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We consider the problem of packing n disks of unit diameter in the plane so as to minimize the 
second moment about their centroid. Our main result is an algorithm which constructs packings 
that  are optimal among hexagonal packings. Using the algorithm, we prove that, except for 
n = 212, the n-point packings obtained by Graham and Sloane [1] are optimal among hexagonal 
packings. We also prove a result that  makes precise the intuition that  the "greedy algorithm" of 
Graham and Sloane produces approximately circular packings. 

1. Introduction 

A set of points {P1,.-. ,Pn} in the plane that  satisfies 

(*) ]]Pi-PjN k 1 for a l l i # j  

is called an n-point packing. (Here II II denotes the usual Euclidean distance.) 
Hereafter we shall refer to the condition (*) as the disjointness constraint. The 
second moment U of an n-point packing is defined to be 

n 

u = Z IIPi - PIt 
i=1 

where /5 = n - l ~ P i  is the centroid of the packing. Let U(n)= infU, where the 
infimum is taken over all possible n-point packings. An n-point packing is optimal 
if it attains U(n). We are interested in the problem of determining U(n) and all 
optimal n-point packings for all positive integers n. 

Intuitively, the problem involves packing pennies in the plane as tightly as 
possible. The disjointness condition means that  the pennies cannot overlap. 

The main paper on this problem is one by R. L. Graham and N. J. A. Sloane [1]. 
Graham and Sloane make the following natural conjecture. 

Conjecture 1. For n#4  every optimal packing is (up to symmetry) a subset of A2. 
Here A2 is the familiar hexagonal lattice that  is generated by (1,0) 

and ( - 1 / 2 ,  x/~/2). Conjecture 1 seems very difficult. As a first step towards tack- 
ling Conjecture 1, we make the following definition. 
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Definition. An n-point packing issaid to be A2-optimal if it is a subset of A2 and 
if it has the smallest second moment possible for an n-point subset of A2. 

We can then replace the problem of finding optimal n-point packings with the 
easier problem of finding A2-optimal n-point packings. In their paper, Graham and 
Sloane construct n-point packings with low second moments using two methods: 
the "greedy algorithm" and the construction of "circular clusters." (We shall define 
these terms later.) As it turns out, both of these methods generate only subsets 
of A2, so it is natural to ask if the packings constructed in [1] are A2-optimal. 
Graham and Sloane do not address this question at all, and in fact their methods 
do not in general yield A2-optimal packings. 

Our main result is an algorithm that  is guaranteed to produce A2-optimal n- 
point packings. Using this algorithm, we prove that all the n-point packings in [1] 
are in fact A2-optimal, except for n = 212. Previously, the A2-optimality of all of 
these packings (except for n ~ 5) was unknown. 

We also present a result on the greedy algorithm that makes precise the intu- 
ition that  the greedy algorithm produces approximately circular n-point packings. 

2. Some Preliminaries 

We begin with a simple but very useful lemma. 

Lemma 1. Let $)i and $)2 be packings with nl and n2 points respectively. Let 
their respective second moments be U1 and U2, and let the distance between their 
centroids be d. Then the second moment U of ~ l  UhD2 is given by 

nln2 d2 
U = U I  + U 2 + n l  + n  2 

Proof. Let t51 and P2 be the centroids of $)1 and P2 respectively, and le t /5  be 
the centroid of $~1 UP2. The distance between t51 and P is n2d/(nl +n2)  and 
the distance between P2 and /5  is nld / (n l  +n2).  By the well-known parallel axis 
theorem [2], U is given by 

( _n2d - ~2 2 n ln2d2 
u=vl+y2+ l +n2( nle = U I + U 2 + - - .  R 

\ nl + n2 ] \ nl + n2 ] nl + n2 

Intuition suggests that  optimal packings should be approximately circular. The 
following proposition confirms this intuition. 

Proposition 1. Given an optimal n-point packing ~, let C be the smallest circle 
that is centered at the centroid P of 5 D and that contains all the points of ~. Then 
given any point Q in C, there exists a point P c $) such that [[P- Q[[ < 1. 

Proof. Since the theorem is vacuously true for n = I, we may assume that n > I, 
so that  the radius of C is nonzero. Suppose that  [IP-QN > 1 for all P E 5  D. Let 
R be a point in :~ on the circumference of C, and let O be the centroid of ~ - { R } ,  
so that  R, t5 and O are in a straight line, wi th /5  between R and O. (See Fig. 1.) 
Consider the set 5D'= P U { Q } -  {R}, Since l iP-QII  > 1 for all P e &D, 5D, satisfies 
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the disjointness constraint and is therefore an n-point packing. Observe that  the 
distance between Q and O is strictly less than the distance between R and O, so 
that  by Lemma 1 the second moment of 5 Dr is less than that  of ~ ,  and this implies 
that  ~ cannot be optimal. This establishes the desired result�9 | 

Definition. A sequence of packings J/)l, "~2, "~3, . . .  is said to be produced by the 
greedy algorithm if ~D 1 contains a single point and if for n_>2, 

~l~n ~- ~n--1 [-J {Pn} 

minimizes U over all choices of Pn that  are consistent with the disjointness con- 
straint. 

Remark. We shall sometimes talk about a sequence of points that  is produced 
by the greedy algorithm, and we shall also talk about a single n-point packing (as 
opposed to a sequence of packings) that  is produced by the greedy algorithm. These 
concepts are defined in the obvious way. 

Definition. Two points P and Q in an n-point packing are adjacent if IJP-QJl =1.  

Definition. Let 5 D be an n-point packing, and let P1 and P2 be points of 5 D. We say 
that  P1 is connected to P2 if there exists a sequence of points Q1 , . . . ,Qi  E~ such 
that  Q I = P 1 ,  Qi=P2, and Qj is adjacent to Qj+I for j = l , . . . , i - 1 .  

The following proposition is tacitly assumed without proof by Graham and 
Sloane. We state it explicitly for ease of reference but  omit the proof since it is 
straightforward. 
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Proposit ion 2. I f  50n is an n-point packing produced by the greedy algorithm, then 
50n is a connected subset of As. For n > 2, each point in 50n is adjacent to at least 
two other points of 50n. | 

3. A2-Optimality 

Definition. A circular cluster is a set C C A2 with the following property: there 
exists a positive real number r such that  C is precisely the set of points in A2 whose 
distance from the centroid of C is at most r. 

Proposition 3. All A2-optimal packings are circular clusters. 

Proof. The proof is almost the same as the proof of Proposition 1. Suppose we 
have a packing 50 that  is a subset of A2. Let P be the centroid of 50, and let C be 
the smallest circle centered at t5 that  contains all the points of 50. Let R be a 
point of 50 that  lies on the circumference of C. If  50 is not a circular cluster, then 
there is some point Q E A2 inside C that  is not in 5 ~ Arguing as in the proof 
of Proposi t ion 1, we see that  the second moment  of 50'--50U { Q } -  {R} is less than 
tha t  of 50. This implies that  50 cannot be A2-optimal, so the proof is complete. | 

The converse of Proposition 3 is false. In general, for a given n, there is more 
than one circular cluster, and not all of them are A2-optimal. (For example~ it is 
easy to check that  there are two circular clusters with six points. One is centered 
at (1/6,0) and is A2-optimal, and the other is centered at (1/2, v/-3/6) and is not 
A2-optimal.) However, Proposition 3 does give us a method for finding all As- 
opt imal  n-point packings for a given n. Observe that  every point P E A2 can 
be writ ten in the form a (1 ,0 )§  where a and b are integers that  are 
uniquely determined by P.  Following Graham and Sloane, let us call a and b oblique 
coordinates of P (written (a, b)). Notice tha t  the oblique coordinates of the centroid 
of an n-point packing are rational numbers which, if reduced to lowest terms, have 
denominators that  divide n. This means that,  up to symmetries of A2, there is 
only a finite number of points in the plane that  are possible centroids of an As- 
opt imal  n-point packing. Indeed~ it is easy to see that  we can restrict our at tention 
to points of the form (a/n, b/n) (a, b e Z) that  lie in the triangle with vertices (0,0), 
(1/2,0} and (2/3,1/3).  So given n, we can find all A2-optimal n-point packings as 
follows: 
(a) Consider each possible centroid C in turn. 
(b) Let 50 be the set of n points in A2 tha t  are closest to C. I t  may happen 

tha t  two or more points of A2 are equidistant from C, so that  50 may not be 
well-defined. In this case there is no circular cluster with center C so we can 
ignore C and move on to the next candidate centroid. 

(c) Locate the centroid t5 of P.  If C = t5 then 50 is a circular cluster. Otherwise, 
we move on to the next candidate centroid. 

(d) Having found all the circular clusters using the above procedure, we now 
calculate the second moment  of each circular cluster. The clusters with the 
lowest second moment  are the A2-optimal n-point packings. 
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Using a computer we determined the second moment of A2-optimal n-point 
packings for all n ~ 100 and also for some selected higher values of n. The search 
confirmed that  for n _< 350, all the best known packings published in Graham 
and Sloane's paper are in fact A2-optimal, except for n = 212. The lowest second 
moment Graham and Sloane found for n = 212 was 6193.0, attained by a circular 
cluster centered at (1/2, 0>. The second moment of an A2-optima1212-point packing 
is actually about 6192.7, attained (for example) by a circular cluster centered at 
<9/212,1/53). 

4. The Greedy Algorithm 

In this section, we shall use the following notation: P1, . . . ,  Pn will denote a 
sequence of points produced by the greedy algorithm, and 5D1,... ,SDn will denote 
the corresponding packings. The centroid of ~i  will be denoted by Oi. 

The numerical evidence suggests that  the greedy algorithm gives approximately 
circular packings. Although the greedy algorithm does not always give circular 
clusters (the smallest example is n = 33), one has the following result. 

Theorem 1. Suppose that ~n  is an n-point packing produced by the greedy algo- 
rithm. Let  r n be the distance from the centroid On of J ) to the point of ~ that is 
farthest from On, and let 

c +g +6' 

w h e r e  6 = T h e n  < 

To prove Theorem 1, we need the following lemma: 

Lemma 2. Let C be a circle with radius r and let n be the number of points of A2 
in the interior C ~ of C. Then 

T -  

Proof. For each point P E A2 let Hp be the set of points in the plane that  are closer 
to P than to any other point of A2. Note that  H p  is an open hexagonal region. 
Let O be the center of C, and let S be the set of points of A2 that  lie in C ~ Now 
let C1 be the circle with center O and radius r - v~/3 .  Observe that  if P E A2 
lies outside C ~ then C~ is disjoint from HR. So C~ lies entirely within the area 
covered by the hexagons associated with the points in S. (Of course we can ignore 
the area of boundaries of the hexagons since this area is zero.) Now the area of 
each hexagon is x/-3/2, so 

2 - 
and the desired result follows. | 
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Proof  of Theorem 1. We proceed by induction on n, the number of points in the 
packing. Using the results from [1], one may easily check that  the theorem is true 
for n _< 350, so now let n be some integer greater than 350. Let P 1 , . . . , P n  be a 
sequence of n points produced by the greedy algorithm. For all k < n, let r k be 
the distance from Ok to the point in 2k  that is farthest from Ok, and let tk be r k 
minus the distance between Ok and the point of A2 nearest to Ok that  does not 
coincide with any of the points in 5Dk. 

As our induction hypothesis, we assume that  r k ~ CV~ and t k < 4cv /~ /5  for 
all k < n .  To simplify the notation, let y =  t JOn_l -OnJ[ ,  and let D =  IJOn-PnlJ.  By 
Proposition 2 and Lemma 1, Pn must coincide with a point of A2 that  is as close 
as possible to On--l, i.e., at a distance rn_ 1 - - t n _  1 f rom On_ 1. Since On lies on 
the line between On_ 1 and Pn, we see that  

D = l i o n  - P n J J  = r n - 1  - f ; n - 1  - H O n - 1  - O n j j  = r n - 1  - t n - 1  - y .  

n/def  
Observe that  the circle S with radius LJ : r n - - l t y  and center On entirely encloses 
the circle with radius rn_  1 and center On-1. Hence S contains all the points 
of ~ n - 1 .  Let 

m = max{D',  [JOn - PnJJ} = max{D',  D}. 

Then a circle with radius m and center On will contain Pn in addition to all the 
points of ~Z~n_ 1. It follows that  r n <_m. Note also that  r n ~ D .  

Let us now prove that  t n < _ 4 c v ~ / 5 .  Suppose that D > D  I. Then tn-1 < - 2 y <  
0, and D < r n <_ m ---- D, i.e., rn = D. Let C1 be the circle with center On_ 1 and 
radius r n _ l ,  let 6'2 be the circle with center On and radius rn = D, and let C3 be the 
circle with center O n - 1  and radius r n _ l - t n _ l .  (See Fig. 2.) Note that,  by definition 
of t n - 1 ,  every point of A2 that  lies strictly inside C3 (and consequently C2) must 
coincide with some point of Sn -1 .  This implies that  tn _< 0 < 4cx/~/5 , as required. 
So we may assume that  D < D I. Then rn ~ rn = D t. Every point" of A2 whose 
distance from On-- 1 is less than rn_  1 --tn_ 1 coincides with some point of /~n-1,  SO 
every point of A2 whose distance from On is less than r n _ l - t n _ l - y = D  coincides 
with some point of ~ n - 1  C~n .  In other words, 

tn ~_ rn -- D < D ~ - D = r n - 1  -F y - ( rn -1  - t n - 1  - Y) : i n - 1  -F 2y. 

Now by definition of On, D / y = n -  1, i.e., 

r n - 1  - t n - 1  y -  
n 

Combining this with tn ~_tn-1 +2y  and the induction hypothesis yields 

t n < - - 2 r n - l + ( n - - 2 ) t n - l n  --< ( 2 + 4 ( n - - 2 ) / c v / - n - - l n  

Now since n > 350, 

1 1 3 1 ~+~ ___~+~+-- 
8 ( n -  1) 8 ( n -  1) 2 

- - - - ( n - l + l )  l+2(n_l------- ~ 8 ( n _ 1 )  2 _<n l + - - . n _ l  
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C1 

r n - 1  -~Y r n - 1  - - t n - 1  - - y  

Fig. 2 

So 

tn  < -~ -~ n -  2 < -  n 1 §  - - 
- n - 5  n ~ n 

Now let us show that  rn ~_ c v ~ .  Define 

p d_ef rn 
Tn - -  ~n.  

! a n d  Every point of A2 that  lies in the interior of the circle C with radius r n 
center On coincides with some point of ~n .  By Lemma 2, this means that  the 
number  of points of ~ n  in the interior of C is at least 

~ r n  - - -  . 

We can obtain an upper bound for rn by noting that,  in view of Proposition 2, the 
worst possible case occurs when 

t is as small as possible, and (a) 
(b) the points of ~ n  tha t  do not lie in C' are lined up in a single file F along a 

radius extending outwards from the perimeter of C. " 
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The length of F is at most the total number of points in $~n minus the number 
of points of ~n  in the interior of C. It follows that  

2"7[" l I 
r ~ _ n  -~  r n -  + r ~ = n - - ~  r~- t ,~ -  +rn- t~ .  

Rearranging, we see that  

_< - ~  + ~ . +  ,/~ = ~,,/-4-, 

since n > 350. 1 
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