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Abstract. Recently, Knuth and Ciucu independently proved the surprising
fact, conjectured by Stanley, that one connected component of the tensor prod-
uct of a path with itself (the so-called “Aztec diamond graph”) has four times
as many spanning trees as the other connected component, independent of
the length of the path. We show here that much more is true: the connected
components of the tensor product of any connected bipartite multigraphs all
have essentially the same Q-spectrum. It follows at once that there is a simple
formula relating their numbers of spanning trees.

1. Introduction

A spanning tree of a finite undirected graph is a connected acyclic subgraph with
the same vertex set as the graph itself. The complexity of a graph is the number
of spanning trees it has. The tensor product G1 ⊗G2 of two graphs G1 and G2 is
the graph whose adjacency matrix is the tensor product of the adjacency matrices
of G1 and G2. In 1994, Stanley [13] conjectured that if P2n+1 is the path with
2n+ 1 vertices, then the complexity of one connected component of P2n+1 ⊗P2n+1

(the Aztec diamond graph ADn, whose perfect matchings are studied in [4]) is four
times the complexity of the other connected component (the odd Aztec diamond
graph ODn). As an indication of why this conjecture is unexpected, we mention
that the Laplacian spectra ([2], §1.2, (1.16)) of ADn and ODn are quite different
from each other. Also, virtually all known results about complexities of tensor
products require some regularity assumption (e.g., [5], Theorem 6.10), but paths
are not regular.

Recently, the conjecture was independently proved by Knuth [8] and Ciucu [1].
Knuth uses an idea of Cvetković and Gutman [3], exploiting the fact that ADn

and ODn are nearly regular and are nearly planar duals of each other to reduce
the problem to a question about the ordinary spectrum (i.e., the eigenvalues of the
adjacency matrix), which behaves well under tensor product. Ciucu uses a bijection
of Temperley [14] to transform the problem into a question about perfect match-
ings, and then derives Stanley’s conjecture as a corollary of a matching theorem.
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While both methods solve the original problem elegantly, they leave many ques-
tions unanswered. For example, how far can Stanley’s conjecture be generalized?
Is planarity, which is used in an essential way by both Knuth and Ciucu, essential
to the phenomenon?

In this paper we show that the result generalizes to the tensor product of ar-
bitrary connected bipartite multigraphs. (In particular, planarity is not needed.)
The key observation, which is simple but does not seem to have been made before,
is that the so-called Q-spectrum ([2], §1.2, (1.6)), which is known to essentially
determine the complexity ([2], §1.9, #10), behaves well under tensor product. The
main tool we use is a little-known result of Runge ([2], §1.9, #11) on the Q-spectra
of bipartite multigraphs.

2. Preliminaries

It will be convenient to make a few technical modifications to the definitions
given in the introduction. For our purposes, a graph is a finite undirected graph
without loops or multiple edges and with a weight associated to each edge. The
degree deg(v) of a vertex v is the sum of the weights of the edges incident to v.
The adjacency matrix of a graph with vertex set V = {v1, v2, . . . , vn} is the matrix
whose (i, j)th entry is the weight of the edge connecting vi and vj if such an edge
exists, and whose (i, j)th entry is zero otherwise. If A = (aij) is an m × n matrix
and A′ = (a′ij) is an m′×n′ matrix, then the tensor product A⊗A′ is the mm′×nn′
matrix obtained by replacing the element aij in A by the matrix aijA

′. The tensor
product G1 ⊗G2 of two graphs G1 and G2 is the graph whose adjacency matrix is
the tensor product of the adjacency matrices of G1 and G2. Note that the tensor
product is associative.

A spanning tree of a graph G is a connected acyclic subgraph of G with the
same vertex set as G. The weight wt(T ) of a spanning tree T is the product of the
weights of its edges. The complexity t(G) of a graph G is defined by

t(G)
def
=
∑
T⊂G

wt(T ),

where the sum is over all spanning trees of G.
We have already mentioned that the key concept in our proof is the Q-spectrum,

which we shall now define. More precisely, we shall define the φ-polynomial of a
bipartite graph, which is equivalent to its Q-spectrum (see [2], §1.9, #11; or [11]).

First, given a matrix A = (aij) whose row-sums
∑

j aij are nonzero, define its

stochasticization S(A) to be the matrix obtained from A by dividing each entry by
the row-sum of the row it is in. Next, let G be a connected bipartite graph with
positive integer weights on all its edges and with at least one edge. Let (X,Y ) be
a bipartition of G. If we order the vertices of G so that all the X vertices precede
all the Y vertices, then the adjacency matrix of G looks like(

0 A
AT 0

)
.

We define the φ-polynomial of G by

φG(λ)
def
=

{
det
[
λI − S(A)S(AT )

]
, if |X | ≤ |Y |;

det
[
λI − S(AT )S(A)

]
, if |X | > |Y |.
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(Here I is the identity matrix.) Note that since G is connected, the bipartition
(X,Y ) is essentially unique, so φG is uniquely determined by G.

We can now state the theorem of Runge.

Lemma 1. Let G be a connected bipartite graph with positive integer weights on
all its edges and at least one edge. Then λ = 1 is a root of φG(λ), and if the roots
of φG(λ) are λ1 = 1, λ2, . . . , λk and the sum of the weights of the edges of G is m,
then

t(G) =

∏
v∈G deg(v)

m

k∏
i=2

(1 − λi).

Proof. We refer the reader to [11]. The proof there is given only for unit edge
weights, but it generalizes immediately to arbitrary positive integer weights.

We need two other lemmas. The first of these is easy to prove, but in a sense
it is the heart of the whole proof, because it shows the relationship between tensor
products and the stochasticization operator.

Lemma 2. Let A1, A2, . . . , An be matrices whose row-sums are nonzero. Then the
row-sums of A1 ⊗A2 ⊗ · · · ⊗An are nonzero, and

S(A1 ⊗A2 ⊗ · · · ⊗An) = S(A1)⊗ S(A2)⊗ · · · ⊗ S(An).

Proof. By induction it suffices to consider the case n = 2. It is clear from the
definitions that each row-sum of A1 ⊗ A2 is a row-sum of A1 times a row-sum
of A2. Each element of S(A1 ⊗A2) is obtained by multiplying an element a1 of A1

by an element a2 of A2, and then dividing by a row-sum of A1 ⊗ A2. This is the
same as dividing a1 by the appropriate row-sum of A1, then dividing a2 by the
appropriate row-sum of A2, and then multiplying the two together.

The last lemma is a piece of “folklore” from linear algebra.

Lemma 3. Let A be an m×n matrix and let B be an n×m matrix, with entries in
some field. If pAB(λ) and pBA(λ) are the characteristic polynomials of AB and BA
respectively, then λmpAB(λ) = λnpBA(λ).

Sketch of proof. See Exercise 3 of VII.5 of [7], or note that tr
[
(AB)k

]
= tr

[
(BA)k

]
for all positive k and apply Newton’s identities.

3. The main result

Theorem 1. Let G1, G2, . . . , Gn be connected bipartite graphs with positive integer
edge-weights and at least one edge each. Then G1⊗G2⊗· · ·⊗Gn has 2n−1 connected
components, each of which is also a connected bipartite graph with positive integer
edge-weights and at least one edge. The φ-polynomials of the connected components
are all equal up to a factor of a power of λ.

Proof. We shall give full details only for the case n = 2; the general case follows
exactly the same pattern, with no new ideas, but it is messy to notate. For i = 1, 2,
let (Xi, Yi) be a bipartition of Gi. Let

Z1 = (X1 ×X2) ∪ (Y1 × Y2) and Z2 = (X1 × Y2) ∪ (Y1 ×X2).

Let H1 and H2 be the (weighted) subgraphs of G1 ⊗ G2 induced by Z1 and Z2

respectively. From the definition of tensor product we see that the edge-weights of a
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tensor product are the product weights, and that the only edges of G1⊗G2 are those
between the two parts of H1 and between the two parts of H2. It is straightforward
to verify that the connectedness of G1 and G2 implies the connectedness of H1

and H2, proving the first part of the theorem.
If the adjacency matrix of Gi is(

0 Ai
ATi 0

)
,

then the adjacency matrices of H1 and H2 are(
0 A1 ⊗A2

AT1 ⊗AT2 0

)
and

(
0 A1 ⊗AT2

AT1 ⊗A2 0

)
.

Depending on whether |X1||X2| ≤ |Y1||Y2| or |X1||X2| > |Y1||Y2|, φH1 (λ) is the
characteristic polynomial of either

S(A1 ⊗A2)S(AT1 ⊗AT2 ) or S(AT1 ⊗AT2 )S(A1 ⊗A2).

By Lemma 3 (taking the field to be Q, say), these two characteristic polynomials
differ only by a factor of a power of λ, and we are concerned only with equality up
to such a factor, so it suffices to consider just the first of the two cases. Now

S(A1 ⊗A2)S(AT1 ⊗AT2 ) =
[
S(A1)⊗ S(A2)

][
S(AT1 )⊗ S(AT2 )

]
=
[
S(A1)S(AT1 )

]⊗ [S(A2)S(AT2 )
]
,

where the first equality follows from Lemma 2 and the second equality may be
justified by noting that the dimensions of the matrices A1 and AT1 and of the
matrices A2 and AT2 are compatible for multiplication, so that the matrices may be
interpreted as linear transformations, when the equality is obvious. Now a similar
argument shows that φH2(λ) is, up to a factor of a power of λ, the characteristic
polynomial of [

S(A1)S(AT1 )
]⊗ [S(AT2 )S(A2)

]
.

This differs from what we have for H1 only by the interchange of S(A2) and S(AT2 ).
But by Lemma 3, S(A2)S(AT2 ) and S(AT2 )S(A2) have the same spectra up to the
multiplicity of zero. The proof is now concluded by noting that the spectrum
of a tensor product of two square matrices is obtained by taking the product of
an eigenvalue of one matrix with an eigenvalue of the other in all possible ways,
counting multiplicities ([2], Theorem 2.23).

Corollary 1. Let G1 = (X1, Y1) and G2 = (X2, Y2) be complete bipartite graphs
with edges weighted by independent indeterminates and with at least one edge each.
Let H1 and H2 be the two connected components of G1 ⊗G2 with vertex sets

Z1 = (X1 ×X2) ∪ (Y1 × Y2) and Z2 = (X1 × Y2) ∪ (Y1 ×X2)

respectively. Then

t(H1)

t(H2)
=


∏
v∈X1

deg(v)∏
v∈Y1

deg(v)


|X2|−|Y2|

∏
v∈X2

deg(v)∏
v∈Y2

deg(v)


|X1|−|Y1|

.



THE Q-SPECTRUM AND SPANNING TREES OF TENSOR PRODUCTS 3159

Proof. We will prove the result with arbitrary positive integer values in place of the
indeterminates. This suffices because the given equation is a polynomial identity
(after denominators are cleared).

The bijection between the edges of H1 and H2 that sends (x1 × x2, y1 × y2) to
(x1 × y2, y1× x2) is weight-preserving, so that the sums of the weights of the edges
of H1 and H2 are equal. So by Lemma 1 we have

t(H1)

( ∏
v∈Z2

deg(v)

)( k2∏
i=2

(1− λ′i)
)

= t(H2)

( ∏
v∈Z1

deg(v)

)( k1∏
i=2

(1− λi)

)
,

where the λi are the roots of φH1 and the λ′i are the roots of φH2 . By Theorem 1,
the λi and the λ′i are the same except that possibly there are more zeroes in one
case. But zero roots simply contribute a factor of one to the i-products in the above
equation and hence they may be ignored. Furthermore, these products are nonzero
since the complexity of a complete bipartite graph is nonzero, so we may cancel
them on both sides, leaving

t(H1)
∏
v∈Z2

deg(v) = t(H2)
∏
v∈Z1

deg(v).

An examination of the adjacency matrices as in the proof of Theorem 1 shows that
the product of the degrees of the vertices of H1 is( ∏

v∈X1

deg(v)

)|X2|( ∏
v∈X2

deg(v)

)|X1|(∏
v∈Y1

deg(v)

)|Y2|(∏
v∈Y2

deg(v)

)|Y1|

and the product of the degrees of the vertices of H2 is( ∏
v∈X1

deg(v)

)|Y2|(∏
v∈Y2

deg(v)

)|X1|(∏
v∈Y1

deg(v)

)|X2|( ∏
v∈X2

deg(v)

)|Y1|
.

Substituting these expressions into the equation yields the desired result.

We remark that this corollary subsumes all previously known special cases—
P2n+1 ⊗ P2n+1 (Stanley’s conjecture), P2n+1 ⊗ P2m+1 with m 6= n (Knuth and
Ciucu), P2n+1 ⊗ P2m+1 where one of the paths has arbitrary weights on its edges
(Ciucu), and Km,n⊗P2r+1 (Sagan [12]), where Km,n is a complete bipartite graph.
For example, to recover Stanley’s conjecture, let X1 and Y2 have n vertices each
and let X2 and Y1 have n + 1 vertices each. Assign values of zero or one to the
indeterminate weights appropriately so that G1 and G2 reduce to graphs equivalent
to P2n+1. The product of the degrees of one part of P2n+1 divided by the product
of the degrees of the other part equals two. We obtain a ratio of 21 × (1

2 )−1 = 4
from Corollary 1, explaining the factor of four in Stanley’s conjecture.

4. Concluding remarks

1. We mentioned in the introduction that the Q-spectrum of any graph behaves
well under tensor product, but we did not show this fact explicitly in our proof since
it was not needed. Here are the details. If G is a graph without isolated vertices
and with adjacency matrix A, then the Q-polynomial of G is defined by

QG(λ)
def
= det

[
λI − S(A)

]
.
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Thus, from Lemma 2,

QG1⊗G2(λ) = det
[
λI − S(A1 ⊗A2)

]
= det

[
λI − S(A1)⊗ S(A2)

]
.

But as we have already remarked, the eigenvalues of a tensor product are just
the pairwise products of the individual eigenvalues ([2], Theorem 2.23). So the
Q-spectrum of G1 ⊗G2 is easily computed from the Q-spectra of G1 and G2.

2. It is natural to ask if the Q-spectrum method can be applied to other graph
constructions, such as the sum or more generally any NEPS ([2], §2.5). Unfortu-
nately, the Q-spectrum appears to behave badly with respect to the sum. Curiously,
the Laplacian spectrum behaves well with respect to sum (see [9]) but badly with
respect to tensor product. Perhaps some amalgamation of the two, such as one of
the multivariate spectra suggested in [2], §1.3, will solve the problem of enumerating
spanning trees in any NEPS, but I have not been able to do so.

3. Igor Pak [10] has suggested that perhaps the planarity assumption in Knuth’s
proof might be weakened to a matroid duality assumption. However, at present
there is no matroid generalization of Stanley’s conjecture known.

4. It is tempting, in light of how simple and striking the statement of Corollary 1
is, to look for an insightful combinatorial proof. Sagan [12] has obtained an explicit
formula for the complexities of the connected components of Km,n⊗P2r+1; for one
component it is

(2m)r(n−1)mr−1(2n)m(r−1)n2m−1.

He has suggested that this formula and/or Corollary 1 might be proved using Prüfer
codes, along the lines of [6]. The best I have done with Sagan’s suggestion is to
prove the special case of Corollary 1 when there exists a weighting of the vertices
of G1 and G2 such that the weight of each edge is the product of the weights of its
endvertices. In this case, a Prüfer code argument gives an explicit factorization of
t(H1) and t(H2) into linear functions of the vertex weights. From this Corollary 1
follows easily.

5. By relabelling if necessary we may assume in Corollary 1 that |X1| ≥ |Y1| and
|X2| ≥ |Y2|, so that what looks like the denominator really is the denominator. It is
easy to see that the fraction on the right-hand side is in lowest terms, so by unique
factorization it follows that the polynomial t(H1) is divisible by the numerator of
the right-hand side (and of course t(H2) is divisible by the denominator). One
can then ask for a combinatorial interpretation of the quotient. In the case where
|X1| = |Y1| and G2 is a path with three vertices I have a combinatorial proof that
the quotient enumerates the spanning trees of G1, but the argument seems difficult
to generalize. If G2 is an arbitrarily long path, I can show that the quotient has
nonnegative coefficients but it does not seem to enumerate anything simple.
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