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1. Introduction

Recently, Stanley [21] has defined a symmetric function generalization
of the chromatic polynomial of a graph. Independently, Chung and
Graham [4] have defined a digraph polynomial called the cover polynomial
which is closely related to the chromatic polynomial of a graph (in fact, as
we shall see, the cover polynomial of a certain digraph associated to a
poset P coincides with the chromatic polynomial of the incomparability
graph of P) and also to rook polynomials. The starting point for the pre-
sent paper is the suggestion in Chung and Graham's paper that the cover
polynomial might generalize to a symmetric function in much the same
way that the chromatic polynomial does.

This is indeed the case, and in this paper we shall study this symmetric
function generalization of the cover polynomial. As one would expect, there
are a number of generalizations and analogues of known results about the
cover polynomial, the rook polynomial, and Stanley's chromatic symmetric
function. In addition, however, we will obtain some unexpected dividends,
such as a combinatorial reciprocity theorem that answers a question of
Chung and Graham and ties together a number of known results that pre-
viously seemed unrelated ([2, Theorem 7.3], [19, Chapter 7, Theorem 2],
[21, Theorem 4.2], [23, Theorem 3.2]), and a new symmetric function
basis that appears to be a natural counterpart of the polynomial basis
( x+n

d )n=0, ..., d . One reason for these unexpected results is that this topic lies
at the intersection of several branches of combinatorics; their interaction
naturally gives rise to new connections and ideas. We shall indicate several
directions for further research in this potentially very rich area of study.

2. Definitions and Basic Facts

In this paper, the unadorned term graph will mean a finite simple
undirected graph and the term digraph will mean a finite directed graph
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without multiple edges but possibly with loops and bidirected edges. If G
is a graph or a digraph we let V(G) and E(G) denote its vertex set and edge
set respectively. If d is a positive integer, we use the notation [d] for the
set [1, 2, ..., d ]. Note that with our conventions, a digraph D with d
vertices is equivalent to a subset of [d]_[d], i.e., a board. (Consider
the edge set of D.) We call this subset the associated board, and conversely
given a board we call the corresponding digraph on [d] the associated
digraph.

Our notation for symmetric functions and partitions for the most part
follows that of Macdonald [18], to which the reader is referred for any
facts about symmetric functions that we do not explicitly reference. If { is
a set partition or an integer partition, we write l({) for the number of parts
of {, and |{| for the sum of the sizes of the parts of {. We define sgn {
by

sgn { =def (&1) |{|&l({) .

We also define

r{ ! =def r1 ! r2 ! } } } ,

where ri is the number of parts of { of size i. We shall denote symmetric
functions by a single letter such as g or by g(x) if we wish to emphasize
that the symmetric function is in the variables x=(x1 , x2 , ...). In addi-
tion to the usual symmetric functions m* , p* , e* , h* , and s* , we shall
need the augmented monomial symmetric functions m~ * [5], which are
defined by

m~ * =def r* ! m* .

We shall also need the forgotten symmetric functions f* , which are defined
by

f* =def (sgn *) |(m~ *).

(Warning: this is one place where we deviate from Macdonald's conven-
tions and follow Doubilet [6] instead, since [6] contains all the results
about the forgotten symmetric functions that we shall need.) The symbol |
denotes the usual involution on symmetric functions that sends e* to h* . If
g(x) is a symmetric function, we shall write g(&x) for the function
obtained by negating each variable, and we shall write g(1n) for the poly-
nomial in the variable n obtained by setting n variables equal to one and
the rest equal to zero. We will sometimes use set partitions instead of
integer partitions in subscripts; for example, if ? is a set partition then the
expression p? is to be understood as an abbreviation for ptype(?) .
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We shall be dealing frequently with functions in two sets of variables, so
we fix some notation here. Let [x1 , x2 , x3 , ...] and [ y1 , y2 , y3 , ...] be two
sets of independent indeterminates. (Everything commutes with everything
else.) An expression like g(x, y) indicates that g is invariant under any per-
mutation of the x variables and any permutation of the y variables. It is
not assumed that g is necessarily invariant under permutations that mix x
and y variables, except when g is one of the symmetric function bases men-
tioned above; in this case p*(x, y) (for example) is taken to mean the power
sum symmetric function in the union of the x and y variables. Expressions
like g(x, 0), g(x, &y) and g(1i, 1 j) have their natural meanings. The nota-
tion |x g will indicate that for the purposes of applying |, g is to be inter-
preted as a symmetric function in the x variables with coefficients in the y's.

Our first goal is to define our main object of study, the path-cycle sym-
metric function. As motivation we first review some material from Stanley
[21] and Chung and Graham [4] that was mentioned in the introduction.

Let G be a graph and let x1 , x2 , ... be commuting independent indeter-
minates. A stable partition of G is a partition of V(G) such that no two
vertices in the same block are connected by an edge. Stanley's chromatic
symmetric function XG is then defined by

XG=XG(x) =def
:
?

m~ ?(x),

where the sum is over all stable partitions of G. It is easy to see that
m~ ?(1i)=i l(?) , when XG(1i)=/G(i), the chromatic polynomial of G. (We are
using the notation i k=i(i&1) } } } (i&k+1) and i k� =i(i+1) } } } (i+k&1).)

Now let D be a digraph. Following Chung and Graham, we say that a
subset S of the edges of D is a path-cycle cover of D if no two elements of
S lie in the same row or column of the associated board. If we think of S
as a subgraph of D then we see that this condition just means that S is a
(vertex-)disjoint union of directed paths and directed cycles. A path-cycle
cover with no cycles is called a path cover. The type of a path-cycle cover
S is the set partition of V(D) where each block is the set of vertices of one
of these directed paths or directed cycles. We write ?(S ) for the set of
blocks corresponding to the directed paths and _(S ) for the set of blocks
corresponding to the directed cycles, and we say that the type of S is (?, _)
if ?(S )=? and _(S )=_. Chung and Graham's cover polynomial C(D; i, j)
is then defined by

C(D; i, j) =def
:
S

i l(?(S )) j l(_(S )),

where the sum is over all path-cycle covers S/E(D).
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In view of these definitions and the fact that p_(1 j)=j l(_) , the following
definition (suggested by Stanley [20]) is quite natural.

Definition. Let D be a digraph, and let x=[x1 , x2 , ...] and y=[ y1 ,
y2 , ...] be two sets of commuting independent indeterminates. The path-
cycle symmetric function 5D of D is defined by

5D=5D(x, y) =def
:
S

m~ ?(S )(x) p_(S )( y),

where the sum is over all path-cycle covers S/E(D).

Note that if we only care about path covers we can simply consider
5D(x, 0). In addition, if B is the board associated with D, then 5D(0, y) is
equivalent to what Stanley and Stembridge call Z[B] ([23, Section 3]).
Thus, as will become evident shortly, we may regard 5D as a further
generalization of Stanley and Stembridge's generalization of the theory of
permutations with restricted position.

The following fact is immediate.

Proposition 1. 5D(1i, 1 j)=C(D; i, j).

Given a poset P, let G(P) denote its incomparability graph (in which
two vertices of the poset are adjacent iff they are incomparable), and let
D(P) denote the digraph with edge set [(i, j) | i< j ]. Chung and Graham
observed that for any poset P,

C(D(P); i, 0)=/G(P)(i).

This connection generalizes readily to the symmetric function case.

Proposition 2. For any poset P, 5D(P)=XG(P) .

Proof. Since D(P) is acyclic, all path-cycle covers are in fact just path
covers, so the y variables can be deleted from the definition of 5D in this
case. But path covers of D(P) correspond to partitions of P into chains,
which correspond to stable partitions of G(P). Comparing the definitions of
5D and XG yields the proposition. K

Both the cover polynomial and the chromatic symmetric function satisfy
a multiplicativity property. To prove the corresponding result for the path-
cycle symmetric function it is useful to introduce the concept of a path-
cycle coloring (essentially due to Chung and Graham).

Definition. A path-cycle coloring of a digraph D is an ordered pair
(S, }) where S is a path-cycle cover and } is a coloring of the vertices (with
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positive integers as colors) that is monochromatic on each path and cycle
of S and which assigns distinct colors to distinct paths. A path coloring is
a path-cycle coloring with no cycles.

Proposition 3. For any digraph D,

5D= :
(S, })

`
u is in a path

x}(u) `
v is in a cycle

y}(v) ,

where the sum is over all path-cycle colorings (S, }).

Proof. Regard the sum as a double sum: for each path-cycle cover S,
sum over all ``compatible'' colorings }, and then sum over all S. For each
fixed S the paths and cycles may be colored independently so the sum over
} factors into a product of a symmetric function in x and a symmetric func-
tion in y. Clearly coloring the paths with distinct colors gives m~ ?(S )(x) and
coloring the cycles so that each cycle is monochromatic gives p_(S )( y). K

Proposition 4. Suppose D is the digraph formed by joining the disjoint
digraphs D1 and D2 with all the edges (v1 , v2) with v1 # V(D1) and v2 # V(D2).
Then 5D=5D1

5D2
.

Proof. A path-cycle coloring of D induces path-cycle colorings of both
D1 and D2 by restriction. Conversely, given any path-cycle coloring of D1

and any path-cycle coloring of D2 there exists a unique path-cycle coloring
of D inducing them: if a path in D1 has the same color as a path in D2 ,
join them end to end with the appropriate edge from D1 to D2 . The result
now follows from Proposition 3. K

3. Reciprocity

The complement D$ of a digraph D is the digraph on the same vertex set
whose edges are precisely those pairs (i, j) that are not edges of D. In this
section we prove one of the most striking facts about the path-cycle sym-
metric function; namely, a combinatorial reciprocity theorem relating 5D

and 5D$ . We shall need two change-of-basis formulas, which we shall now
state.

Let 6n denote the lattice of partitions of [n] (ordered by refinement).
Recall that if ?�_ in 6n and ri is the number of blocks of _ that are com-
posed of i blocks of ?, then the Mo� bius function satisfies

|+(?, _)|=`
i

(i&1)!ri .
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(See [22, Example 3.10.4] for a proof.) Also, following Doubilet [6],
define

*(?, _)! =def
`

i

i !ri .

We then have the following change-of-basis formulas (taken from [6,
Appendix 1]).

Proposition 5.

f?= :
_�?

*(?, _)! m~ _= :
_�?

|+(?, _)| p_ .

We are now ready for the main theorem of this section.

Theorem 1. For any digraph D,

5D(x, y)=:
S

sgn ?(S ) f?(S )(x, y) p_(S)(&y),

where the sum is over all path-cycle covers of the complement D$. Equivalently,

5D(x, y)=[|x5D$(x, &y)]x � (x, y) ,

where [ g(x, y)]x � (x, y) means that, treating g as a symmetric function in the
x's with coefficients in the y's, the set of x variables is to be replaced by the
union of the x and y variables.

Proof. The equivalence of the two formulations is clear. We define a
partitioned order of D to be a partition of V(D) together with either a linear
order or a cyclic order on each block. If } is a partitioned order of D, let
?(}) be the set of blocks with linear orders and let _(}) be the set of blocks
with cyclic orders. Let E} denote the set of ordered pairs (u, v) satisfying
the following two conditions.

1. u and v are in the same block of } and u immediately precedes v
in the linear or cyclic order on the block.

2. (u, v) is not an edge of D.

Note that E}/E(D$) and that there is a natural bijection between parti-
tioned orders } such that E}=< and path-cycle covers (given such a par-
titioned order, take all (u, v) satisfying condition 1 above). Now for any
finite set T, the alternating sum

:
S/T

(&1)|S |
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equals one if T=< and is zero otherwise. Thus

5D=:
}

m~ ?(}) p_(}) :
S/E}

(&1) |S |,

where the first sum is over all partitioned orders of D. We now interchange
the order of summation. Observe first that all sets S that arise are path-
cycle covers of D$, since S is a subset of the set of all (u, v) satisfying condi-
tion 1 above for some }. Given a path-cycle cover S of D$, we now need
to determine the set P of partitioned orders of D that give rise to it. Only
blocks with cyclic orders can give rise to cycles of S, so for every } # P,
_(}) must include the blocks of _(S ) among its own blocks. On the other
hand, the blocks of ?(S ) can arise either from blocks with linear orders or
from blocks with cyclic orders. To determine all possibilities we must con-
sider all ways of agglomerating the blocks of ?(S ) into blocks of ?(}), and
then for each composite block in each such agglomeration we must con-
sider both linear and cyclic orders. The linear or cyclic order on the com-
posite block can be viewed as a linear or cyclic order on the blocks of ?(S )
(instead of on the vertices), because the linear or cyclic order must induce
the edges of S, i.e., if (u, v) is an edge of S then u must immediately precede
v in the order dictated by }, and therefore the vertices in each block of ?(S )
are constrained to be consecutive and in a fixed order. Clearly, every such
linear or cyclic order on the blocks gives rise to a unique } # P. The num-
ber of ways to impose a linear order if there are i blocks is i! and the num-
ber of ways to impose a cyclic order is (i&1)!. Thus we can enumerate P
by summing over all divisions of the blocks of ?(S ) into two groups : and
; (linear and cyclic) and, for each such division, summing over all ways of
grouping the blocks into composite blocks, weighted by a factorial factor.
More precisely we have

5D=:
S

(&1) |S | p_(S )( y) :
(:, ;)

:

$�;
#�:

*(:, #)! |+(;, $)| m~ #(x) p$( y),

where the first sum is over all path-cycle covers of D$. By Proposition 5, we
have

5D=:
S

(&1) |S | p_(S )( y) :
(:, ;)

f:(x) f;( y)

=:
S

(&1) |S | p_(S )( y) :
(:, ;)

(sgn :)(sgn ;) |xm~ :(x) |ym~ ;( y).

Now the blocks of : and ; correspond to the paths of S, so |:|&l(:) is
the number of edges of S in :, and similarly for ;. Thus (sgn :)(sgn ;)
depends only on the total number of edges of S devoted to directed paths
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(namely, |?(S )|&l(?(S ))) and does not depend on the particular choice of
: or ;. We have

5D=:
S

(&1) |S | p_(S )( y)(&1) |?(S )|&l(?(S )) :
(:, ;)

|xm~ :(x) |ym~ ;( y)

=:
S

(&1) |_(S )| p_(S )( y) |x|y :
(:, ;)

m~ :(x) m~ ;( y).

A moment's thought shows that the inner sum is m~ ?(S )(x, y). Now

|x|y pn(x, y)=|x|y( pn(x)+pn( y))

=(&1)n&1 pn(x)+(&1)n&1 pn( y)=[|x pn(x)]x � (x, y) ,

and since | and x � (x, y) are both homomorphisms,

|x |y g(x, y)=[|x g(x)]x � (x, y)

for any symmetric function g. Finally, (&1)|_| p_( y)=p_(&y), so we
obtain

5D=:
S

p_(S )(&y)[|xm~ ?(S )(x)]x � (x, y)

as desired. K

We remark that the appearance of | in Theorem 1 is what leads us to
call it a combinatorial reciprocity theorem.

Theorem 1 readily yields several attractive corollaries. For example, by
setting all the x variables equal to zero, we immediately obtain [23,
Theorem 3.2]. More interestingly, we can obtain an affirmative answer to
the question, raised by Chung and Graham, of whether C(D; i, j) deter-
mines C(D$; i, j).

Corollary 1. If D is a digraph with d vertices, then C(D$; i, j)=
(&1)d C(D; &i&j, j).

Proof. Let g be any symmetric function that is homogeneous of degree
d and let g*=|g. We claim that g*(1i) is obtained by changing i to &i
and g(1i) and then multiplying by (&1)d. To see this, first consider the case
where g=p* for some * |&d. Then g*=(sgn *) p* and hence

g*(1i)=(sgn *) i l(*) .

On the other hand g(1i)=i l(*) . Changing i to &i and multiplying by
(&1)d amounts to multiplying by (&1)d&l(*)=sgn *, as required. The
claim then follows by linearity.
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Now m~ ?(1i, 1 j)=(i+j)l(?) . Since (sgn ?) f?=|m~ ? , we have

(sgn ?) f?(1i, 1 j)=(&1) |?| (&i&j)l(?) .

Also, as noted before, p_(&y)=(&1) |_| p_( y). Thus, specializing Theorem 1
via Proposition 1 yields

C(D; i, j)=:
S

(&1)|_(S )| (&1) |?(S )| (&i&j)l(?(S )) j l(_(S ))

=(&1)d C(D$; &i&j, j). K

Corollary 1 can be proved directly using deletion-contraction techniques,
and it has also been obtained independently by Gessel [9]. We omit the
details.

A further specialization of Theorem 1 gives a formula for rook polyno-
mials; we defer this to the next section, where we consider rook theory in
more detail.

Corollary 2. For any digraph D,

5D(x, 0)=|x5D$(x, 0).

Note the similarity between this result and Stanley's reciprocity theorem
[21, Theorem 4.2.]. In fact, the two reciprocity theorems overlap, because
of Proposition 2, so Corollary 2 gives a new interpretation of |5D(P)=
|5G(P) when P is a poset.

Corollary 2 follows immediately from Theorem 1, but we shall give two
other proofs because they illustrate connections with other known results.
The first proof is due to Gessel [9], and it derives Corollary 2 from a result
of Carlitz, Scoville and Vaughan [2, Theorem 7.3]. We need some
preliminaries. Given a digraph D with d vertices, let

AD=[a1 , a2 , ..., ad]

be a set of commuting independent indeterminates, and define

:D, n= :
i1, i2 , ..., in

ai1 ai2 } } } ain ,

where the sum is over all i1 , i2 , ..., in such that (aij , aij+1
) is an edge of D for

all j<n. Similarly, let

:$D, n= :
i1, i2 , ..., in

ai1 ai2 } } } ain ,
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where this time the sum is over all i1 , i2 , ..., in such that (aij , aij+1
) is an edge

of the complement D$ for all j<n. With this notation, the result of Carlitz,
Scoville and Vaughan is (essentially) the following.

Proposition 6. For any digraph D,

:
n

(&1)n :$D, n=\:
n

:D, n+
&1

.

We can now give Gessel's proof of Corollary 2.

First Proof of Corollary 2. Let %D, y be the homomorphism from the
ring of symmetric functions in the variables y=[ y1 , y2 , ...] to the ring of
formal power series in AD that sends the complete symmetric function
hn( y) to :D, n . Similarly, let %$D, y be the homomorphism that sends hn( y) to
:$D, n . From [18, (4.2)] we have

`
i, j

1
1&xi yi

=:
*

h*( y) m*(x).

Applying %D, y gives

%D, y \`
i, j

1
1&xi yj+=:

*

:D, *1
:D, *2

} } } m*(x).

Now 5D(x, 0) is just the coefficient of a1 a2 } } } ad in this expression, since
this coefficient counts all path covers of type ? exactly r? ! times, and
r? ! m?(x)=m~ ?(x). Similarly, 5D$(x, 0) is the coefficient of a1a2 } } } ad in

%$D, y \`
i, j

1
1&xi yj+=:

*

:$D, *1
:$D, *2

} } } m*(x).

Thus it suffices to prove that

|x %D, y \`
i, j

1
1&xi yj+=%$D, y \`

i, j

1
1&xi yj+ .

Now from [18, (4.3)] we have

\`
i, j

1
1&xi yj+=:

*

s*(x) s*( y),
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so

|x \`
i, j

1
1&xi yj+=:

*

s*$(x) s*( y)=:
*

s*(x) s*$( y)=|y \`
i, j

1
1&xi yj+ .

Thus

|x %D, y \`
i, j

1
1&xi yj+=%D, y|x \`

i, j

1
1&xi yj+=%D, y|y \`

i, j

1
1&xi yj+ .

So it suffices to show that %D, y|y=%$D, y . From [18, (2.6)] we have

:
n

(&1)n en( y)=\:
n

hn( y)+
&1

,

so applying %D, y and using Proposition 6 yields

:
n

(&1)n %D, y(en( y))=\:
n

:D, n+
&1

=:
n

(&1)n :$D, n .

Equating terms of the same degree, we see that

%D, y|y(hn( y))=%D, y(en( y))=:$D, n=%$D, y(hn( y)),

completing the proof. K

Our second proof of Corollary 2 is similar to Stanley's proof of the
reciprocity theorem for XG . Following Gessel [10] and Stanley [21, Sec-
tion 3], we define a power series in the variables x=[x1 , x2 , ...] to be
quasi-symmetric if the coefficients of

xr1
i1 xr2

i2 } } } xrk
ik and xr1

j1 xr2
j2 } } } xrk

jk

are equal whenever i1<i2< } } } <ik and j1< j2< } } } < jk . For any subset
S of [d&1] define the fundamental quasi-symmetric function QS, d (x) by

QS, d (x)= :

ij<ij+1 if j # S
i1� } } } �id

xi1 xi2 } } } xid .

We have the following expansion of 5D(x, 0) in terms of fundamental
quasi-symmetric functions.

Proposition 7. If D is a digraph with vertex set [d], then

5D(x, 0)= :
? # Sd

QS(?), d (x),
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where Sd is the group of permutations of [d] and

S(?)=[i # [d] | (?i , ?i+1) is not an edge of D].

Proof. We use the expression for 5D given in Proposition 3. Given a
path coloring of D, arrange the paths in increasing order of their colors,
and within each path arrange the vertices in the order given by the directed
path. This gives a permutation of the vertices of D, and it is easy to see that
QS(?), d (x) counts precisely the path colorings that give rise to ?. K

We can now give our second proof of Corollary 2.

Second Proof of Corollary 2. Without loss of generality we may assume
that the vertex set of D is [d]. From the same argument as in Proposition 7,
we see that

5D$(x, 0)= :
? # Sd

Q[d]"S(?), d (x).

In view of Proposition 7, it suffices to show that the map that sends QS, d to
Q[d]"S, d equals | when restricted to symmetric functions. This is proved by
Stanley in the course of proving his reciprocity theorem [21, Theorem 4.2.]. K

Stanley [21] has obtained an analogue of Proposition 7 by using the
theory of acyclic orientations and P-partitions. It is natural to ask if these
ideas can be applied to studying 5D . Unfortunately this does not seem
possible. For example, a key step in the proof of the analogue of Proposi-
tion 7 involves expressing XG as a sum of certain poset generating func-
tions, but in general 5D has no such expression.

4. Rook Theory

Let B/[d]_[d] be a board, and let the rook number rB
k denote the

number of ways of placing k non-taking rooks on B. Following Goldman,
Joichi and White [12], we define the factorial polynomial R(B; i) by

R(B; i) =def
:
k

rB
k i d&k .

If D is the digraph associated with B, we also write rD
k for rB

k and R(D; i)
for R(B; i). (With this equivalence between boards and digraphs, the facto-
rial polynomial is the same as Chung and Graham's binomial drop polyno-
mial.) The study of the factorial polynomial and other rook polynomials is
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a well-established area of combinatories (see for example Riordan [19,
Chapter 7 and 8] for a classical account and Goldman, Joichi, Reiner and
White's papers [12, 13, 14, 15, 16] for further results). The definition of a
path-cycle cover already suggests a connection with rook theory. More
precisely, we have the following observation of Chung and Graham.

Proposition 8. For any digraph D, R(D; i)=C(D; i, 1)=5D(1i, 1).

Proof. The first equality is demonstrated in Chung and Graham [4]
and the second equality follows from Proposition 1. K

Proposition 8 (as well as, for example, Stanley and Stembridge [23, Sec-
tion 3] and Stanley [21, Proposition 5.5]) suggests that some of the theory
of rook polynomials might generalize to 5D . This is indeed the case, as we
shall now see. In fact, we have already seen an example in the last section,
since Theorem 1 can be viewed as a generalization of a result in Riordan
[19, Chapter 7, Theorem 2] relating the rook numbers of complementary
boards, a result which we now state. If B is a board, we let B$=([d]_
[d])"B denote the complementary board.

Proposition 9. Let B/[d]_[d] be a board. Then R(B$; i)=(&1)d

R(B; &i&1).

Proof. Let D be the associated digraph. From Corollary 1 and Proposi-
tion 8 we have

R(B$; i)=C(D$; i, 1)=(&1)d C(D; &i&1, 1)

=(&1)d R(B; &i&1). K

Riordan's original result is

:
k

rB
k(d&k)! i k=:

k

(&1)k rB$
k (d&k)! i k(i+1)d&k,

which can be shown to be equivalent to Proposition 9. However, it seems
that our formulation��in particular the observation that Proposition 9 is
essentially a combinatorial reciprocity theorem��is new (although as
Gessel [9] has observed, it follows immediately from the next proposition
below).

Our next result is a generalization of the fundamental inclusion-exclusion
formula of rook theory. This formula has many equivalent formulations;
we shall use the following one whose proof is given implicitly by Chung
and Graham.
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Proposition 10. Let D be a digraph with d vertices, and let N D
k denote

the number of ways of placing d non-taking rooks on [d]_[d] such that
exactly k rooks lie on the board associated with D. Then

R(D; i)=:
k

N D
k \i+k

d + .

To state our generalization we need a few more definitions.

Definition. For any pair of integer partitions * and +, define D*, + to
be a disjoint union of directed paths and directed cycles such that the i th
directed path has *i vertices and the jth directed cycle has +j vertices.
Define

5� *, + =def
:
S

m~ ?(S )(x) p_(S)( y)
l(?(S ))!

,

where the sum is over all path-cycle covers S of D*, + . For brevity we shall
write D* for D*, < and 5� * for 5� *, < . We then have the following result.

Theorem 2. Let D be a digraph with d vertices and let B be the
associated board. Let ND

*, + be the set of placements of d non-taking rooks
and [d]_[d] such that the type (?, _) of the path-cycle cover formed by the
set of edges corresponding to rooks placed on B satisfies type(?)=* and
type(_)=+, and let N D

*, +=|ND
*, + |. Then

5D= :
*, +

N D
*, +5� *, + ,

where the sum is over all integer partitions * and +.

Proof. The proof is similar to the proof of [22, Theorem 2.3.1]. Given
any two integer partitions & and ', let RD

&, ' be the set of path-cycle covers
S of D satisfying type(?(S ))=& and type(_(S ))='. Note that every ele-
ment of RD

&, ' has l(&) directed paths plus some cycles and therefore has a
total of d&l(&) edges.

Now fix a pair of integer partitions & and ' and consider the set of pairs
(S, T ) such that S # RD

&, ' and T is an extension of S (regarded as a place-
ment of non-taking rooks on B) to a placement of d non-taking rooks on
[d]_[d]. This set has l(&)! |RD

&, ' | elements, since for each S # RD
&, ' the

l(&) rows and columns unoccupied by S can support l(&)! placements of
non-taking rooks. On the other hand, we can enumerate the set in another
way, by taking each placement of d non-taking rooks on [d]_[d] and
counting bow many S # RD

&, ' it extends. Now if T # ND
*, + for some * and

+, then the number of elements of RD
&, ' that it extends is just the number
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n*, +, &, ' of path-cycle covers S of D*, + satisfying type(?(S ))=& and
type(_(S ))='. Since every placement of d non-taking rooks on [d]_[d]
belongs to ND

*, + for some * and +, we have

:
*, +

N D
*, +n*, +, &, '=l(&)! |RD

&, ' |.

Now divide both sides by l(&)!, multiply both sides by m~ &(x) p'( y), and
sum over all & and ' to obtain the desired result. K

The next proposition shows that Theorem 2 does indeed generalize
Proposition 10.

Proposition 11. For any integer partitions * and +,

5� *, +(1i, 1)=\i+d&l(*)
d + ,

where d=|*|+|+|.

Proof. Directly from the definitions we have

5� *, +(1i, 1)=:
S

i l(?(S ))

l(?(S ))!
=:

S \ i
l(?(S ))+ ,

where the sum is over all path-cycle covers of D*, + . The sum can be broken
up into a double sum:

5� *, +(1 i, 1)=:
k

:
[S | l(?(S ))=k] \

i
k+ .

But l(?(S ))=k if and only if |S |=d&k. Since every subset of the edges
of D*, + is a path-cycle cover, and since the total number of edges of D*, +

is d&l(*), we have

5� *, +(1i, 1)=:
k \d&l(*)

d&k +\ i
k+=\i+d&l(*)

d + . K

In view of Proposition 8, Proposition 11, and the fact that the number
of edges of a path-cycle cover of type (?, _) is d&l(?), we see that
Theorem 2 implies Proposition 10.

It might seem that Theorem 2 is rather contrived, since we seem to have
defined 5� *, + just so that Theorem 2 would come out right. In fact, however,
the functions 5� *, + have intrinsic interest, as we shall now illustrate.

Proposition 12. The functions 5� * form a linear basis for the ring of
symmetric functions over the rationals, and the functions 5� *, + form a linear
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basis for the ring of symmetric functions in two sets of variables (again over
the rationals).

Proof. Write

5� *=:
+

c*, +m~ + .

Then it is clear from the definition of 5� * that c*, *{0 and c*, +{0 only if
*�+ in refinement order. Thus the matrix (c*, +) with respect to any linear
extension of refinement order is triangular with nonzero entries on the
diagonal. This proves the first assertion. To prove the second assertion,
define a partial order on pairs of integer partitions by setting (*, +)<(&, ')
if the multiset of parts of ' can be partitioned into two multisets : and ;
such that +=; and * is a refinement of & _ :. The same kind of reasoning
as before, with this partial order in place of refinement order and with the
basis m~ *(x) p+( y) in place of m~ * , can then be applied to prove the second
assertion. K

Unfortunately, we cannot replace ``rationals'' with ``integers'' in the
above proposition, as the following table of values illustrates.

_ 5� 2

5� 11&=_1 1
0 1&_

m2

m11&
5� 3 1 1 1 m3

_ 5� 21 &=_0 1
2 1&_ m21 &5� 111 0 0 1 m111

5� 4 1 1 1 1 1 m4

5� 31 0 1
2 0 2

3 1 m31_ 5� 22 &=_0 0 1 2
3 1&_ m22 &5� 211 0 0 0 1
3 1 m211

5� 1111 0 0 0 0 1 m1111

5� 5 1 1 1 1 1 1 1 m5

5� 41 0 1
2 0 2

3
1
3

3
4 1 m41

5� 32 0 0 1
2

1
3

2
3

3
4 1 m32_ 5� 311 &=_0 0 0 1

3 0 1
2 1&_ m311 &5� 221 0 0 0 0 1

3
1
2 1 m221

5� 2111 0 0 0 0 0 1
4 1 m2111

5� 11111 0 0 0 0 0 0 1 m11111
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The bases m~ * , p* , e* , h* , s* , and f* occur frequently ``in nature.''
Similarly, there are certain ``natural'' bases for polynomials, and moreover
there is a correspondence between some of the symmetric function bases
and the polynomial bases given by g [ g(1i), e.g., p* corresponds to i n, and
the reciprocally related bases m~ * and f* correspond to i n and i n� . From
Proposition 11 and Proposition 12 we see that the basis 5� * seems to be a
promising candidate for the natural counterpart of the basis

\i+n
d +n=0, 1, ..., d

.

As further evidence for this assertion we state the following generalization
of the fact, essentially due to Vo [24] and Linial [17] (but see also [1]
and [7]), that the expansion of the chromatic polynomial in terms of the
basis ( i+n

d ) has nonnegative integer coefficients. We will give the proof else-
where [3] since the result is tangential to our main purpose.

Theorem 3. For any graph G, the expansion of XG in terms of the basis
5� * has nonnegative integer coefficients.

It is natural to ask about the connection between the basis 5� * and the
standard symmetric function bases. We give just one result along these
lines.

Proposition 13. The linear map that sends 5� * to (sgn *) m~ *�l(*)! is an
involution.

Proof. Given any integer partitions * and +, let ? be any set partition
of type * and define

c*, + =def
:

[_�? | type(_)=+]

*(?, _)!.

Note that c*, + does not depend on the choice of ?. We claim that

5D+=:
*

r+ !
r* !

c*, +m~ * .

To see this, first consider the case where r+ !=r*!=1, i.e., the case of distinct
parts. We have a disjoint union D+ of directed paths and we want to count
the number of path covers of type *. In path cover of D+ , each directed
path is broken up into a sequence of smaller directed paths. So the path
covers can be enumerated as follows: take a set partition ? of type * and
consider all ways of grouping its blocks into a partition _ of type + and
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then linearly ordering the blocks of ? within each block of _. Such a con-
figuration determines a path cover: for any block b of _, the sequence of
blocks of ? in b dictates the sizes of the sequence of smaller directed paths
composing the directed path in D+ corresponding to b. It is easy to see that
this correspondence is bijective, and this proves our claim in the case of
distinct parts. For the general case, observe that we want equal-sized parts
of ? to be indistinguishable and equal-sized parts of _ to be distinguishable,
so we must multiply by r+ !�r* !.

From Proposition 5 we see that the matrix ((sgn *) c*, +) is the matrix of
| and is therefore an involution. From our claim it follows that the matrix
relating (sgn *) m~ * �r* ! and 5D+ �r+ ! or equivalently the matrix relating

(sgn *) m~ *

r* ! l(*)!
and

5� +

r+ !

is an involution. But then the desired result follows, since the factors of r* !
and r+! amount to conjugating by a (diagonal) matrix, and this does not
change the involution property. K

It is natural to ask if 5� *, +(1i, 1 j) gives a natural basis for polynomials in
two variables. Unfortunately, this does not seem to be true. However, the
specialization g [ g(1i, 1 j) applied to Theorem 2 does hive us a simple
proof of a theorem of Chung and Graham whose original proof is quite
complicated. Following Chung and Graham, for any placement T of d non-
taking rooks on [d]_[d], let drop (T ) be the subgraph of D with edges
corresponding to the squares occupied by the rooks of T. If D is a digraph
with d vertices, let $D(q, r, s) be the number of ordered pairs (S, T ) such
that S is a set of r edges of D forming precisely s disjoint cycles and T is
a placement of d non-taking rooks on [d]_[d] with S/drop(T ) and
|drop(T )|=q+r. Chung and Graham's result [4, Theorem 2] is then the
following.

Proposition 14. For any digraph D with d vertices,

C(D; i, j)= :
q, r, s

$D(q, r, s) \ i+q
d&r+ ( j&1)s.

Proof. We can restate the desired result as

C(D; i, j+1)= :
q, r, s, t

$D(q, r, s) \ q
d&r&t+\

i
t+ j s

= :
q, r, s, t

$D(q, r, s) \ q
t&d+r+q+\

i
t+ j s.
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From Theorem 2 and the definition of 5� *, + we have

C(D; i, j+1)= :
*, +, t, u

N D
*, +n*, +, t, u \ i

t+ ( j+1)u

= :
*, +, s, t, u

N D
*, +n*, +, t, u \u

s+\
i
t+ j s,

where n*, +, t, u is the number of path-cycle covers of D*, + with t paths and
u cycles. Now ( i

t) j s is a basis for polynomials in two variables, so equating
coefficients we see that we just need to prove that for any fixed s and t,

:
*, +, u

ND
*, +n*, +, t, u \u

s+=:
q, r

$D(q, r, s) \ q
t&d+r+q+ .

We can think of both sides as counting placements of d non-taking rooks
on [d]_[d] with certain multiplicities. On the left-hand side, the number
of times each such placement T is counted equals the number of path-cycle
covers of drop(T ) with exactly t paths plus some number of cycles of which
s are distinguished. As for the right-hand side, we can rewrite it as

:
e, r

$D(e&r, r, s) \ e&r
t&d+e+ .

Then for any placement T, only one value of e (namely e=|drop(T )| )
involves T. Thus if we let e=|drop(T )|, the number of times T is counted is

:
r \

the number of ways of choosing
s cycles of drop(T ) with r edges+ } \ e&r

t&d+e+ ,

which is just the number of ways of choosing s cycles and then deleting
t&(d&e) of the remaining edges (i.e., creating t&(d&e) new paths). But
d&e is the original number of paths in drop(T ), so this results in a total
of exactly t paths. The proposition follows. K

We remark that Gessel [9] has obtained a generalization of Proposition 10
for the cover polynomials that does not appear to follow from our results.

Our next result generalizes a Mo� bius inversion formula for factorial
polynomials due to Goldman, Joichi and White [16]. For simplicity we
consider only the case of acyclic digraphs, although the generalization to
arbitrary digraphs is straightforward. So suppose D is an acyclic digraph
with d vertices and let B be its associated board. Following an idea of
Goldman, Joichi and White, extend the columns of [d]_[d] infinitely
downwards, so that there are now infinitely many rows. Let S be the set
of all placements of d rooks such that
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1. every rook lies either on B or one of the appended squares, and

2. no two rooks lie in the same column.

Given S # S, define ?(S ) to be the partition of [d] in which two num-
bers i and j lie in the same block if and only if the rooks in columns i and
j lie in the same row. To each S # S we also associate a coloring of [d] as
follows. Color the vertex i # [d] with color j if the rook in column i lies in
the j th appended row. Otherwise, if the rook in column i lies in the j th
original row, make vertex i the same color as vertex j. Since there is exactly
one rook in each column, and since D is acyclic, these rules give a well-
defined coloring cS . For every set partition of [d], define

T D
? =T B

? =def
:

[S # S | ?(S )=?]

xS,

where

xS =def
`

i # [d]

xcS (i) .

Finally define

T D
�?=T B

�? =def
:

_�?

T B
_ .

Theorem 4. For any acyclic digraph D with d vertices,

5D= :
? # 6d

+(0� , ?) T D
�? .

Proof. By Mo� bius inversion, the right-hand side is just T D
0� . The S # S

such that ?(S )=0� are just the placements in which no two rooks lie in the
same row or column. The rooks on B then define a path cover and the
rooks on the appended rows then ensure that distinct paths are assigned
distinct colors. The theorem follows from Proposition 3. K

It is not hard to show that this result specializes to [16, Theorem 1(a)].
One might again object that Theorem 4 is contrived because T D

�? is simply
a formal device to represent what one gets by Mo� bius inversion. This time
the objection is harder to meet, because T D

�? is not as ``nice'' an object as
5� *, + . For example, type(?)=type(_) does not imply T D

�?=T D
�_ . Also,

Goldman, Joichi and White's well-known factorization theorem [12] for
Ferrers shapes, which follows from their Mo� bius inversion formula, does
not seem to have any simple generalization to 5D . Indeed, computing 5D
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for various boards appears to be much more difficult than computing fac-
torial polynomials, in part because 5D depends heavily on the embedding
of B into [d]_[d] and not just on the shape of B. However, we do have
one result that gives some more information about T D

�? .

Proposition 15. For an acyclic digraph D, the power sum expansion of
T D

�? has nonnegative integer coefficients.

Proof. Let B be the associated board. We have

T D
�?= :

[S # S | ?(S)�?]

xS.

Collect terms that have identical placements of rooks on B. From the
definitions we see that each such collection of terms corresponds to the set
of colorings of V(D) that are monochromatic on the connected components
of the subgraph of D whose edges are those selected by the placement of
rooks on B, except that the condition ?(S )�? imposes the further condition
that components which contain elements of the same block of ? must always
be colored the same color. This gives a power sum symmetric function, so
T D

�? is a sum of power sums. K

Note that while Theorem 4 resembles Stanley's formula [21, Theorem 2.6]

XG= :
? # LG

+(0� , ?) p?

(where LG is the lattice of contractions of G), there is a significant difference
in that in Theorem 4 all the dependence on the digraph is contained in the
T D

�? whereas for XG all the dependence is contained in LG . We have
obtained variations of Theorem 4 (e.g., by considering rook placements
with no two rooks in the same row), but so far have found no satisfactory
analogue of LG .

5. Expansions

It is natural to ask for interpretations of the coefficients when 5D is
expanded in terms of various symmetric function bases. In fact, one of the
motivations for studying XG and 5D is a conjecture by Stanley and Stem-
bridge [23, Conjecture 5.5] regarding the elementary symmetric function
expansion of XG . We restate this conjecture here for convenience. Following
Stanley [21, Section 5], we write a+b for the poset that is a disjoint union
of an a-element chain and a b-element chain, and we say that a poset if
(a+b)-free if it contains no induced subposet isomorphic to a+b. We also
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say that a symmetric function g is u-positive if [u*] is a symmetric function
basis and the expansion of g in terms of this basis has nonnegative coef-
ficients. Then the Stanley�Stembridge conjecture is equivalent to the
following.

Conjecture 1. If P is a (3+1)-free poset, then XG(P) is e-positive.

In view of Proposition 2, this conjecture can also be viewed as a conjec-
ture about 5D . One of the most important partial results is the following
theorem of Gasharov [8].

Theorem 5. If P is a (3+1)-free poset, then XG(P) is s-positive.

We shall prove a slight extension of Gasharov's result that will illustrate
the subtlety of Conjecture 1. To state our result we need some definitions.

Definition. A loopless digraph is weakly (3+1)-free if, for any ordered
pair (u, v) of vertices of D, either D or D$ fails to have a directed path of
length two from u to v.

Note that weakly (3+1)-free digraphs need not be transitively closed or
even acyclic. Our nomenclature is justified by the following proposition.

Proposition 16. If P is a poset, then P is (3+1)-free if and only if
D(P) is weakly (3+1)-free.

Proof. Saying that D(P) is weakly (3+1)-free is equivalent to saying
that if u � v � w is a directed path of length two in D(P) and x is any ele-
ment such that (u, x) is not an edge of D(P), then (x, w) is an edge of D(P).
Saying that P is (3+1)-free is equivalent to saying that if u � v � w is a
chain in P and x is any element such that u<3 x in P, then x<w in P.
Clearly these two are equivalent. K

Definition. Let D be a digraph. A D-array is an array

v1, 1 v1, 2 } } }

v2, 1 v2, 2 } } }

} } }

where each vi, j is either undefined or an element of D and such that

1. for all i, j �1, if vi, j+1 is defined, then vi, j is defined and
(vi, j , vi, j+1) is an edge of D, and
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2. every element of D appears exactly once in the array.

The shape of a D-array is the sequence of the lengths of (the defined
portion of ) the rows. A D-tableau is a D-array such that

3. for all i, j �1, if vi+1, j is defined, then vi, j is defined and
(vi+1, j , vi, j) is not an edge of D.

Our definitions of D-array and D-tableau are motivated by Gasharov's
use of Gessel-Viennot [11] P-arrays and P-tableaux in his proof of
Theorem 5. We can now state our generalization.

Theorem 6. If D is a weakly (3+1)-free digraph, then the coefficient of
s* in 5D(x, 0) is the number of D-tableaux of shape *.

Proof. The proof is almost identical to Gasharov's, and we refer to his
paper for some details which we shall omit. Let Sl denote the group of per-
mutations of [l]. If *=(*1 , ..., *l) is an integer partition and ? # Sl , then
we denote by ?(*) the sequence

(*?( j)&?( j)+ j)l
j=1.

Define c* by

5D(x, 0)=:
*

c* s*(x).

By the same Jacobi�Trudi argument that Gasharov uses,

c*= :
? # Sl

(sgn ?) } \coefficient of ` x?(*)i
i in 5D(x, 0)+ ,

where sgn ? is the sign of the permutation ?. Now by Proposition 3,
5D(x, 0) counts path colorings of D, and path colorings of D are in bijec-
tion with D-arrays (the rows of the D-array give the directed paths and the
path in row i is assigned the color i). If we let

A=[(?, T ) | ? # Sl and T is a D-array of shape ?(*)],

it then follows that

c*= :
(?, T ) # A

sgn ?.

Now let

B=[(?, T ) # A | T is not a D-tableau]
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and note that if T is a D-tableau, then ?(*)1�?(*)2� } } } so that ? must
be the identity permutation. Thus to prove the theorem it suffices to find
an involution .: B � B such that if (_, T $)=.(?, T) then sgn _=&sgn ?.
Gasharov's involution works without modification; for completeness we
restate it here. If

v1, 1 v1, 2 } } }

T = v2, 1 v2, 2 } } }

} } }

then let c=c(T ) be the smallest positive integer such that condition 3 fails
for j=c and some i. Let r=r(T ) be the largest i with this property. Define
_=? b (r, r+1) where (r, r+1) is the permutation that interchanges r and
r+1. Define

u1, 1 u1, 2 } } }

T $ = u2, 1 u2, 2 } } }

} } }

by letting

(a) ui, j=vi, j if i{r or i{r+1 or (i=r and j�c&1) or (i=r+1
and j�c);

(b) ur, j=vr+1, j+1 if j�c and vr+1, j+1 is defined;

(c) ur+1, j=vr, j&1 if j�c+1 and vr, j&1 is defined.

(Other values of the array T $ remain undefined.) Now row r+1 of T $
satisfies condition 1, because if vr, c is defined then (vr+1, c , vr, c) is an edge
of D by definition of r and c. To show that T $ is a D-array it suffices to
show that row r satisfies condition 1 since condition 2 is obviously satisfied.
Possible trouble arises only if c�2, but then vr+1, c&1 � vr+1, c � vr+1, c+1

is a path of length two in D and (vr+1, c&1 , vr, c&1) is not an edge in D,
so it follows from the assumption that D is weakly (3+1)-free that
(vr, c&1 , vr+1, c+1) is an edge of D, and condition 1 is met. Now
(vr+1, c , vr+1, c+1) is an edge of D so if ur, c is defined (ur+1, c , ur, c) is an
edge of D (since ur+1, c=vr+1, c and ur, c=vr+1, c+1) and thus T $ is not a
D-tableau. It is clear that T $ has shape _(*) and that c(T $)=c(T ) and
r(T $)=r(T ). Also, sgn _=&sgn ?, so . is the desired sign-reversing
involution. K

Note that a digraph is weakly (3+1)-free if and only if its complement
is weakly (3+1)-free, so Corollary 2 applied to Theorem 6 does not
enlarge the class of known s-positive path-cycle symmetric functions.
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It is natural to conjecture that if D is weakly (3+1)-free then 5D(x, 0) is
e-positive but for instance if we let D be the digraph with adjacency matrix

\
0 1 0 1
0 0 1 1
0 0 0 1
0 0 0 0+

we find (with the aid of John Stembridge's SF package for Maple) that

5D(x, 0)=s4+2s31+s22+4s211+3s1111=3e31&e211+e1111 .

In fact, of the five essentially distinct weakly (3+1)-free acyclic digraphs
on four vertices that are not transitively closed, only one is e-positive. So
the way the property of being (3+1)-free is used in Gasharov's proof is far
from enough to yield e-positivity even if the condition of acyclicity is
added. This shows how delicate Conjecture 1 is.

We conclude this section with a theorem that is closely related to the
result of Stanley [21, Corollary 2.7] that |XG is p-positive for all graphs
G. Corollary 2 shows that a direct analogue is not possible, but we do have
the following result.

Theorem 7. If D is an acyclic digraph, then |x5D is p-positive.

Proof. Since D is acyclic, all path-cycle covers are path covers, and
5D=5D(x, 0). From Doubilet [6, Appendix 1] we know that for any set
partition ?,

m~ ?= :
_�?

+(?, _) p_ .

Thus

5D=:
S

:
_�?(S )

+(?(S ), _) p_

=:
_ \ :

[S | ?(S)�_]

+(?(S ), _)+ p_ ,

where S ranges over path covers. Now fix _ and let D1 , D2 , ..., Dl be the
subgraphs induced by the blocks of _, with sizes d1 , d2 , ..., dl respectively.
If ci is the coefficient of pdi in 5Di , then we claim that the coefficient of p_

in 5D is >i ci . To see this, first note that choosing a path cover S of D
such that ?(S )�_ is equivalent to (independently) choosing path covers
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for each Di . Now it is well known and easy to see that the interval [0� , _]
in a partition lattice is isomorphic to

6d1
_6d2

_ } } } _6dl .

It is also well known (e.g., [22, Prop. 3.8.2]) that the Mo� bius function of
a product is the product of the Mo� bius functions. Putting these facts
together readily yields our claim.

Thus to prove the theorem it suffices to prove that for an acyclic digraph
with d vertices the sign of the coefficient of pd is (&1)d&1. For then, since
any induced subgraph of an acyclic graph is acyclic, we can apply our
claim above to show that the coefficient of p_ is sgn _.

Let D have d vertices. By specializing via Proposition 8, we see that the
coefficient of pd in 5D equals the coefficient of i in R(D; i). Directly from
the definitions we see that this equals

(&1)d&1 :
d&1

k=0

(&1)k rD
k (d&k&1)!

Now an acyclic digraph as at least one source and one sink, so by removing
the corresponding row and column we see that B may be regarded as a subset
of a (d&1)_(d&1) board. Then the above sum is a positive integer, by
the basic inclusion-exclusion formula for rooks (see [22, Theorem 2.3.1]).
The sign of the coefficient is therefore (&1)d&1 as desired. K

We mention in passing that the argument used in the above proof allows
[21, Proposition 5.5] to be extended from posets to acyclic digraphs.

6. Future Work

It is clear that we have only scratched the surface in our investigations
in this paper. We list a few promising directions for further research.

1. The involution | plays an important role in the theory of symmetric
functions. Does the involution

g(x, y) [ [|xg(x, &y)]x � (x, y)

play an important role in the theory of symmetric functions in two sets of
variables? It is not even immediately obvious that this is an involution, so
its properties could be quite subtle. In this regard, we state without proof
that if we define

5� D(x, y) =def
:
S

(&2)l(_(S )) m~ ?(S )(x, y) p_(S )( y),
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where the sum is over all path-cycle covers S of D, then

5� D$(x, y)=|x5� D(x, &y),

and this transformation is clearly an involution, so perhaps 5� D should be
studied alongside 5D .

2. Can any more rook theory be generalized to 5D? For example,
can we determine which boards have equal path-cycle symmetric functions?
Or can we compute the path-cycle symmetric function of some simple
boards? It is not difficult to show that if D is a directed path with d vertices
then

5D= :
* |&d

l(*)! m*= :
d&1

r=0

ur sd&r, 1r

where ur is the number of permutations of r+1 with no consecutive
ascending pairs. A similar result holds for directed cycles, but we have not
been able to compute 5D for any other significant class of digraphs.

3. What more can be said about the symmetric function bases 5� * and
5� *, +? Can they be fitted into the Mo� bius inversion framework of Doubilet
[6]?

4. Is there a natural representation of the symmetric group corre-
sponding to 5D for weakly (3+1)-free digraphs? If such a representation
could be constructed it might shed some light on Conjecture 1.
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