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Distance Degree Regular Graphs

• If v is a vertex in a graph G, let di(v) be the 
number of vertices in G at a distance i from v

• G is distance degree regular (DDR) if for all i, di(v) 
depends only on i and not on v

• Examples: vertex-transitive graphs, strongly 
regular graphs, distance-regular graphs

• Conjecture 1: Let G be DDR; then G has a perfect 
matching iff every connected component is even



Gallai-Edmonds Decomposition

• Given any graph G, define:
– D(G) = { v : ∃ maximum matching of G not containing v }
– A(G) = neighbors of D(G) not already in D(G)
– C(G) = the remaining vertices of G

• Then:
– G has a perfect matching iff D(G) = ∅
– Every component of D(G) is odd
– If G has no perfect matching then A(G) is a Tutte set, i.e., 

it has fewer vertices than G – A(G) has odd components
– C(G) has a perfect matching
– [Other conclusions omitted]



Gallai-Edmonds Example

C(G) = ∅

 

A(G)

D(G)



Partial Results on Conjecture 1

• Recall Conjecture 1: If G is DDR then G has a 
perfect matching iff every component is even

• True for vertex-transitive graphs
– Exercise in Lovász and Plummer (follows easily from 

Gallai-Edmonds decomposition)

• True for strongly regular graphs (Holton and Lou)

• True for all DDR graphs of diameter 2 or 3

• True for DDR graphs of diameter 4 satisfying 
certain additional technical conditions



Strengthenings of Conjecture 1

• “DDR” cannot be strengthened to “self-centered”
– A graph is self-centered if the largest i such that di(v) ≠ 0 

is independent of v
 

• Conjecture 1´: If G is a connected graph, u ∈ D(G) 
and v ∉ D(G) then di(u) ≠ di(v) for some i



Multiregular Multipartite Graphs

• Let G be a graph equipped with a multiregular 
multipartition V(G) = V1 ∪ … ∪ Vk
– If v ∈ Vi then the number rij of neighbors of v in Vj

depends only on i and j and not on v, and rii = 0

• Conjecture 2: If G has no perfect matching, then 
G has a Tutte set that is a union of Vi’s

• True for the multipartition into single vertices and 
the multipartition into the vertex orbits of the 
automorphism group of G



Listing Polytime Graph Properties

• There is a computable function M(n) such that
– For all n, M(n) is a polytime Turing machine that 

recognizes a property X of labeled graphs
– For every polytime property X of labeled graphs, there 

exists n such that M(n) recognizes X

• One simply enumerates all polynomially clocked
Turing machines

• But what if we restrict ourselves to polytime 
isomorphism-invariant properties of graphs (i.e., 
polytime properties of unlabeled graphs)?



Central Problem of Finite Model Theory
• Is there a computable function M*(n) such that

– For all n, M*(n) is a polytime Turing machine that 
recognizes a property X of unlabeled graphs

– For every polytime property X of unlabeled graphs, 
there exists n such that M*(n) recognizes X ?

• Fact: If not, then P ≠ NP
– Graph canonization is in PNP = ∆2, the second level of 

the polynomial hierarchy
– If P = NP then graph canonization is in P, so each 

unlabeled graph can be replaced with a canonical 
labeled representative



Why Is This “Finite Model Theory”?

• Candidates for M*(n) are typically defined by 
creating a formal language (or logic) with
– computable syntax, i.e., a computable set of formulas 
– computable semantics, i.e., a computable correspondence 

between formulas and Turing machines (for the polytime 
graph properties expressed by the formulas)

• Hence the central problem is often stated: Is there a 
logic that [strongly, effectively] captures P on 
unordered structures?

• Best-known example of a logic: First-order logic
– Much too weak to express all polytime properties



Two Logics for Unordered Structures
• FP+C (fixed-point logic with counting)

– FP+C, in fact FP, captures P on ordered structures 
(Immerman 1982, Vardi 1982)

• CPT+C (choiceless polytime with counting)
– “Choiceless” means no non-canonical choices allowed

• FP+C ⊂ P  (Cai-Fürer-Immerman 1989)
• FP+C ⊂ CPT+C ⊆ P  (Blass-Gurevich-Shelah 2002)

• It is open whether FP+C or CPT+C can capture 
perfect matchability of unlabeled graphs
– Leads to the conjectures in the first part of the talk



• Resolving the central problem either way would 
be a major result, so any partial results in either 
direction are interesting

• These investigations often boil down to concrete 
combinatorial problems that require no special 
knowledge of logic

• More combinatorialists are needed in this field!
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