (10)
still make sense, but now E2 will not in general give
the true homology, because E2 only takes into ac-
count interactions between adjacent levels in dia-
gram (4), but ∂ can potentially carry things down
two or more levels. Therefore we need to consider
further terms E3, E4, . . . , En. For example, to define
E3, we can check that ∂ induces a natural map—
call it ∂2—from E2

d+1,p+2 to E2
d,p, for all d and p. One

obtains a diagram similar to diagram (9), except
with (E2, ∂2) instead of (E1, ∂1), and with each arrow
going down two levels instead of one. Then E3

d,p is
(ker∂2)/(im∂2) at E2

d,p. In general, the picture for
Er has arrows labeled ∂r dropping down r levels
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from Erd+1,p+r to Erd,p, and Er+1 is defined to be the

homology of (Er , ∂r ) .
The verification that, for general n ,

Hd �
⊕
p End,p is a conceptually straightforward

generalization of the ideas we have already seen,
but it is tedious so we omit the details.

What Good Is All This?
In analysis, the value of having a series approxi-
mation converging to a quantity of interest is fa-
miliar to every mathematician. Such an approxi-
mation is particularly valuable when just the first
couple of terms already capture most of the in-
formation.

Similar remarks apply to spectral sequences.
One common phenomenon is for a large number
of the Erd,p and/or the boundary maps ∂r to become
zero for small values of r . This causes the spectral
sequence to stabilize or collapse rapidly, allowing
the homology to be computed relatively easily. We
illustrate this by sketching the proof of Theorem 2
in a paper of Phil Hanlon [2]. This is far from a
“mainstream” application of spectral sequences, but
it has the great advantage of requiring very little
background knowledge to follow. Readers who
know enough topology may wish instead to proceed
directly to the standard examples that may be
found in any number of textbooks.

Let Q be a finite partially ordered set that is
ranked—i.e., every maximal totally ordered subset
has the same number of elements, so that every el-
ement can be assigned a rank (namely, a natural
number indicating its position in any maximal to-
tally ordered subset containing it)—and that is
equipped with an order-reversing involution
x �→ x∗. Let

(11)
γ = {α1, α2, . . . , αt} where

α1 < α2 < · · · < αt
be a totally ordered subset of Q . We say that γ is
isotropic if αi �= α∗j for all i and j .

Now adjoin a minimum element 0̂ and a maxi-
mum element 1̂ to Q , and consider the family of
all totally ordered subsets of the resulting par-
tially ordered set. These form an abstract simpli-
cial complex ∆, and we can consider its simplicial
homology groupsHd. We can also restrict attention
to the isotropic totally ordered subsets; these form
a subcomplex ∆0, which has its own homology
groups H0

d .
Hanlon’s Theorem 2 says that if Q is Cohen-

Macaulay and its maximal totally ordered subsets
have m elements, then H0

d = 0 if 0 ≤ d < m/2. The
definition of Cohen-Macaulay need not concern us
here; it suffices to know that Cohen-Macaulay par-
tially ordered sets satisfy a certain homological
property (given in Hanlon’s paper). In particular,

0 0 0 0 0

↘∂1 ↘∂1 ↘∂1 ↘∂1

· · · E1
d+1,2 E1

d,2 E1
d−1,2 · · ·

(9) ↘∂1 ↘∂1 ↘∂1 ↘∂1

· · · E1
d+1,1 E1

d,1 E1
d−1,1 · · ·

↘∂1 ↘∂1 ↘∂1 ↘∂1

0 0 0 0 0
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Why the Adjective “Spectral”?
A question that often comes up is where the term
“spectral” comes from. The adjective is due to
Leray, but he apparently never published an ex-
planation of why he chose the word. John McCleary
(personal communication) and others have specu-
lated that since Leray was an analyst, he may have
viewed the data in each term of a spectral sequence
as playing a role that the eigenvalues, revealed one
at a time, have for an operator. If any reader has
better information, I would be glad to hear it.
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knowing that Q is Cohen-Macaulay gives
us information about Hd.

In order to deduce something about H0
d

from the information we have about Hd,
we seek a relationship between Hd
andH0

d . Given γ as in equation (11), Han-
lon’s key idea is to let ρ(γ) be the rank
of αi , where i is maximal subject to the
condition that α∗i = αj for some j > i .
Then ρ(γ) = 0 if and only if γ is isotropic,
but more importantly, applying the
boundary map can clearly only decreaseρ,
so ρ induces a filtration on ∆. Specifi-
cally, we obtain the pth level of the fil-
tration by restricting to those γ such that
ρ(γ) ≤ p. Therefore we obtain a spectral
sequence! This gives a relationship be-
tween H0

d = E1
d,0 and the limitHd of the spectral se-

quence.
The heart of Hanlon’s proof is to analyze E1. He

shows that E1
d,p = 0 except possibly for certain

pairs (d,p). For instance, when m = 10, E1
d,p = 0

except possibly for the pairs (d,p) marked by dots
in the diagram to the right.

If you imagine the 45◦ boundary maps, then
you can see that some potentially complicated
things may be happening for d ≥ 5 =m/2, but for
m/2 > d, E2

d,p will be isomorphic to E1
d,p for all p.

In fact, Erd,p � E1
d,p for all r ≥ 1 when m/2 > d; the

boundary maps slant more and more as r increases,
but this makes no difference. Therefore just by com-
puting E1, we have computed the full homology
group for certain values of d. In particular, H0

d � Hd
for m/2 > d. It turns out that the Cohen-Macaulay
condition easily implies that Hd = 0 for m/2 > d,
so this completes the proof.

A Glimpse Beyond
When our simplifying assumptions are dropped, a
lot of complications can arise. Over an arbitrary
commutative ring, equation (3) need not hold; not
every short exact sequence splits, so there may be
extension issues. When our finiteness conditions
are relaxed, one may need to consider Er for arbi-
trarily large r , and the spectral sequence may not
converge. Even if it does converge, it may not con-
verge to the desired homology. So in many appli-
cations, life is not as easy as it may have seemed
from the above discussion; nevertheless, our sim-
plified setting can still be thought of as the “ideal”
situation, of which more realistic situations are
perturbations.

We should also mention that spectral sequences
turn out to be such natural gadgets that they arise
not only from filtered complexes, but also from
double complexes, exact couples, etc. We cannot
even begin to explore all these ramifications here,
but hope that our tutorial will help you tackle the
textbook treatments with more confidence.
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