
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004 539

Fast Optical Layer Mesh Protection
Using Pre-Cross-Connected Trails

Timothy Y. Chow, Fabian Chudak, and Anthony M. Ffrench

Abstract—Conventional optical networks are based on SONET
rings, but since rings are known to use bandwidth inefficiently,
there has been much research into shared mesh protection, which
promises significant bandwidth savings. Unfortunately, most
shared mesh protection schemes cannot guarantee that failed
traffic will be restored within the 50-ms timeframe that SONET
standards specify. A notable exception is the p-cycle scheme of
Grover and Stamatelakis. We argue, however, that p-cycles have
certain limitations, e.g., there is no easy way to adapt p-cycles to
a path-based protection scheme, and p-cycles seem more suited to
static traffic than to dynamic traffic. In this paper we show that
the key to fast restoration times is not a ring-like topology per se,
but rather the ability to pre-cross-connect protection paths. This
leads to the concept of a pre-cross-connected trail or PXT, which is
a structure that is more flexible than rings and that adapts readily
to both path-based and link-based schemes and to both static
and dynamic traffic. The PXT protection scheme achieves fast
restoration speeds, and our simulations, which have been carefully
chosen using ideas from experimental design theory, show that the
bandwidth efficiency of the PXT protection scheme is comparable
to that of conventional shared mesh protection schemes.

Index Terms—Bandwidth sharing, cage graph, Dijkstra algo-
rithm, experimental design, mesh protection, mesh restoration,
online algorithm, p-cycle, self-healing networks, SONET, surviv-
able optical networks.

I. INTRODUCTION

MODERN optical networks carry large amounts of
traffic, so it is imperative that they be able to survive

an accidental failure such as a fiber cut or a node failure.
Traditionally, such survivability has been provided by means
of ring protection, e.g., SONET unidirectional (UPSR) or
bidirectional (BLSR) rings. Rings can recover automatically
from any single link or node failure by rerouting traffic around
the other side of the ring, and their switch completion times
are very low (e.g., 50 ms for a SONET BLSR with a 1200-km
circumference, provided that there is no extra traffic), thereby
minimizing the amount of data lost. However, rings are known
to have low bandwidth efficiency. There has, therefore, been

Manuscript received September 13, 2002; revised January 9, 2003 and May
27, 2003; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor
M. Ajmone Marsan. Tellabs Operations, Inc. has a patent pending on the
methods in this paper.

T. Y. Chow was with Tellabs Research Center, Cambridge, MA 02139 USA

F. Chudak was with Tellabs Research Center, Cambridge, MA 02139 USA.
He is now with the Institute for Operations Research, Swiss Federal Institute of
Technology, CH-8092 Zürich, Switzerland

A. M. Ffrench was with Tellabs Research Center, Cambridge, MA 02139
USA. He is now with DataPower Technology, Inc., Cambridge, MA 02140 USA

Digital Object Identifier 10.1109/TNET.2004.828951

much research into shared mesh protection, which promises
significant bandwidth savings (see [1]–[12] for a sample—by
no means comprehensive—of the literature). These savings
come partly from the flexibility of an arbitrary mesh topology,
which allows many traffic demands to take more direct routes
to their destinations than if they were constrained to a ring
topology. More importantly, however, bandwidth savings
are achieved through sharing. The basic assumption behind
sharing is that failures in optical networks are rare enough
that the probability of two independent failures occurring
simultaneously is negligible. Therefore, if two light paths
that carry working traffic do not have any common point of
failure, then their protection paths can share the same unit of
bandwidth, since they will never request that unit of backup
bandwidth simultaneously. Because of sharing, the amount of
spare capacity in a mesh-protected network can be as little as
60% (or even less) of the working capacity, whereas in a BLSR
or UPSR this fraction is always at least 100%.

Most shared mesh protection schemes can be classified as ei-
ther link-based or path-based. We define these terms and com-
pare them in the next section; for now it suffices to observe that
link-based and path-based schemes each have their respective
pros and cons. Depending on a particular network’s character-
istics and needs, one or the other approach may be preferable.

Shared mesh protection looks good on paper, but as practical
implementions have begun to be built and tested, certain diffi-
culties have surfaced. One of these has been the experimental
fact that shared mesh protection, whether link-based or path-
based, typically does not restore traffic as quickly as SONET
rings do, and therefore, runs the risk of being unable to guar-
antee the quality of service that is typically required for high-pri-
ority traffic. The only obvious way to achieve very fast switch
completion times in a mesh network is to give up the idea of
sharing and to use dedicated (also known as) protection
instead, but this means giving up the bandwidth savings that mo-
tivated mesh protection in the first place.

One of the few mesh protection schemes to address this
quandary satisfactorily is the p-cycle concept of Grover and
Stamatelakis [4]. We say more about p-cycles in a later section;
for now let us just remark that the idea is to route the working
traffic using an arbitrary mesh routing algorithm, but to con-
strain the protection routes to lie on certain predetermined
“p-cycles” or rings. Grover and Stamatelakis report that p-cy-
cles achieve the “speed of rings with the efficiency of mesh.”

Impressive as the results of [4] are, the p-cycle concept does
have certain limitations. It is inherently a link-based scheme
and is, therefore, saddled with all the usual pros and cons of
link-based schemes. More subtly, Grover and Stamatelakis have

1063-6692/04$20.00 © 2004 IEEE

540 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

found that in many situations, achieving high bandwidth effi-
ciency requires the deployment of large p-cycles. In a real net-
work that carries live traffic, demands are not static but are dy-
namic: they come and go incrementally over time. (Caution:
The term dynamic here has its usual meaning in the context of
optical networking—referring to light paths that are set up and
torn down—and does not refer to dynamics at higher layers such
as the IP layer.) A network provider faced with a new traffic de-
mand that cannot be handled with existing p-cycles must, there-
fore, choose between allocating a small p-cycle that meets the
current demand cheaply but that may be inefficient over the long
run, or allocating a large p-cycle that requires a large investment
up front and that may be wasted if expected future demands
never materialize. This dilemma can be solved by starting with
small p-cycles and periodically reoptimizing their size as traffic
increases, but continual reoptimization entails significant man-
agement overhead.

In this paper, we generalize the p-cycle concept. We argue
that rings and p-cycles restore traffic quickly not because of
their circular topology but because their protection routes are
pre-cross-connectable. We are thus naturally led to consider ar-
ranging protection capacity not only into cycles but more gener-
ally into pre-cross-connected trails (or PXTs; the precise defini-
tion will be given later). Like p-cycles, PXTs achieve the “speed
of rings with the efficiency of mesh,” but they are more flex-
ible than p-cycles. In particular, PXTs can be used in either a
link-based or a path-based scheme, and they are well suited to
dynamic traffic because they grow and shrink incrementally in
a natural way.

II. LINK-BASED VERSUS PATH-BASED PROTECTION

As we mentioned in Section I, some protection schemes are
link-based while others are path-based. In this section, we de-
fine these two terms and give a brief comparison of their respec-
tive merits.

In link-based protection, the nodes—let us call them A and
B—at either end of a failed link are responsible for detecting
the failure and switching the traffic from the failed link onto a
protection path that bypasses the failure. The failed link may
be utilized by a large number of different light paths, each with
a different source and destination. After the failure, these light
paths travel from their source node to node A as before, then take
the protection path to get to node B, then finally travel from
node B to their final destinations. SONET BLSRs use link-based
protection.

In path-based protection, it is the source and destination nodes
of each individual working light path that are responsible for
switching the traffic onto a protection path. As in link-based
protection, a single failed link may cause many different light
paths to fail. However, in path-based protection, each one of
these light paths is free to travel on a completely different pro-
tection path from source to destination. In particular, there is
no need for any of them to visit the nodes A and B at the ends
of the failed link. SONET UPSRs use path-based protection.
Path-based protection is also known as end-to-end protection.

There is one more point that should be made about path-
based protection. In principle, the source and destination of a
given working light path could choose different protection paths

depending on which link or node along the working path fails.
Although such failure-dependent routing can improve the band-
width efficiency slightly, it requires additional signaling to iso-
late the fault. This slows down the recovery process and so is
rarely used in practice. In this paper, we assume that the same
protection path is always used for a given working path. Natu-
rally, this means that the protection path must be disjoint from
the working path.

How does one choose between link-based and path-based
protection? There are several factors to consider.

1) Shared path-based protection tends to use less total
bandwidth than shared link-based protection. One
reason is that in link-based protection, there is a backhaul
problem. A protection light path may travel to node A
and then double back on itself in order to get to node B.

2) Shared link-based protection tends to be faster than
shared path-based protection. The reason is that in link-
based protection, the failure detection and repair happen
locally, whereas in path-based protection the signals must
travel all the way to the source and the destination. Fur-
thermore, as already mentioned, a single fiber cut usually
triggers a large number of alarms in a path-based scheme,
and processing all these alarms simultaneously can bog
down the network.

3) It is difficult if not impossible for a link-based scheme
to protect against node failures. Link-based schemes
rely on the nodes on either end of a link to perform a
protection switch; if one of these nodes fails, then it
cannot perform the switch. A path-based scheme can
simply choose node-disjoint paths from end to end for all
its light paths and then node failures are automatically
survivable—unless it is the source or destination node
that fails, but in that case it is impossible to recover
from the failure anyway. (Note, however, that we said
“difficult” rather than “impossible”; for example, a
SONET BLSR, which we described as a link-based
scheme, is able to survive node failures. But this is only
because a BLSR has, in addition to its basic mechanism
for surviving a single link failure, a complicated system
involving ring maps and squelch tables for detecting and
coping with multiple failures.)

As we said before, in some situations link-based protection
is the right choice and in other situations path-based protec-
tion is preferable. Ideally, a comprehensive protection method-
ology should be flexible enough to provide either link-based or
path-based protection, depending on the needs of an individual
network.

III. PRE-CROSS-CONNECTION: THE KEY TO FAST PROTECTION

A. Branch Points

Why does a conventional shared mesh protection scheme ex-
perience a longer restoration time than a SONET BLSR? The
basic reason is that in shared mesh protection, the sequence of
recovery actions triggered by a failure is longer and more com-
plex than in a ring. For example, in order to achieve high band-
width efficiency, some shared mesh protection schemes choose
different backup paths for a given working path depending on

CHOW et al.: FAST OPTICAL LAYER MESH PROTECTION USING PRE-CROSS-CONNECTED TRAILS 541

the location of the failure. The backup path may even exploit
stub release, i.e., it may use bandwidth that was previously used
by working paths that have now failed. To accomplish these feats
without misconnection or blocking, the network elements must
perform fault isolation and must disseminate this information to
all the other nodes involved in the recovery. Acknowledgments
and hold-off times may also be required, slowing the restoration
process.

Now, some shared mesh protection schemes circumvent the
above problems by pre-assigning a single backup path for each
working path, independent of the location of the failure, and not
exploiting stub release; see, for example, [9]. However, even in
these schemes, the network elements still need to perform re-
covery actions that are unnecessary in a ring. Specifically, in a
mesh network, the sharing of protection bandwidth by its very
nature implies that the correct configuration of the nodes on the
backup path can be different for different failures. This typically
means that when a failure occurs, a notification must be sent
along the backup path so that the nodes can configure them-
selves appropriately. With in-band signaling, each node may
need to cross-connect itself in real time before it can pass the
message on to the next node. With current optical cross-con-
nect technology, each cross-connection can take 5–10 ms or
more, so this effect by itself can easily use up the 50-ms budget.
Even if out-of-band signaling is used, so that cross-connecting
can be done in parallel in different nodes, a single node that
receives several cross-connection requests for different backup
paths may only be able to perform these cross-connections se-
quentially. In contrast, in a BLSR, only the nodes on either
side of a failure need to make a real-time switch. The rest of
the protection path is pre-cross-connected, so that the interme-
diate nodes on the protection path simply pass through the traffic
without having to make a switching decision.

Fig. 1 may clarify this point. Solid lines represent physical
links while broken lines represent light paths. The working path
W1 (from A to B) and the working path W2 (from C to D) have no
common point of failure, so let us assume that their protection
paths P1 (from A to E to B) and P2 (from C to A to E to D) share
protection bandwidth on the link AE. Now, if W1 fails, then node
E must connect AE to EB, whereas if W2 fails, then node E
must connect AE to ED. Therefore, in order for node E to decide
which connection to make, it must be informed of the location
of the failure, and this information is available only after the
failure has occurred and cannot be pre-calculated. Although one
could arbitrarily decide to pre-cross-connect AE to either EB
or ED, neither choice would entirely eliminate the need for a
real-time switch at E; if AE is pre-cross-connected to EB, then
E must make a real-time switch when W2 fails, and if AE is
pre-cross-connected to ED, then E must make a real-time switch
when W1 fails.

It is convenient to introduce some terminology to describe the
above situation. We define a branch point to be a node X with the
property that, no matter how the protection capacity is pre-cross-
connected at X, there exists a failure scenario for which some
needed protection path that has X as an intermediate node is not
properly pre-cross-connected at X. Notice that branch points can
arise regardless of whether one uses link-based or path-based
shared mesh protection.

Fig. 1. Protection scheme with a branch point at E.

Fig. 2. Pre-cross-connectable protection scheme.

These observations explain why Grover and Stamatelakis’s
mesh protection scheme [4] succeeds in achieving ring-like
speeds. As we mentioned before, in their scheme, all the
protection capacity is organized into certain predetermined
rings or p-cycles, and therefore, no troublesome branch points
can arise. The p-cycles are pre-cross-connected just as in a
BLSR. When a failure occurs, the nodes at either end of the
failure must react and perform a real-time switch, but all the
intermediate nodes on the protection path simply pass through
the traffic. The only recovery operations that the nodes need to
perform are those that also need to be performed in a BLSR, so
comparable speed is achieved.

We now come to the main insight of the present paper. Al-
though a ring or a p-cycle has no branch points, the converse
is not true. That is, if there are no branch points, this does not
automatically imply that the protection bandwidth is arranged
into a set of rings. As an example, suppose we modify Fig. 1
slightly by choosing a different route for P1, as shown in Fig. 2.

On both AE and ED, P1 and P2 share bandwidth. We pre-
cross-connect CA to AE, AE to ED, and ED to DB.

The crucial observation is that the branch point at node E
has now been removed, so that pre-cross-connecting AE to ED
works correctly for all failure scenarios. Furthermore, despite
appearances, D is not a branch point either. To see this, note first
that if W1 fails, then the pre-cross-connection between ED and
DB is exactly what we want, because it connects up P1 and al-
lows the intermediate node D to pass through protection traffic
without making a real-time switch. On the other hand, if W2
fails, then the ED-DB pre-cross-connection is admittedly im-
proper and must be broken in order to terminate P2 at D, but
the key fact is that for this failure, node D is not an interme-
diate node on the protection path but an end node. (Recall the
proviso about intermediate nodes in the definition of a branch
point.) The idea is that D must perform a real-time switch in any

542 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

case, and no additional delay is incurred by requiring it to break
the cross-connection between ED and DB. Similarly, A is not a
branch point. In Fig. 2, just as in a ring, regardless of the failure,
only the end nodes need to switch.

We argue, therefore, that as long as we avoid branch points,
we can approach the “speed of rings.” Moreover, since avoid-
ance of branch points can be achieved without necessarily com-
mitting to rings or p-cycles, we open up the possibility of over-
coming some of the limitations of the latter. For example, we
are no longer committed to a link-based protection scheme, and
even if we do choose a link-based scheme, we can use our new-
found flexibility to improve the bandwidth efficiency or the ro-
bustness to dynamic traffic. These points will be explored fur-
ther in the following sections.

Before plunging into technical details, we make one final gen-
eral remark. We do not claim that pre-cross-connection is the
only way to close the performance gap between ring and mesh.
For example, if optical switch technology improves to the point
where the time taken to cross-connect drops by an order of mag-
nitude, then avoiding branch points may no longer be necessary.
However, even if such an alternative solution is used, our scheme
may still be employed to further boost performance.

B. Graph-Theoretic Terminology

Before we proceed further, it is helpful to give a formal state-
ment of the problem we are trying to solve. To do this, we must
first briefly review some graph-theoretic terminology.

By a graph we mean an undirected multigraph, i.e., an undi-
rected graph that may have multiple edges. An edge is also
called a link connection. A link in a graph is the set of all
edges between a given pair of nodes. Two edges that share ex-
actly one end node in common are said to be incident to each
other at . The degree of a node is the number of edges that
have as an end node. A graph is regular if every node has the
same degree.

In this paper, the distinction between an edge and a link is
more important than is usually the case, so we explain it in
slightly more detail. The reader familiar with ITU terminology
may find it helpful to think of the terms “link” and “link con-
nection” as short for “regenerator section link” and “regenerator
section link connection” (although this correspondence should
not be taken too literally since we describe our algorithms
in terms of abstract graphs and not in terms of actual optical
networks). Alternatively, the reader can think of an edge as
the smallest unit of bandwidth that can be switched, while a
link comprises the totality of bandwidth between two adjacent
nodes. For example, in a WDM network (with no sub-wave-
length muxing), an edge would be a wavelength, while a link
would comprise all the fibers in the conduit between two nodes.

In the graph in Fig. 3, there are two edges or link connections
on the link between nodes D and E, namely e and f. The degree
of node D is 4.

A walk in is an alternating sequence of nodes and edges
in such that for all , the

end nodes of are and . A trail is a walk whose edges
are all distinct and a path is a walk whose nodes are all distinct.
A walk is closed if . Note that a path cannot be closed
unless . A walk is said to connect and .

Fig. 3. Example of a graph.

In Fig. 3, is a walk but not
a trail because the edge d is repeated. On the other hand,

is a trail—in fact a closed
trail—but not a path, because the node is repeated.

Two walks in are edge-disjoint (respectively, link-disjoint)
if there is no edge (respectively, link) that both of them traverse.
The interior of a walk is the set , i.e., the
set of all of its nodes other than its end nodes. Two walks are
node-disjoint if they are link-disjoint and no node in the interior
of one walk is a node in the other walk.

For example, in Fig. 3, the paths and are
edge-disjoint but not link-disjoint, and hence they are not node-
disjoint. The paths and are not node-
disjoint, because B is an interior node of the first path that is
also a node of the second path. On the other hand, the paths

and are node-disjoint, because
even though node C is on both paths, is not an interior node
of either path.

C. Problem Statement

For brevity, we describe only a path-based protection scheme
and omit the details of the analogous link-based version. We also
assume that all traffic and all links are bidirectional.

INPUT: A graph and a list D of demands. A demand d
is an unordered pair of distinct nodes—the terminals of d—of

; the same demand may appear multiple times in the list D.
For simplicity we assume that each edge of has unit cost and
unit capacity and that each demand in D requires unit capacity
to route, although allowing arbitrary integer costs and capacities
would not change the essence of the problem.

OUTPUT: An allocation plan, i.e., a list that contains, for
each demand d in D, two paths (note: paths, not arbitrary trails
or walks) connecting the terminals of d—a working path and a
protection path—and that satisfies the following conditions:

1) For each d, the working and protection paths are node-
disjoint. (Note: here and in what follows, “node-disjoint”
may be changed to “link-disjoint” if survivability against
node failures is not required.)

2) No edge (note: edge, not link) that appears in the working
path of some demand appears in either the working or
protection path of any other demand.

3) If the working paths of two demands and are not
node-disjoint, then their protection paths are edge-dis-
joint.

4) There are no branch points. That is, if is a node and
, and are three distinct edges that each have

as an end node, and the protection path of some demand

CHOW et al.: FAST OPTICAL LAYER MESH PROTECTION USING PRE-CROSS-CONNECTED TRAILS 543

contains both and , then no protection path of any
demand contains both and .

The number of edges that appear in some working (respec-
tively, protection) path is called the working (respectively, pro-
tection) bandwidth of the allocation plan. Note that some protec-
tion edges are shared, i.e., they appear in the protection paths of
more than one demand; such edges are counted only once when
computing the protection bandwidth. The total bandwidth is the
sum of the working and protection bandwidths. The smaller the
total bandwidth, the better the allocation plan. The objective is
to find as good an allocation plan as possible.

This completes the problem statement. Condition 4, on
branch points, is what distinguishes our shared mesh protection
problem statement from others in the literature.

We are now able to explain the “PXT” terminology alluded
to earlier. Given an allocation plan, we say that two edges
and are pre-cross-connected if they appear consecutively in
some protection path. Pre-cross-connection should be thought
of as “linking up” the protection edges. The crucial fact, easily
proven, is that although condition 4 does not force the protec-
tion edges to be arranged into a disjoint union of cycles, the ab-
sence of branch points does imply that the protection edges must
be pre-cross-connected into a disjoint union of trails (some of
which may be closed trails). We call each such trail of protec-
tion edges a pre-cross-connected trail or PXT of the allocation
plan. Note that each protection path is part of some PXT, but
that a PXT may be much longer than any single protection path,
since protection paths may overlap (e.g., in Fig. 2 the two pro-
tection paths combine to form a PXT of length four). In fact, a
PXT may even form a closed trail in which the last edge comes
back and is pre-cross-connected to the first edge. Such a PXT is
called a closed PXT. A closed PXT is similar to a ring, except
that a closed PXT may “self-intersect” in the sense of visiting
the same node or link more than once.

As we argued above, the absence of branch points allows us
to achieve ring-like protection speeds, but two important ques-
tions remain. 1) Given a graph and a list of demands, how does
one compute a good allocation plan in a reasonable amount of
time? 2) Is it still possible to achieve low total bandwidth when
the no-branch-point constraint is imposed? These questions are
addressed in the next sections.

IV. COMPUTING AN ALLOCATION PLAN

Now that we have a formal statement of our PXT protection
scheme as a combinatorial optimization problem, our first incli-
nation might be to apply a standard mathematical programming
or local search algorithm to try to find solutions to given in-
stances. But although we hope to pursue such approaches in the
future, we do not discuss them further in the present paper. The
reason is that most such algorithms are best suited to so-called
offline computation, by which we mean that the list of demands
is completely known in advance and does not change with time.
While this is a reasonable assumption in some networks, most
real networks experience dynamic traffic, i.e., the list of de-
mands arrives over time. Each demand must be satisfied when
it arrives, without knowing what the future may bring. More-
over, network operators often desire a cap-and-grow routing
method, i.e., once a demand is routed, its routing should if pos-
sible remain undisturbed when later demands arrive and are

routed. In other words, re-routing and re-optimizing existing
demands when a new demand arrives is strongly discouraged
if not forbidden. Under these circumstances, what is needed is
an online algorithm that routes one demand at a time. In spite
of their practical importance, online algorithms and their com-
petitive ratios—i.e., their performance relative to offline algo-
rithms—have not received much attention in the literature on
shared mesh protection. We hope that our work here will be a
first step toward remedying this deficiency.

Suppose that we have a graph and a list D of demands for
which an allocation plan has already been calculated. Now sup-
pose a new demand arrives and we need to find a
working path and a protection path for it, without
disturbing the existing allocation plan. The idea is to find the
working path first, and then to find the protection path that
re-uses existing protection bandwidth as much as possible, sub-
ject to the constraint that the protection path be a path, i.e., that
it never revisit the same node more than once. (This require-
ment that the protection path be a path complicates the algo-
rithm more than one might initially expect, as the reader will see
shortly. We say a few words at the end of this section about re-
laxing this requirement.) More precisely, we proceed as follows.

1) Find by applying a shortest-path algorithm such as
Dijkstra’s algorithm to the unused part of (i.e., the
edges that are not already used in the allocation plan).

2) The existing protection edges are, as explained above, ar-
ranged into PXTs. Form a list of all PXTs.

3) Discard all closed PXTs from except those that contain
at least one occurrence of and at least one occurrence
of . (The reader should convince himself that unless a
PXT contains both and cannot possibly use
any edge from without introducing a branch point.)

4) Pick a PXT and find all occurrences of and on it.
These occurrences subdivide into subtrails, i.e., con-
tiguous segments of that run from one occurrence of
or to the next occurrence of or .

5) Discard any such subtrails that are not paths, and append
the remaining subtrails, if any, to a list . (If any edge
from a subtrail is used in , then the entire subtrail
must be used, and since is required to be a path, it
cannot contain a subtrail that is not a path.)

6) Delete from . If is empty, go to step 7; otherwise
go to step 4.

7) Discard every path from with a prohibited edge: A
prohibited edge is an edge that either has an end node in
the interior of or that is contained in the protection
path of an existing demand whose working path

is not node-disjoint from .

The paths that remain in are called shortcut paths. These
shortcut paths are used to help create an auxiliary graph as
follows. The nodes of are the same as the nodes of . If
and are nodes in and there exist one or more edges in

between and such that (1) does not appear in any
existing working or protection path or in and (2) is not
a prohibited edge, then we create an edge e in between
and . (Only one such edge is created in between and
even if there are many edges in between and with the
necessary properties.) We call e an unused edge. It has a cost of
one unit. Additionally, for each shortcut path , we create an

544 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

edge in of zero cost between the end nodes of . Such edges
are called shortcut edges.

If we now run Dijkstra’s algorithm on to find the min-
imum-cost path between and , and then “expand” each
shortcut edge into the shortcut path in that it came from,
then this produces the protection route that uses the
least amount of new bandwidth. Note that the idea behind
the shortcut paths and edges is that we want to consist
of existing protection bandwidth as much as possible, since
using such edges does not add to the overall cost of the final
allocation plan. However, since branch points are forbidden,
a shortcut path must be used either in its entirety or not at all.
The effect of using a shortcut path is to “jump” from one end
to the other at zero cost; this is modeled by the shortcut edges.

However, there is one slight problem with using Dijkstra on
. It is possible that when the shortest path in is “expanded”

into a walk in , the result will not be a path in . For example,
two shortcut paths may cross each other in but their corre-
sponding shortcut edges in may not. Therefore, in order to
ensure that is a path, one must mark each edge e in with
a list of its “rivals,” i.e., edges with the property that any path
containing both e and expands into a nonpath in . Then one
must run a constrained version of Dijkstra that ensures that rival
edges never appear in the same path. For details of this con-
strained version of Dijkstra, see the Appendix.

(Note: The only reason to run constrained Dijkstra rather than
ordinary Dijkstra is to ensure that the protection paths are in-
deed paths. If the operator of a network finds it acceptable to
have protection “paths” that may revisit the same node or link
more than once, then ordinary Dijkstra may be used. Not only
will this speed up the algorithm, but the added flexibility of
allowing such “self-intersections” can potentially increase the
overall bandwidth efficiency. However, in spite of these con-
siderations, our experimental results below cleave to tradition
and enforce the constraint that protection paths must indeed be
paths.)

It is possible that the constrained Dijkstra algorithm will not
be able to find any protection path, e.g., because the working
path, which is chosen first, is positioned in such a way that it is
not possible to find a disjoint protection path. In this case it is
recommended that one find the shortest cycle C containing both
the source and the destination, and re-run the algorithm with
one half of C as the new working path. If this also fails then one
could try still more sophisticated searches, but in our software
implementation we simply give up trying at this point.

We remark in passing that in contrast to p-cycles, PXTs are
typically not closed, and therefore, can be extended incremen-
tally at either end when new demands arrive. They also shrink
incrementally when old demands disappear. This makes them
well suited to online algorithms.

V. EXPERIMENTAL RESULTS

The problem of evaluating the bandwidth efficiency of a
shared mesh protection scheme is still largely unsolved. Ideally
one would like analytical results that prove that: 1) the optimal
total bandwidth is never more than (say) twice the bandwidth
that would be needed if no protection were required; and
2) there are polynomial time offline and online algorithms that
are guaranteed to get within a certain percentage of the optimal

Fig. 4. Experimental results: Selected twelve-node networks.

total bandwidth. Unfortunately, these analytical results seem to
be currently out of reach. Therefore, it seems that the only thing
to do is to obtain experimental results on specific instances.
Although this is a reasonable approach, it raises the question,
which instances should one choose?

There is no standard test suite for shared mesh protection
studies. Most researchers, therefore, pick a few small networks
more or less arbitrarily. This leaves one with the nagging worry
that the instances chosen may not be truly representative of typ-
ical networks.

We do not have a fully satisfactory solution to this problem,
but we suggest that some concepts from experimental design
theory may be helpful. The idea is to identify certain parameters
that are likely to be important and to determine the range of
values that these parameters will take in practice. This defines
a parameter space of possible instances. The parameter space
will be too large to study exhaustively, so the goal is to sample
it judiciously in order to obtain as much information as possible
for the least possible effort.

For example, for shared mesh protection, three factors that
seem to be important are: 1) the average degree of the graph
(this relates to how well-connected the graph is); 2) the girth
(i.e., the length of the smallest cycle; since a working path and
a protection path together form a cycle, a large girth means that
short working paths will have long protection paths); and 3) the
extent to which the demands are localized (i.e., whether each
node wants to talk to everyone else or just to certain nodes).
With these factors in mind, we have chosen six 12-node graphs,
shown in Fig. 4, to cover a range of possibilities in the parameter
space. Tietze’s graph, for example, is a small modification of the
famous Petersen graph, which in turn is a (3, 5)-cage, i.e., the
smallest regular graph of degree 3 and girth 5. The graph labeled
“Murakami and Kim” is a slight modification of a network from
[10]. The icosahedron has the maximum degree (five) attainable

CHOW et al.: FAST OPTICAL LAYER MESH PROTECTION USING PRE-CROSS-CONNECTED TRAILS 545

by a regular planar graph. Of course, our selection of graphs
is still somewhat arbitrary; it remains an open question how to
apply experimental design methodology more rigorously in the
selection process.

For each of the six graphs we have considered three different
lists of demands: uniform, nearest-neighbor, and unbalanced.
In uniform traffic, every pair of nodes appears exactly five
times in the list of demands. In nearest-neighbor traffic, every
pair of adjacent nodes appears exactly ten times in the list,
and there are no other demands. In unbalanced traffic, three
nodes are chosen to be “large” nodes and the remainder are
deemed “small” nodes. The number of times a demand appears
in the list depends on the “sizes” of the terminals: If and
are respectively small/small, small/large, and large/large, then

appears respectively 2, 8, and 14 times.
For each of the 18 instances thus obtained, the demands were

fed one at a time in a random order to our online algorithm and
routed accordingly. For comparison, we also routed the demands
using (1) a path protection algorithm and (2) a simple
shared path protection scheme that finds a node-disjoint pair of
paths between every pair of terminals and routes all the demands
on those paths, sharing when possible without worrying about
branch points.

The results are shown in Table I. The column labeled
“Working” indicates the working bandwidth, which is the same
for all three schemes— , simple shared path, and PXT.
The remaining three columns report the protection bandwidth
for each of the three schemes; the column labeled “Path” refers
to the simple shared path protection scheme. We see that our
results confirm the conventional wisdom that shared mesh pro-
tection saves a lot of (total) bandwidth compared to dedicated
protection. The percentage savings in our table varies from
about 20% to 60%, which is a wider variation than has typically
been reported in the literature; this may be due to our deliberate
selection of a wide variety of networks. We also see that the
bandwidth efficiency of the PXT algorithm is comparable to
and often better than that of the conventional path protection
algorithm. Therefore, the answer to our second question at the
end of Section III is that the no-branch-point constraint does
not negate the bandwidth efficiency. This result is consonant
with what Grover and Stamatelakis report for p-cycles.

There are further questions that are natural to ask, e.g., how
does the bandwidth efficiency of our online PXT algorithm
compare to an offline PXT algorithm? How do the online/of-
fline PXT algorithms compare to the best online/offline
algorithms that do not necessarily avoid branch points? These
are interesting and important questions, but they are not as easy
to answer as one might initially think. Formulating the offline
PXT problem in such a way that good solutions can be obtained
in a reasonable amount of time is a research project in itself,
as is the problem of devising an optimal online algorithm. We
hope to investigate these problems, but they lie beyond the
scope of the present paper. However, we did attempt to compute
a loose lower bound for the bandwidth usage by feeding to
CPLEX an integer linear program (similar to that described
in [7]) that not only had no pre-cross-connection constraint
but also allowed backup routes to depend on the location of
the failure and also allowed stub release. The results of these
(offline algorithm) computations are shown in the last column

TABLE I
EXPERIMENTAL RESULTS: BANDWIDTH USAGE

of Table I (the asterisks are there because the computations for
the densest graph exceeded our available computer capacity).
If we think of the difference between the column and the
lower bound column as the “maximum potential savings due
to sharing,” then we see that even the online PXT algorithm
typically achieves a significant percentage of the maximum
savings.

Finally, we remark that we have run the PXT protection
scheme on several much larger networks, including one with
over two hundred nodes and over three hundred links, and with
thousands of demands. The bandwidth efficiency was similar
to that exhibited in Table I, but unfortunately we cannot give
further details, for intellectual property reasons.

VI. CONCLUSION

The Achilles heel of shared mesh protection is its relatively
slow restoration speed. This problem can be surmounted by for-
bidding branch points and thereby allowing protection paths to
be pre-cross-connected. Grover and Stamatelakis took a first
step in this direction with their p-cycle protection scheme, but
we have gone further and have allowed a more general struc-
ture called a “pre-cross-connected trail” or PXT, whose flex-
ibility allows it to be used in both link-based and path-based
protection schemes and in both offline and online algorithms.
Experimental results demonstrate that forbidding branch points
does not destroy the main advantage of shared mesh protection,
namely its high bandwidth efficiency.

APPENDIX

CONSTRAINED DIJKSTRA ALGORITHM

A key subroutine of our algorithm for computing allocation
plans is a variant of Dijkstra’s shortest-path algorithm that we

546 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

call the constrained Dijkstra algorithm. Constrained Dijkstra is
of some interest in its own right so we give a self-contained
description of it in this section.

INPUT: A directed graph , each of whose edges e has a
nonnegative weight (its length) and a (possibly empty) list of
edges of (called the rival edges of e), and a distinguished
node of (called the source node).

OUTPUT: For each node of , the shortest admissible
path from to . A path is admissible if, for all edges e in

, no rival edge of e is in .
Definition: A partial path in is an ordered quadruple

, where is a directed path in is the length of the
path (i.e., the sum of the lengths of its edges), is a set of edges
of (called the forbidden edges of), and is the state of the
path (which takes one of two values: penciled in or inked in).
We use the letters and to denote “coordinate functions,”
i.e., is the set of forbidden edges of , and so on.

Definition: A partial path is said to dominate a partial
path if and . Intuitively, this
means that is at least as good as . Note the use of rather
than and rather than . This is important.

Preliminary Remarks on the Algorithm: During the course of
the algorithm, each node maintains a list of partial paths from

to . We say that a node is black if there exists an inked-in
partial path in its list and we say that it is white otherwise. Ini-
tially only is black; as the algorithm runs, more and more white
nodes become black. Once a node becomes black it stays black
permanently.

If a node is black, it has at most one inked-in partial path;
this represents the shortest admissible path from to . If
is white, its penciled-in partial paths represent paths that are
potential shortest paths to . If is black, its penciled-in partial
paths represent initial segments of potential shortest paths to
other nodes.

Like Dijkstra, constrained Dijkstra is a breadth-first search
algorithm. At each step, one of the nodes is designated to be
the active node and one of the partial paths of is designated to
be the active partial path. Partial paths are extended one node
at a time at the active node. Again like Dijkstra, constrained
Dijkstra keeps the partial paths in a heap, so that it can quickly
find the shortest partial path when it needs to.

Initialization: As a pre-processing step, we examine each
edge e of in turn; for each rival edge f of e, we add e to the
list of rival edges of f if e is not already on that list. We are free
to do this since it does not change the admissibility or length of
any path in , and it is convenient for our purposes.

The source node’s list of partial paths is initialized to contain
a single entry is the path consisting solely of the source
node itself, is the empty set, and has the
value “inked in.” Thus, is black. We also designate to be the
active node and its (unique) partial path to be the active partial
path. At every other node the list of partial paths is empty, so
they are all white. The partial path is put on a heap.

Main Loop: We “probe forward” from the active node. That
is, suppose that is the active node and that is the active
partial path. We consider in turn each edge e that emanates from

. If e is forbidden, i.e., if , then we ignore it and move
on to the next edge. Otherwise, let be the node that e points

Fig. 5. Sample input for constrained Dijkstra algorithm.

to. We let be the partial path obtained from by appending
to , adding the length of e to , and adding the rival

edges of e to . If is dominated by some partial path
in ’s list, then we forget about it and move on to the next
edge emanating from . Otherwise, we add to the list of
partial paths at , penciling it in. We also add it to the heap.
We then delete any penciled-in partial paths in the list at that
are dominated by . These partial paths are also deleted from
the heap. We repeat this process until all the edges emanating
from have been exhausted. We then remove from the heap,
but do not delete it from the list of partial paths at .

Next, we extract the shortest partial path from the heap and
designate it to be the new active partial path. We also designate
the node where we found to be the new active node. If
is white, we ink in (thereby making black). Otherwise, we
simply leave penciled in.

Termination: The algorithm terminates when we try to ex-
tract a partial path from the heap but find that it is empty, or
when all nodes become black, whichever occurs first.

Example: Each edge in the directed graph in Fig. 5 has three
labels: the name of the edge, the length of the edge, and the set
of rival edges. The distinguished node is , which is the first
black node.

Observe that if we ignore the constraints given by
the rival edges, then the shortest path from to is

. However, this path is not admissible
because it contains both and , which are rivals of each
other.

Initially is the active node. If we probe forward then we
obtain three partial paths. The partial path at is the shortest
so we ink it in, making black. These become the new active
partial path and active node. (See Fig. 6. To avoid clutter, we
have suppressed edge labels. Shaded entries are penciled in and
unshaded entries are inked in.)

We now probe forward from . At , the new partial path
is dominated by the existing partial path so it is not added. We
cannot probe forward to because is forbidden. Probing
forward to is all right and we add a new partial path there:

. This, however, does not
become the new active partial path, because the penciled-in

CHOW et al.: FAST OPTICAL LAYER MESH PROTECTION USING PRE-CROSS-CONNECTED TRAILS 547

Fig. 6. Intermediate stage in constrained Dijkstra algorithm.

partial path at is shorter. We ink in the partial path at ,
make black, and probe forward from . The only new partial
path created at this stage is at .
Even though is black, we retain this new partial path because
it is not dominated by the existing partial path at . (The
existing partial path is shorter but has forbidden edges that are
not forbidden in the new partial path.) In fact this becomes the
new active partial path, although we do not ink it in because
is already black.

Continuing in this way, we find that the remaining
shortest admissible paths are

, and . No-
tice that these paths do not arrange themselves into a tree; this
is one difference from the usual Dijkstra algorithm.

Final Remarks: We omit a detailed proof of the correctness
of the constrained Dijkstra algorithm; the basic idea is that con-
strained Dijkstra is equivalent to ordinary Dijkstra on an auxil-
iary graph that can be built out of the partial paths.

Although we have described constrained Dijkstra for directed
graphs, it can be applied to undirected graphs using the usual
trick of replacing an undirected edge with two directed edges.

The running time of the constrained Dijkstra algorithm is
exponential in the worst case. As an example of this, consider
the “grid graph” whose nodes are the points in the plane
whose coordinates are integers with absolute value at most

, and whose edges point from each vertex to its immediate
southern neighbor and to its immediate western neighbor.
Give each edge of one rival edge, namely its image under
reflection in the line . It is not hard to show that if we
take the node with coordinates as the source node, then
by the time the algorithm first reaches the line it will
be keeping track of about partial paths. It should be pointed
out, however, that this example relies on an artificial assignment
of rival edges that does not arise in the PXT algorithm, which
generates only limited sets of rival edges that arise out of the
geometric properties of the working and protection paths. So
the practical performance of the PXT algorithm is much better

than this worst-case analysis might suggest. Nevertheless, be-
cause of this potentially exponential consumption of resources,
it is important that the actual implementation of the algorithm
contain parameters that allow it to exit gracefully and report
failure if it exceeds a certain amount of time or memory.

ACKNOWLEDGMENT

The authors would like to thank J. D. Mills, P. J. Lin,
P. Wilson, and M. Lamothe for useful feedback. P. Lin in
particular was a major contributor to a novel protection scheme
(unpublished) that was a predecessor to the PXT algorithm.
The authors also thank the reviewers for suggesting numerous
improvements.

REFERENCES

[1] E. Bouillet, J.-F. Labourdette, G. Ellinas, R. Ramamurthy, and S. Chaud-
huri, “Stochastic approaches to compute shared mesh restored lightpaths
in optical network architectures,” in Proc. IEEE INFOCOM, 2002, pp.
801–807.

[2] B. T. Doshi, S. Dravida, P. Harshavardhana, O. Hauser, and Y. Wang,
“Optical network design and restoration,” Bell Labs. Tech. J., vol. 4, no.
1, pp. 58–84, 1999.

[3] G. Ellinas and T. Stern, “Automatic protection switching for link
failures in optical networks with bidirectional links,” in Proc. IEEE
GLOBECOM, 1996, pp. 152–156.

[4] W. D. Grover and D. Stamatelakis, “Cycle-oriented distributed precon-
figuration: Ring-like speed with mesh-like capacity for self-planning
network restoration,” in Proc. IEEE Int. Conf. Communications, 1998,
pp. 537–543.

[5] O. Hauser, M. Kodialam, and T. V. Lakshman, “Capacity design of fast
path restorable optical networks,” in Proc. IEEE INFOCOM, 2002, pp.
817–826.

[6] H. Huang and J. A. Copeland, “A series of Hamiltonian cycle-based so-
lutions to provide simple and scalable mesh optical network resilience,”
IEEE Commun. Mag., vol. 40, pp. 46–51, Nov. 2002.

[7] R. R. Iraschko, M. H. MacGregor, and W. D. Grover, “Optimal capacity
placement for path restoration in STM or ATM mesh-survivable net-
works,” IEEE/ACM Trans. Networking, vol. 6, pp. 325–336, June 1998.

[8] M. Médard, R. A. Barry, S. G. Finn, W. He, and S. Lumetta, “General-
ized loop-back recovery in optical mesh networks,” IEEE/ACM Trans.
Networking, vol. 10, pp. 153–164, Feb. 2002.

[9] Y. Miyao and H. Saito, “Optimal Design and evaluation of survivable
WDM transport networks,” IEEE J. Select. Areas Commun., vol. 16, pp.
1190–1198, July 1998.

[10] K. Murakami and H. S. Kim, “Comparative study on restoration schemes
of survivable ATM networks,” in Proc. IEEE INFOCOM, 1997, pp.
345–352.

[11] B. Van Caenegem, W. Van Parys, F. De Turck, and P. M. Demeester,
“Dimensioning of survivable WDM networks,” IEEE J. Select. Areas
Commun., vol. 16, pp. 1146–1157, July 1998.

[12] M. Sridharan, M. V. Salapaka, and A. K. Somani, “A practical approach
to operating survivable WDM networks,” IEEE J. Select. Areas
Commun., vol. 20, pp. 34–46, Jan. 2002.

Timothy Y. Chow received the Ph.D. degree in
mathematics from the Massachusetts Institute of
Technology, Cambridge, in 1995.

He then joined the Mathematics Department
at the University of Michigan, Ann Arbor, as an
Assistant Professor, supported in part by a National
Science Foundation postdoctoral fellowship. In
1998, he joined the Tellabs Research Center, Cam-
bridge, where he did research on mesh protection,
traffic grooming, and other problems in network
optimization and design. His research interests

include combinatorial optimization, computational complexity, and algebraic
combinatorics.

Dr. Chow is a member of the American Mathematical Society.

548 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 3, JUNE 2004

Fabian Chudak received the Ph.D. degree in oper-
ations research from the School of Operations Re-
search and Industrial Engineering, Cornell Univer-
sity, Ithaca, NY, in 1998.

He was granted an IBM postdoctoral fellowship
at the IBM Watson Research Center in the Mathe-
matics Department for two years. Then he joined the
Tellabs Research Center, Cambridge, MA. In 2002,
he joined Cariden Technologies, Redwood City, CA,
and he is currently a Senior Researcher at ETH, Swiss
Federal Institute of Technology, Zürich, Switzerland.

His research interests are in the design of algorithms for large-scale optimization
problems with provably good performance guarantee, as well as their practical
applications.

In 1998, Dr. Chudak was awarded the SIAM Best Student Paper Prize, and in
2000, he was a finalist for the Tucker Prize of the Mathematical Programming
Society.

Anthony M. Ffrench received the B.Eng. degree
in computer engineering from the University of
Limerick, Ireland, in 2000.

He joined the Tellabs Research Center, Cambridge,
MA, in 2000. His research interests include mathe-
matics, telecommunications, and software simulation
design. He is currently with Datapower Technology,
a pioneer in intelligent XML-aware networking.

