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Ever since Viggo Brun's pioneering work, number theorists have developed
increasingly sophisticated refinements of the sieve of Eratosthenes to attack
problems such as the twin prime conjecture and Goldbach's conjecture. Ever since
Gian-Carlo Rota's pioneering work, combinatorialists have found more and more
areas of combinatorics where sieve methods (or Mo� bius inversion) are applicable.
Unfortunately, these two developments have proceeded largely independently of
each other even though they are closely related. This paper begins the process of
bridging the gap between them by showing that much of the theory behind the
number-theoretic refinements carries over readily to many combinatorial settings.
The hope is that this will result in new approaches to and more powerful tools for
sieve problems in combinatorics such as the computation of chromatic polynomials,
the enumeration of permutations with restricted position, and the enumeration of
regions in hyperplane arrangements. � 1998 Academic Press

1. INTRODUCTION

The Mo� bius function of a finite partially ordered set has been a pervasive
theme in combinatorics ever since Rota's revolutionary paper ``Founda-
tions I'' [21]. Its ubiquity is quite astonishing; it is related to such diverse
topics as the four-color theorem, the homology of simplicial complexes,
and symmetric functions. Unexpected new applications are still being found
today, e.g., Athanasiadis's finite field method for subspace arrangements
[1] or Wagner's description of the coefficients of the Tutte polynomial of
a matroid [24].

Rota was motivated in part by number theory, as is obvious from his
choice of terminology (e.g., ``Galois connection,'' or indeed the term
``Mo� bius function'' itself). So in view of the enormous success of his ideas,
it is rather surprising that since Foundations I, there has been very little
traffic carrying the deeper sieve methods developed by number theorists
over into combinatorics. The purpose of this paper is to start this traffic
rolling.

More specifically, we give a definition of a sieve that is sufficiently
general to encompass many important sieve problems in both number
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theory and combinatorics and that is also sufficiently specialized to enable
fairly sophisticated methods (such as Selberg's 42 sieve) to be used. We
also discuss briefly some potential applications.

2. SIEVE PROBLEMS

The term ``sieve'' is used frequently in both combinatorics and number
theory, but there is no universally accepted technical definition of the term.
We propose the following definition, which, while simple, is perhaps the
most crucial idea in this paper.

Definition. A sieve is an ordered 3-tuple (A, L, _) where A is a finite
set, L is a finite lattice, and _ is a map from A into L. A weighted sieve
is an ordered 4-tuple (A, w, L, _) where A is an arbitrary set, w is a func-
tion from A to the nonnegative reals such that �a # A w(a) converges, L is
again a finite lattice, and _ is again a map from A into L.

As will become apparent in the discussion below, a sieve is equivalent to
the special case of a weighted sieve in which the weight function equals one
for a finite number of elements of A and equals zero everywhere else. The
most interesting applications involve only the simpler concept of a sieve,
but occasionally the extra generality of a weighted sieve is necessary. For
this reason we will state our results in terms of weighted sieves.

The following notation will be used throughout this paper. Since L is
finite, it has a minimum element 0� and a maximum element 1� . We use O,
7, 6, and + to denote the partial ordering, the meet, the join, and the
Mo� bius function of L respectively. If L is graded, we use \ to denote its
rank function. Basic facts about lattices may be found in [23, Chapter 3].

Given a weighted sieve (A, w, L, _), define a function A: L � R by

A(x) =
def

:
[a # A : xP_(a)]

w(a).

Also let S: L � R be the function obtained from A by Mo� bius inversion:

S(x) =
def

:
ypx

+(x, y)A( y).

Proposition 1. With the above terminology,

S(0� )= :
[a # A : _(a)=0� ]

w(a).
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Proof. Define the sifting function s0 : A � [0, 1] by

s0(a) =
def {1,

0,
if _(a)=0� ;
otherwise.

Note that

s0(a)= :
yP_(a)

+(0� , y).

Therefore

S(0� )= :
y # L

+(0� , y) A( y)

= :
y # L

+(0� , y) :
[a # A : yP_(a)]

w(a)

= :
a # A

w(a) :
yP_(a)

+(0� , y)

= :
a # A

w(a) s0(a)

= :
[a # A : _(a)=0� ]

w(a). K

In a typical sieve problem, the function A is known (or at least
approximately known) and the goal is to estimate S(0� ). We may think of
_ as distributing the elements of A over the elements of L; if we know A
then we know how many elements of A lie on or above each element x # L.
So in light of Proposition 1, we see that wanting to know S(0� ) is equivalent
to wanting to know how many elements of A lie on 0� .

Let us now look at some important examples, which we hope will clarify
the above concepts and justify our choice of definitions. In each case, the
weight function w will be identically one.

Example 1. In a typical number-theoretic sieve problem, A is a set of
the form

A=[h(1), h(2), ..., h(n)]

where h is some integer-valued polynomial, L is the set of divisors (par-
tially ordered by divisibility) of some fixed squarefree number 6, and
_(a)= gcd(a, 6). Thus A(x) is the number of elements of A that are
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divisible by x, and by Proposition 1, S(0� ) is the number of elements of A

relatively prime to 6.

For instance, let h be the polynomial h(r)=r(r+2), and let 6 be the
product of all primes less than or equal to - n=|A|1�2. Then S(0� ) is the
number of integers between 1 and n such that neither n nor n+2 is
divisible by a prime less than or equal to - n. In other words, S(0� ) is a
good approximation to the number of twin primes less than or equal to n.
Showing that S(0� ) � � as n � � would prove the twin prime conjecture.
Similarly, if h is the polynomial h(r)=r(n&r) and 6 is as before, then
a sufficiently large lower bound for S(0� ) would prove the Goldbach
conjecture.

Example 2. Let G be a finite abelian group, and let [H1 , H2 , ..., Hn]
be a family of subgroups of G. Let L be the lattice of all subgroups of G
that are generated by some finite subset of the H 's. Partially order L by
inclusion. For some fixed integer k, let A be the set of all k-tuples /=
(/1 , /2 , ..., /k) of characters of G. Define _(/) to be the kernel of /, that is,
the maximal element K # L such that /i restricted to K is trivial for all i.
Then for any H # L, A(H) is the number of k-tuples of characters of G�H,
i.e., A(H)=( |G|�|H| )k. By Proposition 1, S(0� ) is the number of k-tuples
with trivial kernel.

Example 2 was first considered by Kung, Murty, and Rota [15,
Theorem 10]. Its origins lie in Minkowski's conjecture that in any lattice
tiling of Rn there exist two tiles that share an (n&1)-face. Hajo� s [11]
solved this problem in 1942 by transforming it into a problem about
abelian groups, and his work was extended by Re� dei [18, 19]. The above
observation about S(0� ) yields a transparent proof of one of Re� dei's main
theorems (his so-called ``Tra� gheitsatz'').

It may not be clear why we care about the number of k-tuples with
trivial kernel, so let us now consider two special cases of Example 2 where
S(0� ) counts something more obviously interesting. The first special case is
a well-known result by Crapo and Rota on the so-called critical problem
for finite vector spaces (see for example [3]).

Example 2a. Take G to be an n-dimensional vector space Fn
q over the

finite field Fq , and let [v1 , v2 , ..., vn] be a set of vectors in Fn
q . Let L be

the lattice of all subspaces of Fn
q that are spanned by some finite subset of

the v 's. Characters correspond to linear functionals, so let A be the set of
all k-tuples of linear functionals on Fn

q . Define _ to be the kernel as before.
Then it is not hard to see that

A(x)=qk(n& p(x))

296 TIMOTHY Y. CHOW



File: DISTL2 174805 . By:JB . Date:02:09:98 . Time:10:23 LOP8M. V8.B. Page 01:01
Codes: 3001 Signs: 2321 . Length: 45 pic 0 pts, 190 mm

where p(x) is the rank of x in L. As before, S(0� ) is the number of k-tuples
with trivial kernel.

The characteristic polynomial /L(*) of L is defined by

/L(*) =
def

:
x # L

+(0� , x) *\(1� )&\(x).

The form of A(x) in Example 2a shows that S(0� ) is, up to a factor of a
power of q, equal to /L(qk). Now Zaslavsky [25, 92] has shown that if L
is the intersection lattice of a real hyperplane arrangement H, then
|/L(&1)| and |/L(1)| give the total number of regions and the total
number of bounded regions respectively. Moreover, Athanasiadis [1] has
shown that if all the hyperplanes are defined over the rationals, then it suf-
fices to consider the ``localizations'' of H and /L to a finite field over a suf-
ficiently large prime q. In short, estimating S(0� ) allows us to count regions
in hyperplane arrangements.

Example 2b. Let 1 be a finite undirected graph with vertex set V, and
let n be a positive integer. Let A be the set of all colorings of V with at most
n colors, i.e., the set of all maps }: V � [1, 2, ..., n]. Let L be the lattice of
contractions of 1, i.e., the collection of all set partitions ? of V such that
each block of ? induces a connected subgraph of 1. The partial order of L
is given by reverse refinement, so that 0� is the partition where each block
is a singleton. Let _(}) be the maximal element ? # L such that } colors
each block of ? monochromatically. It is not hard to show that

A(?)=n |?|,

where |?| denotes the number of blocks of ?, and that S(0� ) is the chromatic
polynomial of 1, i.e., the number of colorings of V with at most n colors
such that adjacent vertices are always assigned different colors.

It is not immediately obvious that Example 2b is really a special case of
Example 2, but it is. In fact, it is a special case of Example 2a. This is
explained in [3]; alternatively, for readers familiar with matroids, it follows
because every graphic matroid is representable over every field [16,
Proposition 5.1.2].

A number of important problems in combinatorics involve computing
chromatic polynomials. For instance, if G=Kn_Kn , the graph whose ver-
tex set V consists of the points of an n_n grid and in which two vertices
are adjacent if and only if they lie in the same row or column, then S(0� )
is just the number of n_n Latin squares. (A Latin square is an n_n array
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of integers such that each row and each column is a permutation of the
integers from 1 to n.) Computing the asymptotic number of n_n Latin
squares is a major open problem. The best partial result is due to Godsil
and McKay [7], who obtain an asymptotic formula for the number of
k_n Latin rectangles when k=o(n6�7).

Example 3. Let G be an n_n grid and let B be a subset of G. A rook
placement R on B is a subset of B such that no two elements of R lie in
the same row or column of B. (The terminology comes from the problem
of putting rooks on a chessboard such that no two rooks can take each
other.) Let A be the set of all rook placements R�G on G such that
|R|=n. Clearly |A|=n ! because such rook placements are in bijection
with permutations of n. Let L be the set of all rook placements on B (par-
tially ordered by inclusion) together with an adjoined maximum element 1� .
Define _ by setting _(R)=R & B. Then A(R)=(n&|R| )! and S(0� ) is the
number of rook placements R�G on G such that |R|=n and no element
of R lies in B.

Classical accounts of rook theory may be found in [23, Chapter 2] and
[20, Chapters 7�8]. Although rook theory is an old branch of com-
binatorics, there have been a number of recent advances that have
rejuvenated it, e.g., [2, 5, 6, 8�10]. There also exist q-analogs of rook
theory, e.g., [4], that fit nicely into our framework, but we shall omit the
details.

In number theory, the lattice L is always a Boolean algebra, and hence
number theorists tend to concentrate on the structure of A rather than the
structure of L. In contrast, combinatorialists deal with a wide variety of
lattices and tend to focus on the structure of L, introducing A and _ only
when they are needed in the course of a proof. Our definition of a sieve
puts A and L on an equal footing.

3. SELBERG'S 42 UPPER BOUND METHOD

The notion of a sieve is very general, and further conditions are needed
to produce nontrivial results.

Definition. Let L be a lattice with a minimum element 0� . A function
f : L � R"[0] is multiplicative if f (0� )=1 and f (x 6 y) f (x 7 y)= f (x) f ( y)
for all x, y # L.

Most number-theoretic problems satisfy the following condition.
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The Multiplicativity Condition. There exists a multiplicative function f
and a ``small'' remainder function R: L � R such that

A(x)=
A(0� )
f (x)

+R(x) (3.1)

for all x # L.

The word ``small'' in placed in scare quotes because its meaning varies
somewhat from problem to problem. In general, the smaller R is the better
the results, and if R exceeds a certain size threshold then it swamps the
main term and no results can be obtained.

The multiplicativity condition holds in Example 1 above, as we may see
as follows. Let N(x) denote the number of solutions of

h(v)=0 (mod x)

in the range 1�v�x. By the Chinese Remainder Theorem, N(x) is multi-
plicative. If we set f (x)=x�N(x) then it is not hard to show that

A(x)=
A(0� )
f (x)

+R(x)

with

|R(x)|�
x

f (x)
.

That this is indeed ``small'' may be seen heuristically by noting that |R(x)|
is roughly constant whereas A(x) grows as n grows.

Now let us return to the general case. Write +(x) for +(0� , x) for sim-
plicity. If (3.1) holds, then

S(0� )=A(0� ) :
x # L

+(x)
f (x)

+ :
x # L

+(x) R(x). (3.2)

Now, it is natural to think of the first sum in (3.2) as the main term and
the second sum in (3.2) as the error term, since R(x) is small. It is also
natural to try to estimate both the main term and the error term directly.
But typically, the problem with doing this is that even though R(x) is
``small,'' there are a lot of terms in the summation, making the error term
unacceptably large.

Brun's key idea was to perturb the Mo� bius function by setting it equal
to zero for selected arguments. Done carefully, this drastically reduces the
number of summands in the error term without disturbing the main term
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too much. Selberg later improved Brun's results by allowing himself the
flexibility of perturbing the Mo� bius function in more general ways.

More precisely, following Selberg [22], define a 4-system to be a func-
tion *: L � R. If

:
xPy

*(x)� :
xPy

+(x) (3.3)

for all y # L, then we say that * is a lower bound 4-system. Similarly, if

:
xPy

+(x)� :
xPy

*(x) (3.4)

for all y # L, then we say that * is an upper bound 4-system. The reason for
this nomenclature is the following.

Proposition 2. Let (A, w, L, +) be a weighted sieve. Assume that (3.1)
holds. Let *& be a lower bound 4-system and let *+ be an upper bound
4-system. Then

A(0� ) :
x # L

*&(x)
f (x)

+ :
x # L

*&(x) R(x)�S(0� )

�A(0� ) :
x # L

*+(x)
f (x)

+ :
x # L

*+(x) R(x).

Proof. From the proof of Proposition 1 we have

S(0� )= :
a # A

w(a) :
xP_(a)

+(x),

so by (3.3) and (3.4),

:
a # A

w(a) :
xP_(a)

*&(x)�S(0� )� :
a # A

w(a) :
xP_(a)

*+(x).

Thus

:
x # L

*&(x) :
[a # A : xP_(a)]

w(a)�S(0� )� :
x # L

*+(x) :
[a # A : xP_(a)]

w(a)

or

:
x # L

*&(x) A(x)�S(0� )� :
x # L

*+(x) A(x).

The conclusion now follows from (3.1). K
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The idea now is to find 4-systems * for which *(x) is zero for many
values of x (so that the error term is cut down to a manageable size) yet
for which the inequalities in Proposition 2 are not too loose and for which
the main term can still be estimated accurately.

Finding good 4-systems can involve a lot of technical complications and
this is not the place to delve deeply into all the variations that number
theorists have developed (see [12] or [22] for full accounts, and [13,
Chapter IV] or [17] for introductions). However, to justify our claim that
much number theory carries over to our generalized setting, we present
here Selberg's 42 upper bound method. This is perhaps the result that
involves the fewest technicalities, yet it is still very powerful.

Theorem 1. Let (A, w, L, _) be a weighted sieve, and let X be a non-
empty order ideal of L. Assume that the multiplicativity condition holds. Let
g: L � R be defined by

g( y)= :
xPy

+(x, y) f (x).

Assume that g( y){0 for all y, and let

Q= :
x # X

+2(x)
g(x)

.

Then

S(0� )�
A(0� )

Q
+ :

x1 , x2 # X

l(x1) l(x2) R(x1 6 x2),

where

l(x)=
f (x)

Q
:

[ y # X : xPy]

+(x, y) +( y)
g( y)

when x # X and l(x)=0 if x � X.

Proof. We remark first of all that if Q=0 then the division by Q should
be interpreted as being ``infinity'' so that the theorem is vacuous.

The proof carries over almost word for word from the number-theoretic
case. Define

X* =
def [x: x= y 6z for some y, z # X].
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Now let f : X � R be any map such that l(0� )=1. We claim that the
4-system *l defined by

*l(x) =
def

:
x1 , x2 # X

x1 6 x2=x

l(x1) l(x2)

for x # X* and *l(x)=0 otherwise is necessarily an upper bound 4-system.
For

:
xPy

*l(x)= :
xPy

:
x1 , x2 # X

x1 6 x2=x

l(x1) l(x2)=\ :
z # X : zP y

l(z)+
2

,

and this is nonnegative for all y and equal to one when y=0� (because
l(0� )=1), so (3.4) holds.

Define Hl by

Hl =
def

:
x # X*

*l(x)
f (x)

.

By Mo� bius inversion,

f (x)= :
yPx

g( y),

so by the multiplicativity of f,

1
f (x1 6 x2)

=
1

f (x1) f (x2)
:

yPx1 7 x2

g( y).

Hence

Hl= :
x1 # X

:
x2 # X

l(x1) l(x2)
f (x1 6 x2)

= :
x1 # X

:
x2 # X

l(x1) l(x2)
f (x1) f (x2)

:
yPx1 7 x2

g( y)

= :
y # X

g( y) \ :
x # X : yPx

l(x)
f (x)+

2

.

Now define

k( y) =
def

:
x # X : yPx

l(x)
f (x)

.
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By Mo� bius inversion on X (which has the same Mo� bius function as L
because X is an order ideal),

l(x)= f (x) :
y # X : xPy

+(x, y) k( y).

Since f is multiplicative, f (0� )=1, so the condition l(0� )=1 implies

:
y # X

+( y) k( y)=1.

We therefore have the identity

Hl= :
y # X

g( y) k( y)2= :
y # X

1
g( y) \g( y) k( y)&

+( y)
Q +

2

+
1
Q

.

Thus if we take l to be as in the statement of the theorem, then l(0� )=1,
and

k( y)=
1
Q

+( y)
g( y)

,

so Hl=1�Q. The theorem then follows from Proposition 2, since *l is an
upper bound 4-system. K

The smaller X is, the fewer the summands in the error term but the
poorer the approximation. The upper bound in Theorem 1 is not the best
of all possible upper bounds, but it is simple and explicit and in practice
a judicious choice of X leads to quite a sharp approximation, at least in
many number-theoretic applications.

4. APPLICATIONS TO COMBINATORICS

The combinatorial examples described previously are all potential
applications for Theorem 1 (or similar theorems borrowed from number
theory). However, we should point out one serious difficulty. In order to
apply Theorem 1, we must posit the multiplicativity condition. But for
many of the lattices that appear in combinatorics, there are no nonconstant
multiplicative functions. For example, it is easy to check that the lattice of
contractions of any graph that contains a cycle of length four or more
admits no nonconstant multiplicative functions.

Complete despair at this obstacle would be premature, however. By
taking logarithms, we see that the notion of a multiplicative function is
equivalent to the notion of a valuation, i.e., a function v: L � R such that

v(x 6 y)+v(x 7 y)=v(x)+v( y).
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Valuations do exist on many important lattices and they have been studied
by a number of people.

Perhaps more importantly, if we carefully re-examine the discussion in
the previous section, we see that the crucial notion of a 4-system does
not depend on the multiplicativity of f but only on the algebraic form
of (3.1). Therefore we can still play the game of seeking clever upper
and lower bound 4-systems even if no multiplicative functions exist. Now,
without some condition on f, we cannot expect to obtain nontrivial
bounds. However, note that most of the lattices that arise in combinatorics
are at least semimodular, i.e., they are graded and the rank function
satisfies

\(x 6 y)+\(x 7 y)�\(x)+\( y).

In semimodular lattices there will always be ``submultiplicative'' functions,
and these might be reasonably good substitutes for multiplicative functions.

The logical next step in the program initiated here would be to analyze
particular applications in detail. We hope to carry this out in future
papers.

As a final remark, we mention that sieve methods in number theory
often need to be supplemented by analysis. Theorems and conjectures
about zeta functions and L-functions, for example, enter naturally into
many problems. It is not clear what would play this role in combinatorics,
but a natural candidate would be the Re� dei zeta function [15] or possibly
the zeta function of an arithmetical semigroup [14]. The suggestion in
[15] that the analytical properties of the Re� dei zeta function be worked
out does not seem to have been pursued yet; it would be interesting to do
this and to examine the connection with sieve methods.
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