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The problem of minimizing the number of bidirectional
SONET rings required to support a given traffic demand
has been studied by several researchers. Here we study
the related ring-grooming problem of minimizing the
number of add/drop locations instead of the number of
rings; in a number of situations this is a better approxi-
mation to the true equipment cost. Our main result is a
new lower bound for the case of uniform traffic. This
allows us to prove that a certain simple algorithm for
uniform traffic is, in fact, a constant-factor approxima-
tion algorithm, and it also demonstrates that known
lower bounds for the general problem—in particular, the
linear programming relaxation—are not within a con-
stant factor of the optimum. We also show that our
results for uniform traffic extend readily to the more
practically important case of quasi-uniform traffic. Fi-
nally, we show that if the number of nodes on the ring is
fixed, then ring grooming is solvable in polynomial time;
however, whether ring grooming is fixed-parameter
tractable is still an open question. © 2004 Wiley Periodicals,
Inc. NETWORKS, Vol. 44(3), 194–202 2004
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1. INTRODUCTION

Many of today’s telecommunication networks carry traf-
fic on a configuration known as a SONET BLSR or a SONET
bidirectional ring. A number of authors [2, 5, 11, 13, 17, 18]
have studied the so-called ring-loading problem, which is
the problem of minimizing the number of concentric (or
“stacked”) SONET bidirectional rings required to carry a
given amount of traffic. Some good approximation algo-
rithms have been obtained for this problem.

The ring-loading problem has the advantage of being
easy to state and amenable to rigorous analysis, but has the
drawback that its cost function gives only an approximation

to the true cost of building a SONET ring network. In some
situations, particularly in so-called “SONET over WDM”
networks, a better approximation to the cost may be ob-
tained by defining the cost of a SONET ring to be propor-
tional to the number of its add/drop points, that is, locations
on the ring where traffic terminates (i.e., begins or ends).
The idea is that at add/drop points, costly electronic multi-
plexers (ADMs) must be installed, whereas elsewhere one
can have an “optical passthrough” or “glassthrough” whose
cost is relatively negligible.

The problem of minimizing ADMs in SONET rings,
which is a special case of a more general problem known as
traffic grooming, has also attracted the attention of numer-
ous researchers [7, 12, 14–16, 19–23], but these articles
have concentrated either on heuristics or ILP methods with-
out any provable a priori performance bounds, or on proving
bounds under special assumptions such as shortest path
routing. (In the case of unidirectional rings, however, there
has been some recent work on approximation algorithms [1,
9].) Part of the reason for this dearth of theoretical results is
that the ring-grooming problem appears to be more difficult
to analyze than the ring-loading problem. Even in the case
of uniform traffic on a bidirectional ring, the answer to the
following question was not known prior to the present
article: Does there exist an �-approximation algorithm for
some absolute constant �? Theorem 2 below answers this
question affirmatively. In fact, we show that if the traffic is
K-quasi-uniform (i.e., the largest traffic demand between
any two nodes is at most K times the traffic between any
other two nodes), then there is an �-approximation algo-
rithm with � depending only on K.

We should add that our approximation algorithm is not
of tremendous practical value, as its guaranteed approxima-
tion ratio is poor. More important than the algorithm itself
is Theorem 1, a new lower bound that allows us to prove
that our algorithm is in fact a constant-factor approximation
algorithm. In certain cases, Theorem 1 is an order of mag-
nitude better than previous bounds [O(n3/ 2) vs. O(n)]. This
has an important theoretical implication: If one wishes to
prove that a given algorithm—either an existing algorithm
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or a new algorithm—is a constant-factor approximation
algorithm for the general case, then one must first improve
the best known lower bounds.

2. STATEMENT OF PROBLEM

We first give an informal description, which we follow
with a precise integer linear programming (ILP) formulation
of the problem.

An instance of the ring grooming problem consists of
positive integers n � 2 (the ring size) and c (the capacity),
and a list { j1, k1}, { j2, k2}, . . . , { js, ks} of unordered
pairs of integers between 1 and n inclusive; these are the
traffic demands. (For all i, we require ji � ki, but the list
may contain the same pair of integers multiple times.) Let
Cn be the cycle graph with n vertices, labeled 1 through n
in clockwise order. On this cycle are “stacked” multiple
rings, each with capacity c on each edge. The traffic must be
routed on these rings, that is, for each traffic demand { j, k}
in the list, we must choose one of the rings and one of the
two arcs on that ring between j and k (either the “minor arc”
or the “major arc”) for its route. To compute the cost of a
routing, we consider each of the stacked rings in turn. If
there exists any traffic terminating at the jth vertex of the ith
ring, then an ADM must be placed on that ring at that
vertex. (Recall that “terminating” means either beginning or
ending, so in particular an ADM is required at both ends of
a demand pair.) The goal is to find a routing with the
minimum number of ADMs.

Now for the formal description. Given an instance, we
first set djk equal to the number of times the pair { j, k}
occurs in the list of traffic demands. Note that djk � dkj and
that djj � 0 for all j. We refer to (djk) as the traffic matrix.
We then set

R � �
j�1

n�1 �
k�j�1

n

djk.

(This should be thought of as an upper bound on the number
of rings we will stack.) To formalize major arcs and minor
arcs, we define the symbol �jkl for 1 � j � k � n and 1
� l � n by setting �jkl � 1 if the arc in Cn between
vertices j and k that contains the edge between vertices l and
l � 1 (if l � n then this means the edge between vertices
n and 1) also contains the edge between vertices n and 1,
and setting �jkl � 0 otherwise.

The variables of our ILP are of two types: 0–1 variables
xij for 1 � i � R and 1 � j � n (indicating whether any
traffic terminates at the jth vertex of the ith ring) and
nonnegative integer variables tijk

0 and tijk
1 for 1 � i � R and

1 � j � k � n (indicating the amount of traffic between
vertices j and k on ring i on each of the two arcs). The
constraints are

�
i�1

R

�tijk
0 � tijk

1 � � djk, � j, k� j � k� (1)

�
j�1

n�1 �
k�j�1

n

��jkltijk
0 � �1 	 �jkl�tijk

1 � � c, � i, l (2)

�
k�1

j�1

�tikj
0 � tikj

1 � � �
k�j�1

n

�tijk
0 � tijk

1 � � 2cxij, � i, j (3)

0 � xij � 1; tijk
0 � 0; tijk

1 � 0 � i, j, k (4)

Constraint (1) forces all the traffic to be routed, constraint
(2) enforces the capacity constraint, and constraint (3)
forces ADMs to be placed where traffic terminates. The goal
is to minimize the objective function ¥i, j xij subject to these
constraints; formally,

m :� min��
i, j

xij � �x, t� satisfies constraints �1�–�4��. (†)

This completes the formal statement of the problem, but
some additional comments are in order. Experts may notice
that the version of the ring grooming problem that we
consider here differs in some details from other versions in
the literature. These variations are discussed in Section 7.

A trivial upper bound on m is 2 R, obtained by putting
each unit of traffic on a separate ring. From this we see that
if we choose any integer R� 	 R and consider the ILP that
is defined exactly as above except with R� in place of R,
then the value of m will remain unchanged. In other words,
there is some leeway in the definition of R; any sufficiently
large value will do, but to be formal we need to fix a specific
value.

The ring grooming problem is an optimization problem,
and as usual it may be converted into a decision problem by
introducing a bound M and asking if there exists a solution
with m � M. Clearly, this decision problem is in NP. Note,
however, that if the traffic demands had been specified not
as a list but in the more succinct form of the traffic matrix
(djk), then it would no longer be clear that ring grooming
would be in NP, because then the number of rings required
could potentially be exponential in the size of the input.

In the rest of the article we mostly use the informal
language of rings and ADMs rather than the formal ILP
description. So, for example, the reader should think of a
variable number r of rings, all of which carry traffic, rather
than a fixed number R of rings, some of which may be
empty.
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3. RING GROOMING COMPARED TO RING
LOADING

In view of the similarity between ring grooming and ring
loading, we might wonder whether the two problems are
equivalent. Note first that the ring-loading problem as stated
in [18] does not allow the demand between a given pair of
nodes to be split between the major and minor arcs, whereas
the ring grooming problem, at least as we have stated it,
does. Hence, we should really compare ring grooming to the
special case of ring loading treated in [5], which allows
traffic splitting, and which can be solved in polynomial
time.

As we shall see in the next section, even with traffic
splitting allowed, ring grooming is NP-complete, so the two
problems are manifestly not equivalent. To further highlight
the difference, consider the following instance. Let n � 9,
let c � 1, and let the list of traffic demands be


1, 2�, 
1, 3�, 
2, 3�, 
4, 5�, 
4, 6�, 
5, 6�,


7, 8�, 
7, 9�, 
8, 9�.

One can check that the optimal ring-grooming solution uses
three rings: one with ADMs at vertices 1, 2, and 3, one with
ADMs at 4, 5, and 6, and one with ADMs at 7, 8, and 9, for
a total of nine ADMs. On the other hand, the optimal
ring-loading solution uses 2 rings and 15 ADMs: one with
ADMs at all nine vertices, and one with ADMs at vertices
1, 3, 4, 6, 7, and 9. In particular, the number of rings and the
number of ADMs cannot be simultaneously minimized.
This impossibility of simultaneous minimization is what we
would expect from previous work on similar problems (e.g.,
[8]).

More complicated examples can easily be constructed,
and it appears that none of the techniques used successfully
for ring loading carry over readily to ring grooming.

4. RELATIONSHIP TO BIN PACKING

It is known [15, 16] that traffic grooming on rings is
reducible from bin packing. However, strictly speaking, the
NP-completeness of ring grooming as we have defined it is
not explicitly proved in the literature, so we give a complete
proof.

Proposition 1. Ring grooming is NP-complete.

Proof. Recall that an instance of bin packing consists
of a positive integer B (the bin size) and a set A � {a1, . . . ,
aN} of positive integers (the sizes of the objects to be
packed) such that ai � B for all i. The objective is to
partition A into as few disjoint subsets as possible, subject
to the constraint that the sum of the ai in each subset is at
most B. Now, it is well known [6] that bin packing is in fact
strongly NP-complete, so we may (and will) assume that the
ai are given in unary rather than in binary.

Given an instance of bin packing, set n � N � 1 and c
� B. For each j in the range 1 � j � n � 1, add 2aj copies
of the pair { j, n} to the list of traffic demands. This gives
us an instance of ring grooming (whose size is polynomial
in the size of the bin packing instance, because the aj are
given in unary). If m is the minimum number of ADMs for
this instance, then we claim that the minimum number of
bins for the original bin packing instance is m � N. This
implies in particular that (the decision version of) ring
grooming is NP-complete.

To prove the claim, we begin by observing that we may
assume that the optimal solution to the ring grooming in-
stance has the following property: If j � n, then there is
only one ring with an ADM at vertex j. For suppose we
have a solution S with r rings in which there is some vertex
j � n at which there is an ADM on rings i1, i2, . . . , is with
s � 2. Then we can create a new solution S� by adding a
new ring to S, putting ADMs at vertices j and n on this new
ring, transferring all the traffic between vertices j and n
from rings i1, i2, . . . , is to the new ring, and deleting the
ADMs at vertex j from rings i1, i2, . . . , is. This is always
feasible, because the total traffic between vertices j and n is
2aj, which is at most 2B � 2c and, therefore, fits onto a
single ring (we route aj units on the major arc and aj units
on the minor arc). Moreover, because s � 2, when we pass
from S to S� we add two ADMs and delete at least two
ADMs, so S� contains no more ADMs than S.

For the remainder of the proof we restrict ourselves to
configurations such that every ring has an ADM at vertex n
(this is necessary because all traffic terminates at vertex n)
and such that, for each j � n, exactly one ring has an ADM
at vertex j. So if r is the number of rings, then the number
of ADMs is m � r � N. Because N is given, minimizing
m is equivalent to minimizing r.

All that remains is to establish a one-to-one correspon-
dence between rings and bins. Specifically, we need to show
that for any J � {1, 2, . . . , N }, we have

�
j�J

aj � B

if and only if all the demands {djn � j � J} can be routed
on a ring with ADMs at vertex n and all vertices j � J. (As
always, (djk) is the traffic matrix.) Suppose first that ¥j�J aj

� B � c. Then for each j � J, we need to route djn � 2aj

units of traffic between vertices j and n. We do this by
routing aj units of the major arc and aj units on the minor
arc; the given inequality ensures that no edge’s capacity is
exceeded, and therefore, the proposed routing is feasible.
Conversely, given any feasible routing, consider the “cut”
that separates vertex n from the rest of the ring. There are
two edges across this cut, each with capacity c, so the total
amount of traffic across the cut is at most 2c, i.e.,

2c � �
j�J

djn � �
j�J

2aj,
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or ¥j�J aj � c � B as required. ■

If the bin size is fixed, then bin packing is solvable in
polynomial time [6]. A similar result holds for ring groom-
ing.

Proposition 2. If n is fixed, then ring grooming is solvable
in polynomial time.

Proof. Create a graph whose vertices are vectors with
n(n � 1)/ 2 coordinates, with one coordinate corresponding
to each pair { j, k} of distinct integers from 1 to n, and with
each coordinate taking on a value between zero and djk.
Note that the number of such vectors is polynomial in the
size of the instance. If u and v are two such vectors, then we
draw an edge from u to v if the coordinates of v � u are all
nonnegative and if the traffic demands represented by v �
u all fit onto a single ring of capacity c. (Determining
whether such an edge exists requires solving a ring-loading
problem with traffic splitting, which as we remarked before
can be solved in polynomial time [5].) The weight of such
an edge, if it exists, equals the number of ADMs required to
support the single ring with the demands v � u. Ring
grooming now reduces to finding the minimum-weight path
from the zero vector to the vector with coordinates djk. ■

Although theoretically polynomial-time, the algorithm of
Proposition 2 is not practical for typical values of n and c
(i.e., n � 16, and c in the hundreds). Intuitively, this is
because the degree of the polynomial depends on n; in the
terminology of parameterized complexity [4], Proposition 2
shows only that ring grooming is in XP and not necessarily
in FPT (if n is the parameter). Michael Fellows (personal
communication) has shown that if the number of ADMs is
taken to be the parameter, then ring grooming is in FPT.
Unfortunately, the number of ADMs tends to be much
larger than the ring size, so it remains an interesting open
problem whether ring grooming is in FPT if n is the param-
eter.

5. LOWER BOUNDS

The simplest lower bound on m is the LP bound, ob-
tained by relaxing the integer variables to rational (or real)
variables. It is easy to show that the LP bound is given by
the explicit formula

m � �
j�1

n �
k�1

n djk

2c
.

Unfortunately, although this bound is easy to compute, we
shall see shortly that the integrality gap is unbounded (this
is one reason why ring grooming appears to be hard to
solve). A slightly better bound may be obtained by observ-
ing that ¥k djk is the total amount of traffic terminating at

vertex j and that each ADM can handle at most 2c units of
traffic. Because the number of ADMs is an integer, this
yields

m � �
j�1

n �
k�1

n djk

2c
.

We call this the add/drop lower bound. Notice that it is
slightly better than rounding up the LP bound to the nearest
integer, because we round up at each vertex j separately
before summing over j.

It is tempting to wonder if there is any sense in which the
ceiling signs may be pushed inside the inner sum as well.
This cannot be done naı̈vely, but in [7] the authors give a
more delicate argument along these lines that yields a lower
bound that is sometimes better than the add/drop lower
bound. To state this bound we need some notation. Define
qjk and rjk to be the quotient and remainder when djk is
divided by c, that is, choose qjk and rjk such that

djk � cqjk � rjk with 0 � rjk � c.

Next, order the djk with j � k in such a way that their
corresponding remainders rjk decrease monotonically. For
simplicity, we write Dp, Qp, and Rp, respectively, for djk,
qjk, and rjk, where p runs from 1 to n(n � 1)/ 2 and the
labeling is chosen so that

Rp � Rp� whenever p � p�.

Proposition 3 [7]. Suppose we are given an instance of
the ring grooming problem. With the notation above, let P
be the smallest integer such that

� �
p�1

n�n�1�/ 2

cQp� � ��
p�1

P Rp � c

2 � � �
p�1

n�n�1�/ 2

Dp.

Then regardless of the routing, the minimum number m of
ADMs as defined in (†) must satisfy

m � P � �
p�1

N�N�1�/ 2

Qp.

The add/drop lower bound and the lower bound of Prop-
osition 3 are the best known lower bounds in general.
However, for K-quasi-uniform traffic, a better lower bound
is possible, and this is the first main theorem of this article.
Recall from the introduction that “K-quasi-uniform” means
that djk/dj�k� � K for all j � k, j� � k�. In particular, djk

� 0 for all j � k. Conversely, if djk � 0 for all j � k, then
the traffic is K-quasi-uniform for some K � 1. Uniform
traffic corresponds to the case K � 1. Because bidirectional
rings are often used in the core of a network, where every
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node typically has traffic to every other node, quasi-uniform
traffic is not a bad approximation to reality. However, we
shall see below that our results give bounds that depends on
K, so we are still far from satisfactorily solving arbitrary
instances of ring grooming.

We need some further terminology and notation. The
bandwidth consumed by a traffic demand is the capacity of
the demand multiplied by the number of edges that it
traverses from end to end. For instance, in the example
given in Section 3, the solution using shortest path routing
consumes 12 units of bandwidth, while the nine-ADM so-
lution consumes 27 units of bandwidth.

Our results for quasi-uniform traffic are really just easy
corollaries of the case of uniform traffic, so let us now focus
attention on uniform traffic. Then all the djk with j � k are
equal, and we use the letter d to denote this common value.
It is also convenient to define

f �
def d

2c
.

Theorem 1. With the notation above, the minimum num-
ber m of ADMs required for uniform traffic must, regardless
of routing, satisfy

m �
�n2 	 1��f

4
.

Proof. Let S be any feasible solution to the given
instance. For each ADM A in the solution, let R( A) denote
the ring that A is on, and define B( A) by

B� A� �
def Total bandwidth of the traffic carried on R�A�

Total number of ADMs on R�A�
.

Now suppose that on a particular ring in S, there are x
ADMs. Then there are x( x � 1)/ 2 pairs of ADMs, and
between each pair there are at most d units of traffic on his
ring (because there are d units total of traffic between this
pair). The circumference of the ring is n edges, so the total
bandwidth on this ring is at most dnx( x � 1)/ 2.

On the other hand, the total bandwidth on this ring is at
most cn just by capacity constraints. Therefore, if R( A) has
x ADMs, then

B� A� �
min�dnx�x 	 1�/2, cn�

x
� cn � min� f�x 	 1�, 1/x�

� cn � min� fx, 1/x� � cn�f.

(The last inequality in this chain may be obtained, for
example, by graphing the curves y � fx and y � 1/x and
finding their point of intersection, or by noting that the
minimum of two positive reals is less than or equal to their
geometric mean.) This inequality is independent of x, so if

we sum over all ADMs A in S we find that the total
bandwidth B used by all rings satisfies

B � mcn�f.

To obtain a lower bound for B, note that shortest path
routing uses the minimum amount of bandwidth. It is well
known and easy to prove that

B �
dn�n2 	 1�

8
�

fcn�n2 	 1�

4
.

(If n is even, one can improve this bound to dn3/8, but we
ignore this.) Combining the lower and upper bounds for B
and solving for m yields the theorem. ■

To compare this bound with the add/drop lower bound
and the lower bound of Proposition 3, consider the special
case in which n � 2c � 1 (where c as always is the
capacity) and d � 1. Then the add/drop lower bound is n
and the bound of Proposition 3 is about 2n, while the lower
bound of Theorem 1 is about 1

4
n3/ 2. Thus, for the small

values of n that typically occur in practice, the bound of
Theorem 1 is actually worse than the previous bounds;
however, as explained in the introduction, it is a significant
improvement theoretically.

Note that the proof of Theorem 1 never uses the inte-
grality of the traffic variables tijk

0 and tijk
1 . The lower bound,

therefore, also holds for the “semi-relaxation” of ring
grooming in which these variables (but not the xij variables)
are allowed to be arbitrary real numbers.

Corollary 1. If an instance of ring grooming is K-quasi-
uniform, with d being the largest value of the djk, then the
minimum number m of ADMs must satisfy

m �
�n2 	 1��d/�2cK�

4
.

Proof. Between any two nodes there are at least d/K
units of traffic, and by Theorem 1, supporting just this
subset of the traffic already requires at least 1

4
(n2 � 1)

�d/(2cK) ADMs. ■

6. APPROXIMATION ALGORITHM FOR K-
QUASI-UNIFORM TRAFFIC

Again, we focus first on the case of uniform traffic.
Given n, c, and d, we define f � d/ 2c as before. Then our
approximation algorithm, which we call Algorithm A, pro-
ceeds as follows. If f � 1 then simply create, for each pair
of vertices j and k, a set of f rings with just two
ADMs—one at j and one at k—and route all the traffic
between j and k on these rings (and then terminate the
algorithm). Otherwise, let
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M � 	
�2/f , if 2 � �2/f � n;

2, if �2/f � 2;

n, if �2/f 
 n.

Construct an (n, M, 2)-covering design, that is, a family of
M-element subsets, called blocks, of {1, 2, . . . , n} such
that every pair of integers ( j, k) with 1 � j � k � n is
contained in at least one of the blocks. Finally, take each
block {v1, v2, . . . , vM} in turn, and construct a ring with
an ADM at each vi, routing all the demands among these vi

on this ring (provided that these demands have not already
been routed on a previous ring). If at the end of this process
there are some ADMs at which no traffic terminates, then
discard them, and terminate.

This completes the description of Algorithm A, but sev-
eral steps require further elaboration and justification. First
we need a fast method of constructing an (n, M, 2)-
covering design. This is easy: Let � � M/ 2 , and let F be
a family of �-element subsets of {1, 2, . . . , n} whose
union is the entire set. Assume further that F has the
minimum possible size, that is, that it has n/� members.
We obtain an (n, M, 2)-covering design of size at most

� n/�
2 �

by taking all pairs of members of F (if M is odd, then we
must add an additional integer—it does not matter which
one—to each such pair to make the size of each block
exactly equal to M) and discarding any duplicates.

Next, we need to show that M is small enough for all the
designated traffic to fit onto a single ring, and we also need
to provide a fast method for computing an actual routing.
This is accomplished by the following lemma and its proof.

Lemma 1. Let f � d/2c and suppose f � 1 and

� � � �2/f , if 2 � �2/f ;
2, if �2/f � 2.

Then a single ring with � nodes and capacity c can support
uniform traffic of d units.

Proof. Except for the fact that traffic can be split, this
is essentially a ring loading problem, so the reader may
expect us to apply known results for ring loading. However,
a naı̈ve method suffices for our present purposes: For each
pair of nodes, route d/ 2 units of traffic on the major
(longer) arc and d/ 2 units of traffic on the minor arc.
When both arcs are of equal length, either one may be
designated the major arc. There are four cases: d may be
even (d � 2�) or odd (d � 2� � 1), and independently,
� may be even (� � 2�) or odd (� � 2� � 1). In three of
these cases it is easy to calculate the amount of traffic on the

most heavily loaded link. The exceptional case is � � 2�
and d � 2� � 1, where the maximum load depends on
exactly how the major/minor arcs are chosen for diametri-
cally opposite pairs of vertices. In this case, we obtain an
upper bound by observing that the worst case occurs when
there is some edge of Cn that is systematically chosen to be
the “major arc” in all these tie-breaking situations.

The table below summarizes the results of these calcu-
lations.

d � 2� d � 2� � 1

� � 2� �(2� � 1)� 1

2
�[(� � 1)(� � 1) � (3� � 3)�]

� � 2� � 1 �(2� � 1)� 1

2
�[(� � 1)(� � 1) � (3� � 1)�]

(In the right-hand column, the two summands correspond to
the minor arcs and major arcs, respectively, that contain the
most heavily loaded link.) We need to prove that in every
case, c is large enough to accommodate the most heavily
loaded link. First, let us suppose that � � 2. Then the first
row of the table applies, with � � 1; the two entries reduce
to � and � � 1, respectively, and in either case this is at most

d/ 2 . Because f � 1 and c is an integer, we have c
� d/ 2 , which shows that there is enough capacity if �
� 2.

If � � 2, then we must have � � �2/f, which implies
that c � �2d/4. To check that there is sufficient capacity,
we therefore just need to check, for each of the four entries
in the above table, that if we subtract it from �2d/4, the
result is always nonnegative. If � � 2� and d � 2� � 1
then

�2d

4
	

�
�� � 1��� � 1� � �3� 	 3���

2

�
��� � 2� 	 1�

2
,

which is always nonnegative (because, e.g., � � 1). In the
other three cases, it is easily checked that the analogous
calculation yields a polynomial in � and � with nonnegative
coefficients, which is therefore always nonnegative. ■

Finally, we need to show that Algorithm A is indeed an
approximation algorithm.

Theorem 2. Algorithm A is a 12�2-approximation algo-
rithm.

Proof. If f � 1, then Algorithm A uses n(n � 1) f
ADMs, and the LP bound is n(n � 1) f. Dividing the
former by the latter yields f /f, which is at most 2 because
f � 1. So this case is all right.

Now suppose f � 1. The number of ADMs used is at
most

NETWORKS—2004 199



m � � n/�
2 �M,

where � � M/ 2 . We need to show that m is at most
12�2 times the minimum number of ADMs. We begin by
noting that the case M � n is easy: Algorithm A generates
a single ring with n ADMs, which Lemma 1 tells us can
handle all the demands, and because there is some traffic
terminating at every vertex, this solution is optimal. There-
fore, we assume for the rest of the proof that M � n, which
implies in particular that �2/f � M � 1 (by definition of
M).

Let q denote m divided by the lower bound of Theorem
1. Consider first the case � � 1. If � � 1 then M � 3 and
�2/f � 4 so

q �
m

1
4

�n2 	 1��f
�

2n�n 	 1� M

�n � 1��n 	 1��f
�

12n�2

n � 1
� 12�2,

as required.
So suppose that � � 2. Now n/� � (n � � � 1)/�

and M � 2� � 1 so

m �
1

2 �n � � 	 1

� ��n 	 1

� � �2� � 1�.

Dividing by 1
4

(n2 � 1)�f and using the inequality �2/f �
M � 1 � 2� � 2 yields

q � 2�n � � 	 1

n � 1 � 2� � 1

�2�f

� 2�2 �n � � 	 1

n � 1 � �2� � 1��� � 1�

�2 .

Now � � 1 � M/ 2 � n/ 2 so

n � � 	 1

n � 1
�

3n/ 2

n � 1
�

3

2
.

Also, (2� � 1)(� � 1)/�2 is a decreasing function of � so
it attains its maximum when � is as small as possible, that
is, when � � 2. Therefore

q � 2�2 �3

2� �2 � 2 � 1��2 � 1�

22 �
45�2

4
� 12�2,

completing the proof. ■

Corollary 2. There is an �-approximation algorithm for
ring grooming with K-quasi-uniform traffic, where �
� max(2K, 12�2K).

Proof. Given an instance I of ring grooming with K-
quasi-uniform traffic, we let d be the size of the largest djk,
and we create an instance I� of ring grooming with uniform
traffic by changing every djk (with j � k) to d. Then we
apply Algorithm A to I� to obtain a solution that a fortiori
yields a solution to I. Now we trace through the proof of
Theorem 2. If d � 2c then at most n(n � 1) d/ 2c ADMs
are used, but between any two vertices we have at least d/K
units of traffic, yielding a lower bound of n(n � 1)d/
(2cK). Dividing the former by the latter gives a ratio of at
most 2K, because d � 2c.

Otherwise, d � 2c, and the argument in the proof of
Theorem 2 for the case M � n still applies to show that the
solution is optimal in this case. If d � 2c and M � n, then
let q� be m divided by the lower bound of Corollary 1. Then
q� � q�K, where q is defined in the proof of Theorem 2.
That proof shows that q � 12�2, whence q� � 12�2K.

■

Although we are not proposing that Algorithm A be used
in a practical implementation, it is of some interest to
consider whether the constant 12�2 can be improved. One
possibility is to use a more sophisticated method for con-
structing (n, M, 2)-covering designs (see, e.g., [10]). For a
nontrivial example of what a good design can accomplish,
suppose that n � 15 and c � d � 1. The add/drop lower
bound is 105. Algorithm A tells us to take M � 2, but
suppose we take M � 3 instead and look for a (15, 3,
2)-covering design. One example of this is the solution to
the famous Kirkman schoolgirl problem (see [3] or any
standard reference on combinatorial designs). This yields an
optimal solution with 35 rings and three ADMs per ring.

In general, however, we cannot expect to find such
excellent designs fast. Moreover, a trivial lower bound on
the size of an (n, M, 2)-covering design is (2

n)/(2
M), and if

we carry this through the proof of Theorem 2, we find that
the maximum possible improvement in the guaranteed per-
formance ratio is a factor of 2 or 3.

Another possible improvement is to use a better ring-
loading method in Lemma 1. By considering a maximum
cut, one can show that the largest improvement factor we
can hope for here is �2. Achieving this is not easy, though;
for example, it is certainly not possible to naı̈vely replace
�2 with 2 in Lemma 1: If c � 2 and d � 1 then M can be
at most three, whereas 2/�f � 4.

Finally, perhaps the bound of Theorem 1 can be im-
proved. For the special case of d � 1 we have the following
argument that gives a slightly better lower bound. The idea
is that at any particular ADM, the t units of traffic exiting
from a particular side of the ADM all have different desti-
nations, say v1, v2, . . . , vt. Because the network is a ring,
this means that the traffic destined for vj must pass through
the ADMs at vi for all i � j, thus “wasting” some of the
capacity of these ADMs. If we work through the details of
this for the example given at the end of Section 5, we obtain
a lower bound of about 1

2
n3/ 2, a factor-of-2 improvement.
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Unfortunately, we do not see how to generalize this argu-
ment to arbitrary d.

7. OPEN PROBLEMS AND RELATED
QUESTIONS

Of course, the main open problem is to find a constant-
factor approximation algorithm for the general ring groom-
ing problem, or to prove that one of the algorithms in the
literature is in fact a constant-factor approximation algo-
rithm. As we mentioned above, it is also open whether ring
grooming is fixed-parameter tractable when n is the param-
eter. It would be of practical interest if the answer turns out
to be yes, because SONET standards do not permit more
than 16 ADMs on a ring.

If a good approximation algorithm cannot be found, then
an inapproximability result would be desirable. We suspect
that ring grooming is MAXSNP-hard, but we cannot prove
it. Ring grooming is reminiscent of several other well-
known problems, for example, integer multicommodity
flow, clique cover, and facility location, but we have been
unable to construct an explicit reduction. Note that compar-
ing Theorem 1 and the LP bound reveals a large integrality
gap. We expect that our ILP formulation can be improved;
for example, Michel Goemans (personal communication)
has pointed out that the following constraints can be added.

tijk
0 � tijk

1 � djkxij, � i, j, k� j � k� (5a)

tijk
0 � tijk

1 � djkxik, � i, j, k� j � k� (5b)

Summing these inequalities over i and using constraint (1),
we deduce that ¥i xij � 1 whenever there is any traffic
terminating at vertex j, even if the djk are all small and the
xij are allowed to be arbitrary real numbers. Although this is
an improvement, further constraints would be desirable.
Unfortunately, they seem to be hard to find.

Our formulation of the ring grooming problem is not the
only possible one; other authors have considered slightly
different versions. We describe here some of the more
important variations.

(1) Unidirectional rings. Unlike ring loading, ring groom-
ing is nontrivial even for unidirectional rings, and as
mentioned in the introduction, it has been studied by
some of the authors listed in the references. Note that
some service providers tend to use unidirectional rings
in situations where there exists a hub node at which all
traffic terminates, and standard bin packing algorithms
work well here.

(2) No time slot interchange. In our formulation, we regard
a routing as feasible provided that the total number of
units of traffic on each edge of Cn does not exceed c. In
actual SONET rings, the c units of capacity are c
separate time slots. We have assumed that all our ADMs
have time slot interchange capability, meaning that
whenever a unit of traffic passes through an ADM, it

can be switched to a different time slot if necessary.
Some less expensive ADMs do not have this capability,
in which case all traffic must choose a time slot and
remain on the same time slot from source to destination.
This creates some additional constraints that are akin to
graph coloring.

(3) Crossconnection between rings. In our formulation, we
require that traffic stay on the same ring from source to
destination. In some networks, there are digital cross-
connects installed in the central offices, which allow
traffic to switch from one ring to another at a vertex
provided that both rings have an ADM at that location.
If we assume that crossconnection is available, then ring
grooming becomes more similar to multicommodity
flow, and perhaps some of the techniques carry over.

(4) No traffic splitting. As we have already remarked, our
formulation allows traffic to be split between major and
minor arcs, as long as all variables remain integers. One
might wonder whether this assumption is realistic. Cer-
tainly if djk 	 c then djk must at least be split across
different rings, and if splitting across rings is permissible,
then splitting between major and minor arcs is likely to be
permissible too. However, what if djk � c? Typically, in
real networks, traffic demands come in multiples of a few
standard units, for example, the traffic between a particular
pair of vertices might be a combination of several units of
size 12 and several units of size 3. It would not be per-
missible to split a size-3 or size-12 unit, either across rings
or between major and minor arcs, but, for example, the
various units of size 3 could be routed independently. It
would be interesting to study the effect of multiple unit
sizes.

(5) Unidirectional traffic and asymmetric routing. We have
assumed not only that our rings are bidirectional, but
that our traffic is bidirectional as well, and moreover,
that the traffic from j to k must be routed the same way
as the traffic from k to j, only in reverse. These are
reasonable assumptions for current networks, but some
experts predict future increases in unidirectional traffic
(djk � dkj). Also, even if djk � dkj, it is, in principle,
possible to route the two directions independently.

(6) Dynamic traffic. In real networks the traffic matrix is
usually not fixed, but grows with time. Many network
operators have a cap-and-grow policy, meaning that
existing traffic is not allowed to be rerouted when new
traffic arrives. There is, therefore, a practical need for an
online algorithm for ring grooming. Very little work has
been done so far on this important but difficult problem.
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[2] S. Cosares and I. Saniee, An optimization problem related to
balancing loads on SONET rings, Telecom Systems 3
(1994), 165–181.

[3] H. Dörrie, 100 great problems of elementary mathematics:
Their history and solution, Dover, New York, 1965.

[4] R.G. Downey and M.R. Fellows, Parameterized complexity,
Springer, New York, 1999.

[5] A. Frank, T. Nishizeki, N. Saito, H. Suzuki, and E. Tardos,
Algorithms for routing around a rectangle, Discrete Appl
Math 40 (1992), 363–378.

[6] M.R. Garey and D.S. Johnson, Computers and intractability:
A guide to the theory of NP-completeness, W.H. Freeman,
San Francisco, 1979.

[7] O. Gerstel, P. Lin, and G. Sasaki, Combined WDM and
SONET network design, Proc IEEE INFOCOM ’99, pp.
734–743.

[8] O. Gerstel, P. Lin, and G. Sasaki, Wavelength assignment in
a WDM ring to minimize cost of embedded SONET rings,
Proc IEEE INFOCOM ’98, pp. 94–101.

[9] O. Goldschmidt, D.S. Hochbaum, A. Levin, and E.V. Olin-
ick, The SONET edge-partition problem, Networks 41
(2002), 13–23.

[10] D.M. Gordon, O. Patashnik, and G. Kuperberg, New con-
structions for covering designs, J Combin Designs 3 (1995),
269–284; http://www.ccrwest.org/cover.html.

[11] P. Harshavardhana, P.K. Johri, and R. Nagarajan, A note on
weight-based load balancing on SONET rings, Telecom
Systems 6 (1996), 237–239.

[12] J.-Q. Hu, Traffic grooming in wavelength-division-multi-
plexing ring networks: A linear programming solution, J
Optical Networking 1 (2002), 397–408.

[13] S. Khanna, A polynomial time approximation scheme for
the SONET ring loading problem, Bell Labs Tech J 2
(Spring 1997), 36–41.

[14] Y. Lee, H. Sherali, J. Han, and S. Kim, A branch-and-cut
algorithm for solving an intra-ring synchronous optical net-
work design problem, Networks 35 (2000), 223–232.

[15] X.-Y. Li, L.-W. Liu, P.-J. Wan, and O. Frieder, Practical
traffic grooming scheme for single-hub SONET/WDM
rings, Proc IEEE LCN ’00, pp. 556–564.

[16] E.H. Modiano and A.L. Chiu, Traffic grooming algorithms
for reducing electronic multiplexing costs in WDM ring
networks, J Lightwave Tech 18 (2000), 2–12.

[17] Y.-S. Myung, H.-G. Kim, and D.-W. Tcha, Optimal load
balancing on SONET bidirectional rings, Operat Res 45
(1997), 148–152.

[18] A. Schrijver, P. Seymour, and P. Winkler, The ring loading
problem, SIAM J Discrete Math 11 (1998), 1–14.

[19] J.M. Simmons, E.L. Goldstein, and A.A.M. Saleh, Quanti-
fying the benefit of wavelength add-drop in WDM rings
with distance-independent and dependent traffic, J Light-
wave Tech 17 (1999), 48–57.

[20] A. Sutter, F. Vanderbeck, and L. Wolsey, Optimal place-
ment of add/drop multiplexers: Heuristic and exact algo-
rithms, Operat Res 46 (1998), 719–728.

[21] P.-J. Wan, L.-W. Liu, and O. Frieder, Grooming of arbitrary
traffic in SONET/WDM BLSRs, IEEE J Selected Areas
Comm 18 (2000), 1995–2003.

[22] J. Wang, W. Cho, V. Vemuri, and V. Mukherjee, Improved
approaches for cost-effective traffic grooming in WDM ring
networks: Non-uniform traffic and bidirectional ring, Proc
IEEE ICC ’00, pp. 1295–1299.

[23] X. Zhang and C. Qiao, An effective and comprehensive
approach for traffic grooming and wavelength assignment in
SONET/WDM rings, IEEE/ACM Trans Networking 8
(2000), 608–617.

202 NETWORKS—2004


