Rota's Basis Conjecture and the Wide Partition Conjecture

(Communicating Mathematics, July 2007)

Timothy Y. Chow

tchow@alum.mit.edu

Center for Communications Research, Princeton

Pseudoku, anyone?

A length- ℓ row/column must have each number from 1 to ℓ .

Note: A blank grid is a *partition*; a finished grid is a *tableau*.

Rota's basis conjecture (Rota, 1989)

Let V be an n-dimensional vector space.

Let B_1, B_2, \ldots, B_n be bases of V.

Then there exists an $n \times n$ grid of vectors v_{ij} such that the *i*th row is B_i and every column is a basis of V.

Example.
$$V = \mathbb{R}^2$$
, $B_1 = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}, B_2 = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$.
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Rota on Rota's basis conjecture

"It is probably true for all even integers *n*. Behind this conjecture lurk certain identities from invariant theory, which remain unproved, and which must be passed over in silence. As a matter of fact, one can rattle off several other conjectures on linear dependence of vectors and tensors, all of them suggested by as yet unproved identities in invariant theory. I would feel crushed if the basis conjecture were to be settled by methods other than some new insight in the algebra of invariant theory."

Gian-Carlo Rota, *Ten mathematics problems I will never solve,* invited address at a joint AMS/MMS meeting, December 6, 1997.

Even and odd Latin squares

A *Latin square* of order n is an $n \times n$ grid in which every row and every column is a permutation of $\{1, 2, ..., n\}$. Example:

$$L = \begin{array}{ccccccccc} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \\ 3 & 1 & 4 & 2 \\ 4 & 3 & 2 & 1 \end{array}$$

The sign of a permutation is 1 if the number of *inversions* is even, and -1 otherwise.

sign(*L*) := product of the signs of the rows and the columns In the example, sign(*L*) = (1)(-1)(-1)(1)(1)(-1)(-1)(1) = 1.

L is *even* if sign(L) = 1 and *odd* if sign(L) = -1.

Alon-Tarsi conjecture

ELS(n) := number of $n \times n$ even Latin squares OLS(n) := number of $n \times n$ odd Latin squares

For *n* odd, ELS(n) = OLS(n) (switch two columns).

Conjecture (Alon-Tarsi '92). $ELS(n) \neq OLS(n)$ for even *n*.

Theorem (Huang-Rota '94). For even *n*, characteristic 0,

Alon-Tarsi \Rightarrow Rota's basis conjecture

Idea of proof:

 $\sum_{n!^n \text{ configs}} \pm \prod_i \det(\text{column } i) \approx \text{ELS}(n) - \text{OLS}(n)$

Alon-Tarsi partial results

Computationally verified for (even) $n \leq 10$.

Theorem (Drisko '97, '98; Zappa '97). Alon-Tarsi is true for $n = 2^{r+1}p$ and $n = 2^r(p+1)$ for p an odd prime and $r \ge 0$.

Drisko counts isotopy classes of Latin squares mod p^k .

Zappa studies *fixed-diagonal Latin squares* (all-1 diagonal). Let Z(n) = FDELS(n) - FDOLS(n). If *n* is even then n!Z(n) = ELS(n) - OLS(n).

Theorem (Zappa '97).

- (1) $Z(2k) \neq 0 \Rightarrow Z(4k) \neq 0$
- (2) $Z(2k-1) \neq 0$ and $Z(2k) \neq 0 \Rightarrow Z(4k-2) \neq 0$

Rota's conjecture: other results

Theorem (Chan '95). Rota's conjecture is true for $n \leq 3$.

Theorem (Ponomarenko '04). Can ensure that for all *i*, the first *i* columns are a disjoint union of *i* bases.

Theorem (Geelen-Humphries '06). Rota's conjecture is true if every subset of n - 1 vectors is linearly independent.

For matroid theorists: Above are true for all matroids. Also:

Theorem (Wild '94). Rota's conjecture is true for strongly base-orderable matroids.

Generalizing to partitions

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$.

Let I_i be a linearly independent set of size λ_i .

Does there exist a tableau whose *i*th row is I_i and whose columns are linearly independent?

Motivation: Rota's invariant-theoretic approach involves partitions, not just squares. Perhaps one can do induction, adding one box at a time?

Special case: Let $I_i = \{e_1, e_2, \dots, e_{\lambda_i}\}$. Then "linearly independent" means "distinct." Does this case always work?

Not necessarily. If $I_1 = \{e_1\}$ and $I_2 = \{e_1\}$, the only tableau whose *i*th row is I_i is $\frac{e_1}{e_1}$

A necessary condition

Say that $\lambda = (\lambda_1, \dots, \lambda_\ell)$ is *Latin* if there exists a tableau for λ whose *i*th row is $\{1, 2, \dots, \lambda_i\}$ and whose columns have distinct numbers.

A Latin partition must have at least ℓ columns so that the 1's can go into different columns, i.e., the length of row 1 is at least the height of column 1.

More generally, the sum of the lengths of the first i rows is at least the sum of the heights of the first i columns.

The same must be true for any *subpartition* of λ , obtained by deleting some of the rows.

Wide partitions

If $\lambda_1 \ge \lambda_2 \ge \cdots$ are the row lengths of a partition λ , then let $\lambda'_1 \ge \lambda'_2 \ge \cdots$ denote its column lengths.

Write $\lambda \succeq \lambda'$ if $\lambda_1 + \cdots + \lambda_i \ge \lambda'_1 + \cdots + \lambda'_i$ for all *i*.

Write $\mu \subseteq \lambda$ if the rows of μ are a subset of the rows of λ .

Definition. λ is *wide* if $\mu \succeq \mu'$ for every $\mu \subseteq \lambda$.

Example. $\lambda = (5, 3, 2, 2)$ is not wide. Take $\mu = (3, 2, 2)$; then $\mu_1 + \mu_2 = 5 < 6 = \mu'_1 + \mu'_2$.

Wide partition conjecture

Proposition. If λ is Latin then λ is wide.

Wide partition conjecture. If λ is wide then λ is Latin.

For rectangles, the wide partition conjecture asserts that Latin rectangles exist.

It holds for all partitions fitting inside a 10×10 square, and all partitions having at most 65 boxes.

We conjecture that wideness is the right condition even for the linearly-independent-set version of the conjecture.

Symmetric shapes suffice

Theorem. If λ is wide, then so is the partition below.

Partitions with few distinct parts

Theorem. If λ is wide and has only 2 distinct row lengths, then λ is Latin.

Theorem. If λ is wide and symmetric and has only 3 distinct row lengths, then λ is Latin.

Theorem. If λ is wide and has only 3 distinct row lengths and either the 2nd or 3rd row lengths occurs with multiplicity one, then λ is Latin.

Theorem. If λ is wide and has only 4 distinct row lengths and both the 2nd and 4th row lengths occurs with multiplicity one, then λ is Latin.

Graphs

A *stable set* in a graph is a set of vertices with no edges between them.

A *clique* is a set of vertices such that every possible edge between them is present.

A *k*-stable set is a disjoint union of *k* stable sets.

A *k-clique* is a disjoint union of *k* cliques.

Greene-Kleitman theorem

 α_k : max # vertices of a k-stable set ω_k : max # vertices of a k-clique

$$\Delta \alpha_k := \alpha_k - \alpha_{k-1}$$
$$\Delta \omega_k := \omega_k - \omega_{k-1}$$

Theorem (Greene-Kleitman). If G is a comparability graph, then $\Delta \alpha$ and $\Delta \omega$ are partitions and $(\Delta \alpha)' = \Delta \omega$.

Example: $\Delta \alpha = (4, 2)$, $\Delta \omega = (2, 2, 1, 1)$

Uniform *k***-stable sets**

Definition. A *k*-stable set is *uniform* if for all *i*, the *i*th largest stable set has size $\Delta \alpha_i$.

The example on the previous slide was *not* uniform.

Definition. G_{λ} is the graph whose edges join boxes in the same row or column of λ .

Theorem. If λ is wide and there is a uniform *k*-stable set covering G_{λ} , then λ is Latin.

Remark. It is open whether *every* partition can be covered by a uniform k-stable set.