Rota's Basis Conjecture and the Wide Partition Conjecture

(Communicating Mathematics, July 2007)

Timothy Y. Chow

tchow@alum.mit.edu

Center for Communications Research, Princeton

Pseudoku, anyone?

A length- ℓ row/column must have each number from 1 to ℓ.

Note: A blank grid is a partition; a finished grid is a tableau.

Rota's basis conjecture (Rota, 1989)

Let V be an n-dimensional vector space.
Let $B_{1}, B_{2}, \ldots, B_{n}$ be bases of V.
Then there exists an $n \times n$ grid of vectors $v_{i j}$ such that the i th row is B_{i} and every column is a basis of V.

Example. $V=\mathbb{R}^{2}, B_{1}=\left\{\binom{1}{0},\binom{0}{1}\right\}, B_{2}=\left\{\binom{1}{0},\binom{1}{1}\right\}$.
$\binom{1}{0} \quad\binom{0}{1}$
$\binom{1}{1} \quad\binom{1}{0}$

Rota on Rota's basis conjecture

"It is probably true for all even integers n. Behind this conjecture lurk certain identities from invariant theory, which remain unproved, and which must be passed over in silence. As a matter of fact, one can rattle off several other conjectures on linear dependence of vectors and tensors, all of them suggested by as yet unproved identities in invariant theory. I would feel crushed if the basis conjecture were to be settled by methods other than some new insight in the algebra of invariant theory."

Gian-Carlo Rota, Ten mathematics problems I will never solve, invited address at a joint AMS/MMS meeting, December 6, 1997.

Even and odd Latin squares

A Latin square of order n is an $n \times n$ grid in which every row and every column is a permutation of $\{1,2, \ldots, n\}$. Example:

$$
L=\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3 \\
3 & 1 & 4 & 2 \\
4 & 3 & 2 & 1
\end{array}
$$

The sign of a permutation is 1 if the number of inversions is even, and -1 otherwise.
$\operatorname{sign}(L):=$ product of the signs of the rows and the columns In the example, $\operatorname{sign}(L)=(1)(-1)(-1)(1)(1)(-1)(-1)(1)=1$.
L is even if $\operatorname{sign}(L)=1$ and odd if $\operatorname{sign}(L)=-1$.

Alon-Tarsi conjecture

$\operatorname{ELS}(n):=$ number of $n \times n$ even Latin squares
$\operatorname{OLS}(n):=$ number of $n \times n$ odd Latin squares
For n odd, $\operatorname{ELS}(n)=\operatorname{OLS}(n)$ (switch two columns).
Conjecture (Alon-Tarsi '92). $\operatorname{ELS}(n) \neq \operatorname{OLS}(n)$ for even n.
Theorem (Huang-Rota '94). For even n, characteristic 0 , Alon-Tarsi \Rightarrow Rota's basis conjecture

Idea of proof:

$$
\sum_{n!^{n} \text { configs }} \pm \prod_{i} \operatorname{det}(\text { column } i) \approx \operatorname{ELS}(n)-\operatorname{OLS}(n)
$$

Alon-Tarsi partial results

Computationally verified for (even) $n \leq 10$.
Theorem (Drisko '97, '98; Zappa '97). Alon-Tarsi is true for $n=2^{r+1} p$ and $n=2^{r}(p+1)$ for p an odd prime and $r \geq 0$.

Drisko counts isotopy classes of Latin squares mod p^{k}.
Zappa studies fixed-diagonal Latin squares (all-1 diagonal). Let $Z(n)=\operatorname{FDELS}(n)-\operatorname{FDOLS}(n)$.
If n is even then $n!Z(n)=\operatorname{ELS}(n)-\operatorname{OLS}(n)$.
Theorem (Zappa '97).
(1) $Z(2 k) \neq 0 \Rightarrow Z(4 k) \neq 0$
(2) $Z(2 k-1) \neq 0$ and $Z(2 k) \neq 0 \Rightarrow Z(4 k-2) \neq 0$

Rota's conjecture: other results

Theorem (Chan '95). Rota's conjecture is true for $n \leq 3$.
Theorem (Ponomarenko '04). Can ensure that for all i, the first i columns are a disjoint union of i bases.

Theorem (Geelen-Humphries '06). Rota's conjecture is true if every subset of $n-1$ vectors is linearly independent.

For matroid theorists: Above are true for all matroids. Also:
Theorem (Wild '94). Rota's conjecture is true for strongly base-orderable matroids.

Generalizing to partitions

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$.
Let I_{i} be a linearly independent set of size λ_{i}.
Does there exist a tableau whose i th row is I_{i} and whose columns are linearly independent?

Motivation: Rota's invariant-theoretic approach involves partitions, not just squares. Perhaps one can do induction, adding one box at a time?

Special case: Let $I_{i}=\left\{e_{1}, e_{2}, \ldots, e_{\lambda_{i}}\right\}$. Then "linearly independent" means "distinct." Does this case always work?

Not necessarily. If $I_{1}=\left\{e_{1}\right\}$ and $I_{2}=\left\{e_{1}\right\}$, the only tableau whose i th row is I_{i} is ${ }_{e_{1}}^{e_{1}}$

A necessary condition

Say that $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ is Latin if there exists a tableau for λ whose i th row is $\left\{1,2, \ldots, \lambda_{i}\right\}$ and whose columns have distinct numbers.

A Latin partition must have at least ℓ columns so that the 1's can go into different columns, i.e., the length of row 1 is at least the height of column 1.

More generally, the sum of the lengths of the first i rows is at least the sum of the heights of the first i columns.

The same must be true for any subpartition of λ, obtained by deleting some of the rows.

Wide partitions

If $\lambda_{1} \geq \lambda_{2} \geq \cdots$ are the row lengths of a partition λ, then let $\lambda_{1}^{\prime} \geq \lambda_{2}^{\prime} \geq \cdots$ denote its column lengths.

Write $\lambda \succeq \lambda^{\prime}$ if $\lambda_{1}+\cdots+\lambda_{i} \geq \lambda_{1}^{\prime}+\cdots+\lambda_{i}^{\prime}$ for all i.
Write $\mu \subseteq \lambda$ if the rows of μ are a subset of the rows of λ.
Definition. λ is wide if $\mu \succeq \mu^{\prime}$ for every $\mu \subseteq \lambda$.
Example. $\lambda=(5,3,2,2)$ is not wide. Take $\mu=(3,2,2)$; then $\mu_{1}+\mu_{2}=5<6=\mu_{1}^{\prime}+\mu_{2}^{\prime}$.

Wide partition conjecture

Proposition. If λ is Latin then λ is wide.
Wide partition conjecture. If λ is wide then λ is Latin.
For rectangles, the wide partition conjecture asserts that Latin rectangles exist.

It holds for all partitions fitting inside a 10×10 square, and all partitions having at most 65 boxes.

We conjecture that wideness is the right condition even for the linearly-independent-set version of the conjecture.

Symmetric shapes suffice

Theorem. If λ is wide, then so is the partition below.

Partitions with few distinct parts

Theorem. If λ is wide and has only 2 distinct row lengths, then λ is Latin.

Theorem. If λ is wide and symmetric and has only 3 distinct row lengths, then λ is Latin.

Theorem. If λ is wide and has only 3 distinct row lengths and either the 2nd or 3rd row lengths occurs with multiplicity one, then λ is Latin.

Theorem. If λ is wide and has only 4 distinct row lengths and both the 2nd and 4th row lengths occurs with multiplicity one, then λ is Latin.

Graphs

A stable set in a graph is a set of vertices with no edges between them.

A clique is a set of vertices such that every possible edge between them is present.

A k-stable set is a disjoint union of k stable sets.
A k-clique is a disjoint union of k cliques.

Greene-Kleitman theorem

α_{k} : max \# vertices of a k-stable set
ω_{k} : max \# vertices of a k-clique
$\Delta \alpha_{k}:=\alpha_{k}-\alpha_{k-1}$
$\Delta \omega_{k}:=\omega_{k}-\omega_{k-1}$
Theorem (Greene-Kleitman). If G is a comparability graph, then $\Delta \alpha$ and $\Delta \omega$ are partitions and $(\Delta \alpha)^{\prime}=\Delta \omega$.

Example: $\Delta \alpha=(4,2), \Delta \omega=(2,2,1,1)$

Uniform k-stable sets

Definition. A k-stable set is uniform if for all i, the i th largest stable set has size $\Delta \alpha_{i}$.

The example on the previous slide was not uniform.
Definition. G_{λ} is the graph whose edges join boxes in the same row or column of λ.

Theorem. If λ is wide and there is a uniform k-stable set covering G_{λ}, then λ is Latin.

Remark. It is open whether every partition can be covered by a uniform k-stable set.

