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Editor’s Note. In 1994, James Dolan posted a series of articles, each with the
word “carrying” in the subject line, to the USENET newsgroup sci.math. He
posted a couple of different versions; the present document is a lightly edited
and [2#TEXed compilation of the January 19, 1994 version. James Dolan writes,
“this is re-posted with my permission, though i'm not sure how differently i
might try to explain these things now if i tried it again.”

1 Part1l

In another thread, I wrote [in response to Ron Maimon —ed.]:

Well, I'm impressed. I was well into my thirties before I realized that
the “carry digit” function is the premier example of a 2-cocycle.

Some people have asked me to elaborate on this, so I will try to do so,
particularly since it ties in somewhat with questions Tim Chow has been asking
about homological algebra lately.

First of all, what do I mean by the “carry digit” function here? Well, the
binary operation of addition of single-digit numbers gives as output a number
with two digits: the “ones” (or “least significant”) digit, and the “tens” (or
“most significant”) digit. Doing the case of base five so as to keep the table
small, for example, here is the addition table you get:

o 1 2 3 4
00 01 02 03 04
01 02 03 04 10
02 03 04 10 11
03 04 10 11 12
04 10 11 13 13
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It turns out to be interesting, from the utmost practical point of view (for
example in the implementation of arithmetic on computers), just as well as
from the utmost theoretical point of view, to break up this double-digit-number-
valued function into two single-digit-number-valued functions. Focusing on just
the “ones” digit, we get the well-known operation of “addition of integers modulo
the multiples of five”:
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Focusing on just the “tens” digit, on the other hand, we get the equally impor-
tant but less remarked upon “carry digit” operation:

01 2 3 4
0{0 0 0 0 O
110 0 0 0 1
2/0 0 0 1 1
310 0 1 1 1
410 1 1 1 1

So what is going on here? Let’s note the following particular features of the
situation:

1. We have a “big” group (the group of two-digit numbers, under the oper-
ation of addition modulo the multiples of 100), and two “small” groups
(the “tens” group {00, 10, 20, 30,40} and the “ones” group {0,1,2,3,4}).
The big group can be thought of as “built out of” the two small groups,
but in a slightly tricky way that makes crucial use of the carry digit func-
tion, and that has the “ones” group and the “tens” group playing sharply
contrasting roles. (Be careful to note that the word “group” here is being
used in its technical mathematical sense, meaning a set equipped with a
certain sort of binary operation into itself, which in all the cases we’re
interested in here is more or less just the binary operation of addition.)

2. The “tens” group can be thought of as a “subgroup” of the big group.
That is, the elements 00, 10, 20, 30,40 of the “tens” group add together
in the big group just the same way they add together among themselves.
The “ones” group, on the other hand, cannot be thought of as a subgroup
of the big group. That is, the elements 0,1,2,3,4 of the “ones” group
add together very differently depending on whether they are thought of as
belonging to the big group or as forming a small group all by themselves.
For example, 4 + 4 = 13 using the addition operation in the big group,
which is different from the answer 4 + 4 = 3 that you get in the small
“ones” group.

3. The “ones” group can be thought of as a “quotient group” of the big
group. That is, the “ones” group can be thought of as the big group,
“modulo” the subgroup consisting of the multiples of 10. That is, if T pick
a pair x,y of two-digit numbers, but I only tell you the “ones” digit of z
and the “ones” digit of y, then you can tell me the “ones” digit of z + y.
That is, the “ones” digit of the sum = 4+ y depends only upon the “ones”



digits of x and y; the “tens” digits are completely irrelevant if all you care
about are the “ones” digits. The “tens” group, on the other hand, cannot
be thought of as a quotient group of the big group. That is, if I pick a
pair z,y of two-digit numbers, but I only tell you the “tens” digits of =
and the “tens” digit of y, then you can’t in general tell me the “tens” digit
of x + y. The best you can do is to ask me, “It all depends—when you
added the “ones” digits together, what was the carry digit produced?”
For example, 11 4+ 12 = 23, whereas 14 + 14 = 33; you can’t figure out the
“tens” digit of x + y without having a peek over at the “ones” digits of z
and y. That is, the “tens” digit of the sum z + y does not depend only
upon the “tens” digits of x and y; it depends also upon the carry digit
produced by the “ones” digits of x and y.

Those are the basic ingredients of the situation, which is, for some reason,
known as “expressing the big group of double-digit numbers as an extension of
the quotient group {0,1,2,3,4} by the subgroup {00, 10,20, 30,40}.” Besides
the addition tables for the addition operations in the two small groups @ =
{0,1,2,3,4} and S = {00, 10, 20, 30,40}, the basic data that you need to build
the addition table for the big group is the carry digit function, which is a
function with two inputs both of type @ and one output of type S, represented
in standard “arrow” notation as:

QxQ—S

Then, thinking of a two-digit number as a pair (s1, ¢1), the formula for the sum
of (s1,¢1) and (s2,¢2) is

(s1+ s2 + carry(q1, g2), q1 + q2)-

Essentially this same formula can be used with many different “carry-digit func-
tions.” The technical name for such a “carry-digit function” is “2-cocycle” (or
more specifically, “2-cocycle on the group @ with coeflicients in the group S”).
2-cocycles by definition satisfy certain simple algebraic laws that guarantee that
the resulting “big group” is in fact a genuine group extending the quotient
group @ by the subgroup S. Different 2-cocycles can result in fundamentally
different big groups, but sometimes there are interesting relationships between
the resulting big groups.

As long as the situation is viewed as one of pure algebra, however, much
about it must appear mysterious and arbitrary. In order to understand the really
most important reasons why 2-cocycles (and their relatives the “n-cocycles” (for
other natural numbers n) are interesting, you have to learn about what at first
may seem like a completely unrelated branch of mathematics: topology.

(Notice that I am essentially repeating here the message conveyed by John
Baez in a recent reply to Tim Chow: that the secret weapon to use in under-
standing even the most algebraic manifestations of “homological algebra” is an
understanding of the conceptual origin of homological algebra in problems of

topology.)



[This concludes Part 1; in Part 2 I hope to begin to explain how in the world
the phenomenon of “extensions of groups” actually has anything to do with

topology.]

2 Part 2

[The story so far: the operation of addition (with wrap-around overflow) of
double-digit (decimal, or binary, or octal, etc.) numbers can be defined by a
formula that uses only:

1. addition (with wrap-around overflow) of single-digit numbers, and:

2. one other primitive binary operation on single-digit numbers, called the
“carry-digit” function, which takes the value 0 whenever the single-digit
numbers add without overflow, and 1 otherwise.

Representing double-digit numbers as ordered pairs of single-digit numbers,
so that for example 17 is represented as (1,7), this formula is:

(a,b) + (¢,d) := (a + ¢+ carry(b,d), b+ d).

It turns out that this phenomenon is just a special case of a very interesting
and important general process for creating a new big “group” (which is a set
equipped with a binary “addition” operation of a special type), whose elements
are ordered pairs of elements from two smaller groups, and whose addition
operation is defined with the help of a “generalized carry-digit function.” In
the general case, the two small groups may be different from each other; that is,
the right digit (the one we call the “ones” digit, and which “sends” the carry)
comes from one group, called the “quotient group,” while the left digit (the
one that we call the “tens” digit, and which “receives” the carry) comes from
another group, called the “subgroup.” The generalized carry-digit function is
called the “2-cocycle” (for reasons which may possibly be within the limits of
human understanding, and which I may even get around to trying to explain),
and given a quotient group @, subgroup S, and 2-cocycle ¢

QxQ—S,

the group whose underlying set is S x ) and whose “addition” operation is
given by the formula at top is called “the central extension of Q) by S, with
2-cocycle ¢.”

(The most general case that I intend to consider here is the case where the
quotient group @ may be non-abelian, but the subgroup s is abelian. “Abelian”
(also known as “commutative”) means that the law “a +b = b + a” holds.
There are however generalizations of the process that can apply in the case
where even S is non-abelian.)

I admit that some people claim to have mastered the art of adding two-digit
numbers without any explicit introduction to the concept of 2-cocycle, and I



think that Tal Kubo and myself are both resigned to the likelihood that the
ordinary carry-digit function will remain the only 2-cocycle that Ron Maimon
and millions of other American schoolchildren ever learn, and the only 2-cocycle
that is hard-coded into medium-priced personal computers. But I hope that
there may be some people struggling with the general concept of 2-cocycle and
with other general concepts of homological algebra who will benefit from seeing
how the familiar and lowly carry-digit function is an example of a 2-cocycle.]

Let’s return to the example of the carry-digit function for base five numerals.
In this case, both the quotient group @ and the subgroup S are the integers
modulo five, and the 2-cocycle ¢: Q x @ — s is:

0 1 2 3 4
0j0 0 0 0 O
110 0 0 0 1
210 0 0 1 1
3]0 0 1 1 1
410 1 1 1 1

But let’s consider now also another 2-cocycle d: @) X Q — s, as follows:

0 1 2 3 4
0j0 0 0 0 O
110 0 0 4 2
210 0 4 1 2
3]0 4 1 1 2
410 2 2 2 3

You can check for yourself that this is in fact a 2-cocycle; that is that if you
use it as a “generalized carry-digit function,” it actually makes S x @ into a
group with S as subgroup and @) as quotient group. However, there is a sense
in which the 2-cocycle d is “equivalent” to the 2-cocycle ¢ that we have already
seen. This equivalence can be expressed in a number of different ways. One
way of expressing it is to say that the groups (S x @, c+) and (S x Q,d+)
(where ”g+” denotes the addition operation defined using the 2-cocycle g as
generalized carry-digit function) are isomorphic, and moreover isomorphic in
such a way that both the inclusion map from the subgroup S and the projection
map onto the quotient group @ are preserved.

Another way of expressing it is to say that the 2-cocycles ¢ and d are “coho-
mologous” to each other. This means that if you subtract the function ¢ from
the function d (which makes sense since ¢ and d are functions taking values in an
abelian group), the result is a “coboundary” 2-cocycle. A coboundary 2-cocycle
is a 2-cocycle that’s in the image of the map “coboundary”

1-cochains — 2-cocycles,

where the “l-cochains” are the arbitrary functions from @ to S, and where the
coboundary of a 1-cochain



is the 2-cocycle
QxQ %S
given by the formula:

9(a,b) == f(a) + f(b) — fa+D).

You can check for yourself that the 2-cocycles ¢ and d given above are cohomol-
ogous to each other because when you subtract ¢ from d you get:

01 2 3 4
0{0 0 0 0 O
110 0 0 4 1
210 0 4 0 1
310 4 0 0 1
410 1 1 1 2

which is the coboundary of the 1-cochain f: @ — S given by:

a |0 1 2 3 4
fl@ 0 0 0 0 1

It is then an important but straightforward theorem that these two equivalence
relations on the class of 2-cocycles, namely isomorphicness of the associated
central extensions, and cohomologousness, are in fact the same.

[This concludes Part 2. In Part 3 I hope to begin to show how, by re-
interpreting the situation from the viewpoint of topology, much of what is going
on and which appears mysterious and arbitrary from the viewpoint of pure
algebra becomes much more clearly motivated. Of course that’s the same thing
I said about Part 2, but hope springs eternal.]

3 Part 3

[So far T have introduced a concept of “2-cocycle” which is a sort of “generalized
carry-digit function” from @ x @ to S, where @ is some group and S is some
abelian group; and I have discussed an equivalence relation “a is cohomologous
to b” on the set of 2-cocycles, for which the equivalence classes (called “coho-
mology classes”) correspond to isomorphism classes of “central extensions of @)
by S.”]

There is a very close relationship between the “cohomology of groups” that
we have been considering so far, and the older “cohomology of spaces.” One
way of trying to understand this relationship is to associate to each group @
a topological space (called “K(Q,1)” [an Eilenberg—Mac Lane space —ed.] for
some (pretty good) reason), constructed in stages as follows:

e Stage 0: Start with a single point p, called the “basepoint” of the space.

e Stage 1: For each element a € @, sew in a path “P,” from the basepoint p
to itself.



e Stage 2: For each pair (a,b) of elements in @, sew in a solid triangle,
filling in the hollow triangle formed by traversing the paths P, and then
Py in the forwards direction, followed by the path P, in the backwards
direction.

Already after Stage 2 we have achieved an important goal: the group @
can now be recovered from the space as its “fundamental group.” This is the
group whose elements are equivalence classes of paths from the basepoint of the
space to itself, under the equivalence relation of “homotopy,” with the group
operation being concatenation of paths.

Two paths are “homotopic” if you can gradually deform one of them into
the other, keeping the ends of the path fixed at the basepoint. For example,
notice that the solid triangles that we sew in make the concatenation of P, and
P, homotopic to P, which is as it should be.

(One way to verify that @ is the fundamental group of the space after Stage 2
is to apply the “Seifert—Van Kampen theorem,” which is a general theorem
about how to compute the fundamental group of a space sewn together from a
bunch of little pieces. This theorem and its proof are not that hard to under-
stand.)

However, although we have (after Stage 2) succeeded in sculpting the fun-
damental group of the space to be exactly what we wanted it to be (namely Q),
we have in the process played havoc with the “higher homotopy groups” of the
space. The “first homotopy group” of a space is just its fundamental group,
whose elements are homotopy classes of “loops”; that is, of paths from the
basepoint to itself; that is, of “figures shaped like the circle.” The elements
of the second homotopy group of the space are, similarly, homotopy classes of
“2-loops”; that is, of figures shaped like the sphere; and so on for the other
higher homotopy groups. To see how we have managed to play havoc with
these higher homotopy groups, think of all of the solid triangles that we sewed
into the space. From four solid triangles you can make a hollow tetrahedron,
which is topologically just a sphere; and indeed, in general we will have in this
way introduced some hollow spheres into our space.

These higher dimensional holes that have wormed their way into our space
detract from the purity with which the space acts as a “geometric realization” of
the group Q). It would be nice if we could get rid of all of the higher-dimensional
holes without disturbing the fundamental group. That is, it would be nice if we
could end up with a space such that not only is its fundamental group equal
to @, but also all of its higher homotopy groups are trivial. And this is in fact
the defining property that a space needs to satisfy in order to qualify as being
“the” space K(@,1). So the remaining stages of the construction are devoted to
the purpose of filling in all of the higher-dimensional holes without disturbing
the fundamental group. And this is not so hard to do, because, in general,
filling in an “[n + 1]-loop” with an “[n + 2]-cell” has absolutely no effect on the
homotopy classes of n-loops in the space; the [n+ 2]-cells are in a sense “too big
for the n-loops to notice.” Thus, whatever damage is caused by tinkering with
the n-loops propagates only in the upwards direction; so that if we take care at



stage n of our construction to get the [n — 1]th homotopy group of the space
correct, then after an infinite number of stages all of the homotopy groups will
be correct, all of the upwards-propagated damage having been repaired at the
appropriate stage. Thus the construction continues:

e Stage 3: Here we want to insure that the second homotopy group is cor-
rect; that is, we want to kill it off entirely, by filling in all of the hollow
tetrahedrons formed by appropriately adjoining quadruples of the solid
triangles that we laid down in Stage 2. In fact, these hollow tetrahedrons
correspond to triples (a, b, ¢) of elements of @, as follows:

triangle #1: sides Py, Py, Plap)
triangle #2: sides Py, Pe, Py
triangle #3: sides Piqp), Pe, Plab]
— triangle #4: sides Py, Plpe), Plabe]

You can check for yourself that these four triangles in fact touch one
another so as to form a hollow tetrahedron; then filling in each such hollow
tetrahedron with a solid tetrahedron completes Stage 3.

e Stage n: The pattern established in stages 0, 1, 2, and 3 continues: at
Stage n, the “solid n-simplexes” that need to be sewn in correspond to
the n-tuples of elements of Q.

Thus, after all of the stages have been completed, we have a space “K(Q, 1),”
with fundamental group equal to @ and with all other homotopy groups trivial;
and this space is equipped with a combinatorial decomposition into “cells” of
all dimensions, which leads to a particular combinatorial scheme for computing
the cohomology of the space. (I think that this particular scheme is called
something like “cellular cohomology.”) And it is easy (if somewhat laborious)
to see that the cellular cohomology of the space K(Q, 1) is in fact precisely just
the “group cohomology” of the group Q.

Thus, to focus on the example that started this discussion off, consider some
2-cocycle c: @ x Q — S, where s is some abelian group. From the algebraic
point of view this acts as a “generalized carry-digit function,” but from the
topological point of view it is just a “cellular 2-cocycle” on the space K(Q,1).
Each pair (a,b) of elements of @ corresponds to a solid triangle (“2-cell”) sewn
into the space at Stage 2 of the construction, and the 2-cocycle ¢ assigns to each
such 2-cell the element c¢(a, b) of the “coefficients” group S.

Furthermore, the equivalence relation “c is cohomologous to d” on the set
of cellular 2-cocycles, defined in terms of the cellular 1-cochains, is, on the
one hand, just the same as I defined it to be in the purely group-theoretical



setting; while on the other hand, the set of equivalence classes with respect to
it (“cohomology classes”) is a topological invariant of the space K(Q,1).

[This concludes Part 3. I have now given a fairly thorough explanation of
my original smart-alecky remark about the “carry-digit function” being a 2-
cocycle, but in future installments I would like to try to explain some more
important general ideas about the conceptual interaction between group theory
and algebraic topology. What I have described so far is only a very small taste
of the thorough inter-mixture of ideas from these two areas that occurs.]



