Perfect Matching Conjectures and Their Relationship to $P \neq NP$

Timothy Y. Chow* 22 June 2004 (StanleyFest)

* Currently working at MIT Lincoln Laboratory

Distance Degree Regular Graphs

- If v is a vertex in a graph G, let d_i(v) be the number of vertices in G at a distance *i* from v
- G is distance degree regular (DDR) if for all *i*, *d_i(v*) depends only on *i* and not on *v*
- Examples: vertex-transitive graphs, strongly regular graphs, distance-regular graphs
- Conjecture 1: Let G be DDR; then G has a perfect matching iff every connected component is even

Gallai-Edmonds Decomposition

- Given any graph G, define:
 - $D(G) = \{ v : \exists maximum matching of G not containing v \}$
 - A(G) = neighbors of D(G) not already in D(G)
 - **C**(**G**) = the remaining vertices of **G**
- Then:
 - G has a perfect matching iff $D(G) = \emptyset$
 - Every component of *D*(*G*) is odd
 - If G has no perfect matching then A(G) is a Tutte set, i.e., it has fewer vertices than G A(G) has odd components
 - C(G) has a perfect matching
 - [Other conclusions omitted]

Gallai-Edmonds Example

 $C(G) = \emptyset$ A(G) -

Partial Results on Conjecture 1

- Recall Conjecture 1: If G is DDR then G has a perfect matching iff every component is even
- True for vertex-transitive graphs
 - Exercise in Lovász and Plummer (follows easily from Gallai-Edmonds decomposition)
- True for strongly regular graphs (Holton and Lou)
- True for all DDR graphs of diameter 2 or 3
- True for DDR graphs of diameter 4 satisfying certain additional technical conditions

Strengthenings of Conjecture 1

- "DDR" cannot be strengthened to "self-centered"
 - A graph is self-centered if the largest *i* such that $d_i(v) \neq 0$ is independent of *v*

Conjecture 1': If G is a connected graph, u ∈ D(G) and v ∉ D(G) then d_i(u) ≠ d_i(v) for some i

Multiregular Multipartite Graphs

- Let G be a graph equipped with a multiregular multipartition $V(G) = V_1 \cup ... \cup V_k$
 - If $v \in V_i$ then the number r_{ij} of neighbors of v in V_j depends only on i and j and not on v, and $r_{ii} = 0$
- Conjecture 2: If G has no perfect matching, then G has a Tutte set that is a union of V_i's
- True for the multipartition into single vertices and the multipartition into the vertex orbits of the automorphism group of *G*

Listing Polytime Graph Properties

- There is a computable function *M*(*n*) such that
 - For all *n*, *M*(*n*) is a polytime Turing machine that recognizes a property *X* of labeled graphs
 - For every polytime property X of labeled graphs, there exists n such that M(n) recognizes X
- One simply enumerates all polynomially clocked Turing machines
- But what if we restrict ourselves to polytime isomorphism-invariant properties of graphs (i.e., polytime properties of unlabeled graphs)?

Central Problem of Finite Model Theory

- Is there a computable function *M**(*n*) such that
 - For all *n*, *M**(*n*) is a polytime Turing machine that recognizes a property *X* of unlabeled graphs
 - For every polytime property X of unlabeled graphs, there exists n such that M*(n) recognizes X ?
- Fact: If not, then $P \neq NP$
 - Graph canonization is in $P^{NP} = \Delta_2$, the second level of the polynomial hierarchy
 - If P = NP then graph canonization is in P, so each unlabeled graph can be replaced with a canonical labeled representative

Why Is This "Finite Model Theory"?

- Candidates for *M**(*n*) are typically defined by creating a formal language (or logic) with
 - computable syntax, i.e., a computable set of formulas
 - computable semantics, i.e., a computable correspondence between formulas and Turing machines (for the polytime graph properties expressed by the formulas)
- Hence the central problem is often stated: Is there a logic that [strongly, effectively] captures P on unordered structures?
- Best-known example of a logic: First-order logic
 - Much too weak to express all polytime properties

Two Logics for Unordered Structures

- FP+C (fixed-point logic with counting)
 - FP+C, in fact FP, captures P on ordered structures (Immerman 1982, Vardi 1982)
- CPT+C (choiceless polytime with counting)
 - "Choiceless" means no non-canonical choices allowed
- FP+C \subset P (Cai-Fürer-Immerman 1989)
- FP+C \subset CPT+C \subseteq P (Blass-Gurevich-Shelah 2002)
- It is open whether FP+C or CPT+C can capture perfect matchability of unlabeled graphs
 - Leads to the conjectures in the first part of the talk

- Resolving the central problem either way would be a major result, so any partial results in either direction are interesting
- These investigations often boil down to concrete combinatorial problems that require no special knowledge of logic
- More combinatorialists are needed in this field!

Selected References

- A. Blass, Y. Gurevich and S. Shelah, "On polynomial time computation over unordered structures," *J. Symbolic Logic* 67 (2002), 1093–1125 [most important reference]
- J.-Y. Cai, M. Fürer and N. Immerman, "An optimal lower bound on the number of variables for graph identification," *Proc. 30th IEEE FOCS* (1989), 612–617
- H.-D. Ebbinghaus and J. Flum, *Finite Model Theory*, 2nd ed., Springer-Verlag, Berlin, 1999
- D. A. Holton and D. J. Lou, "Matching extensions of strongly regular graphs," *Australas. J. Combin.* **6** (1992), 187–208
- N. Immerman, "Relational queries computable in polynomial time," *Proc. 14th ACM STOC* (1982), 147–152
- L. Lovász and M. D. Plummer, *Matching Theory*, North-Holland, Amsterdam, 1986
- M. Otto, *Bounded Variable Logics and Counting: A Study in Finite Models*, Springer-Verlag, Berlin, 1997
- M. Y. Vardi, "Complexity of relational query languages," Proc. 14th ACM STOC (1982), 137–146