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continues to hold when the line x = ky is replaced by certain
periodic staircase boundaries—but only under special conditions.
The simple formula fails in general, and it remains an open
question to what extent our results can be further generalized.
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1. Background and main results

Throughout this paper, a lattice path will mean a lattice path in the plane whose only allowable
steps are north (0,1) and east (1,0).

It is a classical theorem [1,2] that if k is a positive integer, then the number of lattice paths from
(0,0) to (a + 1,b) (where a � kb) that avoid touching or crossing the line x = ky except at (0,0) is
given by the formula(

a + b

b

)
− k

(
a + b

b − 1

)
. (1)

In fact, more is true: There are(
a

c − 1

)(
b

c − 1

)
− k

(
a − 1

c − 2

)(
b + 1

c

)
(2)
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such paths with c − 1 northwest corners.1 This stronger result appears explicitly in [5] and implic-
itly even earlier, but our favorite proofs of all these facts are the bijective proofs of Goulden and
Serrano [4].

It is natural to ask if there are similar simple formulas for lattice paths from (0,0) to (a,b) that
avoid the line x = ky, if k is allowed to be an arbitrary positive rational number. While one can
write down a determinantal formula (indeed, a determinantal formula exists for an arbitrarily shaped
boundary), nothing as simple as (1) is known, and empirical investigation does not suggest any obvi-
ous conjecture.

Our first main result is that for certain periodic staircase boundaries (instead of straight-line
boundaries), there are simple enumerative formulas that generalize (1) and (2), at least for certain
special starting and ending points.

Definition 1. Given positive integers s and t , let As,t be the infinite staircase path that starts at (0, t),
then takes s steps east, t steps north, s steps east, t steps north, and so on.

Definition 2. Given a set S of (finite) lattice paths, take each path π ∈ S , and augment it by prepend-
ing a north step to the beginning of π and appending a north step to the end of π . Let S+ denote
the resulting set of lattice paths.

Theorem 3. Let s, t, n, and c be positive integers.

(1) Let S1 be the set of lattice paths from (0,0) to (sn + 1, tn) that avoid As,t . There are

t

(
sn

c − 1

)(
tn

c − 1

)
− s

(
sn − 1

c − 2

)(
tn + 1

c

)
(3)

paths in S+
1 with c northwest corners (equivalently, c southeast corners).

(2) Let S2 be the set of lattice paths from (1,0) to (sn, tn − 1) that avoid As,t . There are

t

(
sn − 1

c − 1

)(
tn − 1

c − 1

)
− s

(
sn − 2

c − 2

)(
tn

c

)
(4)

paths in S+
2 with c northwest corners (equivalently, c southeast corners).

The equivalence between counting northwest and southeast corners follows because in a lattice
path that starts with a north step and ends with a north step, the first corner must be a northwest
corner and the last corner must be a southeast corner, and northwest and southeast corners must
alternate. Also, since |S| = |S+| for any S , summing over all c and applying Vandermonde convolution
immediately yields the following corollary.

Corollary 4. Let s, t, and n be positive integers. Then

|S1| = t

(
sn + tn

tn

)
− s

(
sn + tn

tn − 1

)
(5)

and

|S2| = t

(
sn + tn − 2

tn − 1

)
− s

(
sn + tn − 2

tn − 2

)
. (6)

Note that avoiding Ak,1 is the same as avoiding x = ky except at (0,0), so our results generalize
(1) and (2) in one direction, by allowing arbitrary s and t , but are simultaneously more special in

1 By a northwest corner we mean a corner formed by a north step followed by an east step. There is a similar-looking formula
for paths with a given number of southeast corners.
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another direction, since only certain special endpoints are allowed. More precisely, note that if we set
a = kn and b = n in (1) and (2), then we get the same answers as if we set s = k and t = 1 in (5)
and (3). (When t = 1, the map S �→ S+ simply adds a northwest corner to every path.)

Our proof of Theorem 3 is similar to Goulden and Serrano’s in several ways but differs in one
crucial way. Like Goulden and Serrano, we interpret (3) and (4) as counting all paths of a certain
type, minus the bad paths. Another similarity is the idea of breaking the bad path into two halves ρ
and σ at the first “bad point” so as to manipulate ρ and σ into something that is easier to count.
The crucial difference is that Goulden and Serrano rotate ρ , whereas we interchange ρ and σ .2

We also give a second proof of Corollary 4, which is based on a well-known argument of Raney [8]
regarding cyclic shifts of integer sequences.

It is frustrating that Theorem 3 applies only to special endpoints. Can anything be said about other
endpoints? We do not have a satisfactory answer to this question, but our second main result is a
tantalizing hint that more general theorems lie waiting to be found. It is best stated in the language
of binary strings; we draw the connection to lattice paths afterwards.

Theorem 5. For n � 1, s � 0, and 0 � r � 2n, let a(n, s, r) be the number of binary sequences of length
(s + 2)n + 1 such that for all j, the jth occurrence of 10 (if it exists) appears in positions (s + 2) j + 1 and
(s + 2) j + 2 or later, and such that the total number of occurrences of 10 and 01 is at most r. Then

a(n, s, r) = 2

(
(s + 2)n − 1

r

)
− (s − 2)

r−1∑
i=0

(
(s + 2)n − 1

i

)
. (7)

Our proof of Theorem 5 is again an application of Raney’s argument, combined with a straightfor-
ward induction on n.

To convert Theorem 5 into lattice-path language, let β = (b1,b2, . . . ,b(s+2)n+1) be a binary se-
quence, let b0 = 0, and define Δβ by (Δβ)i = |bi − bi−1|, for i � 1. If we convert Δβ into a lattice
path by turning 0’s into east steps and 1’s into north steps, then it is easily checked that the binary
sequences in Theorem 5 turn into lattice paths avoiding Bs , as defined below.

Definition 6. For s � 0, define Bs to be the staircase path that starts at (0,2), then takes s + 1 steps
east, 2 steps north, s steps east, 2 steps north, s steps east, and so on, always alternating between 2
steps north and s steps east except for the first segment of s + 1 steps east.

For example, B4 is the dashed line in the lower picture in either Fig. 2 or Fig. 3 below. Curiously,
we have not been able to generalize Theorem 5 to more general staircase boundaries, or to refine the
count according to northwest or southeast corners. But for the special case when s = 2k is even, we
have a second, purely bijective proof of the following corollary of Theorem 5.

Corollary 7. For all n � 1 and k � 0, the number of lattice paths of length 2(k + 1)n + 1 that start at (0,0)

and that avoid touching or crossing B2k equals the number of lattice paths of length 2(k + 1)n + 1 that start at
(0,0) and that avoid touching or crossing the line x = ky except at (0,0). This number has the explicit formula

(
2(k + 1)n

2n

)
− (k − 1)

2n−1∑
i=0

(
2(k + 1)n

i

)
. (8)

2 In an earlier draft of this paper, we stated, “therefore our bijection does not specialize to Goulden and Serrano’s rota-
tion principle nor to André’s reflection principle.” There are many problems with this remark. First, we learned from Marc
Renault [9], Heinrich Niederhausen, and Katherine Humphreys that André did not use a reflection argument, but actually in-
terchanged ρ and σ ! We also overstated the difference between rotation and interchange; if we rotate ρ , then rotate σ , and
then rotate the entire path, then we have simply interchanged ρ and σ . So when there is a proof by one technique, there is
probably a proof by the other. Finally, independently and almost simultaneously with Goulden and Serrano, Loehr [6] used a
rotation argument for a similar lattice-path enumeration problem.
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Fig. 1. Example of π �→ π ′ with s = 5, t = 3, n = 2, and π ∈ T1 ∩ U2.

Formula (8) is of course just obtained by summing over the appropriate instances of (1). These
numbers also appear as A107027 in Sloane’s Online Encyclopedia of Integer Sequences. This cries out
for a combinatorial interpretation of each summand as counting lattice paths avoiding B2k but with
varying endpoints. Unfortunately, we do not know how to make this idea work.

Note that the case s = 2 of Theorem 5 is particularly simple:

Corollary 8. For n � 1, there are
(4n

2n

)
binary sequences of length 4n + 1 with the property that for all j, the

jth occurrence of 10 appears in positions 4 j + 1 and 4 j + 2 or later (if it exists at all).

We suspect that we have not yet found the “proof from the Book” of Corollary 8, and encourage
the reader to find it.

The outstanding open question is whether our results generalize further. We should mention two
papers [7] and [10] that consider staircase boundaries similar to As,t and that prove results related to
Corollary 4. See also Theorem 8.3 of [3]. Although our results do not seem to imply or be implied by
these other results, perhaps it would be fruitful to investigate the precise relationships among them.

2. Proofs of Theorem 3 and Corollary 4

Proof of Theorem 3. We prove part (1) first. It will be convenient to first prove formula (5) bijectively,
and then track corner counts through the bijection.

As we hinted above, we interpret (5) as counting the set T of all paths of a certain type, minus the
set of bad paths. For 0 � i � t − 1, let Ti be the set of all lattice paths from (1, i) to (sn + 1, tn + i),
and let T = ⋃

i T i . Then

|Ti | =
(

sn + tn

tn

)
and |T | = t

(
sn + tn

tn

)
. (9)

We regard S1 as a subset of T as follows. Given any π ∈ S1, find the smallest i such that (1, i) ∈ π ;
such an i must exist. Then there exists a unique π ′ ∈ Ti that agrees exactly with the remainder of π ,
provided that we append i north steps to the end of π . Identifying π with π ′ embeds S1 in T . It
remains to show that the number of bad paths—i.e., the paths in T \ S1—is s

(sn+tn
tn−1

)
.

We partition the set T \ S1 into s disjoint sets U1, . . . , Us as follows. By definition, every path in
T \ S1 must hit a bad point, i.e., a point on the boundary As,t . For 1 � j � s, we let U j be the set
of all paths in T \ S1 whose first bad point has an x-coordinate that is congruent to j modulo s. To
prove formula (5), it suffices to show that |U j | =

(sn+tn
tn−1

)
, independent of j.

Fix any j. Given π ∈ U j , observe that the step that terminates in the first bad point of π must
be a north step. Let ρ be the portion of π prior to this fatal north step, and let σ be the portion
of π after the bad point. Thus π = (ρ,north, σ ). Now comes the crucial part of the proof, where we
interchange ρ and σ . More precisely, let π ′ be the lattice path that starts at ( j − 1, t) and takes steps
(σ ,east,ρ). See Fig. 1 for an example.

We claim that π �→ π ′ bijects U j onto the set U ′
j of all paths from ( j − 1, t) to (sn + j, tn + t − 1).

First note that since π and π ′ have the same total number of north steps and the same total number
of east steps except that one north step of π has been changed into an east step of π ′ , it follows
that π ′ does in fact terminate at (sn + j, tn + t − 1). Now, given any path π ′ ∈ U ′

j , let σ be the initial
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segment of π ′ up to the last point of π ′ that lies on the boundary As,t . The next step after that must
be an east step; let ρ be the remainder of π ′ after that. It is straightforward to check that this allows
us to construct a unique preimage π of π ′ . This proves formula (5).

Now we prove the stronger formula (3), for northwest corners. The initial north step of each
lattice path in S+

1 forces there to be a northwest corner with x-coordinate zero, whereas the final
north step does not affect the northwest corner count. Therefore if we embed S1 in T as above, we
really want to count lattice paths with c − 1 northwest corners (rather than c northwest corners).
There are t

( sn
c−1

)( tn
c−1

)
paths in T with c − 1 northwest corners, because we can pick the x-coordinates

and y-coordinates of the corners independently. It therefore suffices to show that for all j, there are(sn−1
c−2

)(tn+1
c

)
paths in U j with c − 1 northwest corners.

If α is a binary string, let |α| denote its length, and let w(α) denote its weight, i.e., the number of
1’s in α. Let U ′′

j be the set of ordered pairs (α,β) of binary strings such that |α| = sn −1, |β| = tn +1,
and w(β) = w(α) + 2. It suffices to describe a bijection from U ′

j to U ′′
j such that the composite map

π �→ π ′ �→ (α,β) sends paths with c − 1 northwest corners to pairs (α,β) with w(β) = c.
Before describing this bijection, we make two observations. Let π , ρ , σ , and π ′ be as above. The

first observation is that, because of the position of the endpoint of π relative to the boundary As,t ,
σ always has at least one east step. The second observation is that we lose a northwest corner when
passing from π to π ′ iff σ starts with an east step, and we gain a northwest corner as we pass from
π to π ′ iff σ ends with a north step. (Note that we can both gain a corner and lose a corner, leaving
the total corner count unchanged.) So to track corners properly, we must watch the first and last steps
of σ .

Now for the bijection. Given π ′ ∈ U ′
j , construct α by first writing down a binary string of length

sn whose ith digit (1 � i � sn) is 1 iff j + i − 1 is the x-coordinate of a northwest corner of π ′ , and
then deleting the digit corresponding to the point where π ′ intersects As,t for the last time. This
digit must exist, because σ has at least one east step. For example, in Fig. 1, we first write down
1000100001, and then delete the 4th digit to obtain α = 100100001.

The first tn − 1 digits of β are obtained by writing down the binary string of length tn − 1 whose
ith digit (1 � i � tn − 1) is 1 iff t + i is the y-coordinate of a northwest corner of π ′ . The next digit
of β is 1 iff σ does not start with a north step, and the last digit of β is the complement of the
deleted digit of α. For example, in Fig. 1, β = 1110011.

To see that w(β) = w(α) + 2, first pair off the 1’s in α and β arising from northwest corners that
they both “see,” and then note that β will have two extra 1’s corresponding to the columns in which
the first and last vertices of σ appear: Either β sees a northwest corner in that column (and α of
course does not see it), or there is no such corner, in which case the appropriate trailing bit of β will
be set. Either way, w(β) = w(α) + 2.

Similarly, as we pass from π to π ′ to β , a corner that is lost from π to π ′ is “caught” by the
penultimate bit of β , and β will gain an extra 1 either by catching a gained corner or, if no corner
is gained, by setting its last bit. Thus w(β) is one more than the number of northwest corners of π .
Equivalently, w(α) is one less than the number of northwest corners of π .

It remains to show that π ′ �→ (α,β) is a bijection. Since |U ′
j | = |U ′′

j |, it suffices to show that π ′
can be reconstructed from its image (α,β). To reconstruct π ′ it suffices to reconstruct the northwest
corners. The penultimate digit of β is 0 iff π ′ has a northwest corner with x-coordinate j − 1, so
we need only reconstruct the deleted digit of α. The value of the deleted digit is the complement
of the last digit of β , so we need only reconstruct its position. To do this, take (α,β) and begin
constructing π ′ from the end backwards without regard to the deleted digit. At some point, the
partially reconstructed path will touch or cross the boundary As,t . It is easy to check that the first
such contact point with As,t yields the position of the deleted digit of α.

This completes the proof of part (1). The proof of part (2) is very similar, so we focus only on the
details that differ. For 0 � i � t − 1, let Ti be the set of all lattice paths from (1, i) to (sn, tn + i − 1),
and let T = ⋃

i T i . Then T is our set of all paths. Note that S2 is already naturally a subset of T —in
fact, S2 ⊂ T0—so we do not have to embed S2 in T . The definition of the sets U j is exactly analogous.
However, π ′ now starts at ( j, t + 1) rather than at ( j − 1, t), and ends at (sn + j, tn + t − 1). The proof
of (6) now goes through as before.
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To do the corner count, we need to define the map π ′ �→ (α,β) in the case that σ is empty or
vertical, i.e., has no east steps. In this case, we always delete the first digit of α. The definition of β

is the same as before. The arguments that w(β) = w(α) + 2 and that π ′ �→ (α,β) is a bijection still
work.

However, w(α) is no longer always one less than the number of northwest corners of π . Let V
denote the set of paths in

⋃
j U j for which σ is vertical or empty and ρ starts with a horizontal step.

Then it is straightforward to check that for π ∈ V , w(α) is equal to the number of northwest corners
of π . So if we let Xc denote the members of X with c northwest corners, then pulling back U ′′

j to U j

shows that formula (4) is the cardinality of the set(
T c−1 ∖ s⋃

j=1

U c−1
j

)
∪ (

V c−1 \ V c−2) = Sc−1
2 ∪ (

V c−1 \ V c−2). (10)

On the other hand, if we let N2 denote the subset of S2 consisting of paths that start with a north
step, and observe that prepending a north step to π ∈ S2 adds a northwest corner to π iff π starts
with an east step, then we see that (S+

2 )c is equinumerous with

Sc−1
2 ∪ (

Nc
2 \ Nc−1

2

)
. (11)

Thus to show that (10) and (11) are equinumerous, it suffices to show that Nc
2 = V c−1 for any c. But

this bijection is easily described: Given a path in N2, simply move all the initial north steps to the
end; this creates a path in V with one fewer northwest corner. This completes the proof.

Proof of Corollary 4. Of course this follows from Theorem 3, but we have another proof. The formula
in Eq. (5) can be rewritten as 1

n

(sn+tn
sn+1

)
. Consider the set S ′

1 of all paths starting at the origin that
end with a north step and that have a total of sn + 1 east steps and a total of tn north steps. Clearly
|S ′

1| =
(sn+tn

sn+1

)
and S1 ⊂ S ′

1. We need to show that S1 comprises precisely 1/n of the paths in S ′
1.

Decompose any path π ∈ S ′
1 into n consecutive subpaths π1,π2, . . . ,πn , where each π j contains

exactly t north steps and ends in a north step. Our desired result follows immediately from the
following key claim: For any π ∈ S ′

1, there is exactly one “cyclic shift” of π that lies in S1, where by
a cyclic shift we mean one of the n paths of the form

π j,π j+1, . . . ,πn,π1,π2, . . . ,π j−1

obtained from π by concatenating the subpaths in a cyclically permuted order.
To see the key claim, one first readily verifies that π ∈ S1 iff for all i > 0, the total length of the

first i subpaths π1, . . . ,πi is at least (s + t)i + 1. Now we apply an argument patterned after a classic
proof of Raney [8]. For all j � 1, let � j be the length of π( j mod n) . Consider the graph in the xy plane
with straight-line segments between vertices P j and P j+1, where

P j =
(

j,
j∑

i=1

�i

)
.

The “average” slope of this graph is (sn+tn+1)/n = s+t + 1
n . The line of the form y = (s+t + 1

n )x+C
that is “tangent” to this graph from below intersects the graph exactly once every n points, because
the graph has period n and the coefficient of x is an integer plus 1/n. The points of intersection have
the form P j , P j+n , P j+2n , etc., and the value of j here yields the unique cyclic shift having the desired
property. This proves the claim.

The proof of Eq. (6) is similar. Define S ′
2 to be the set of all paths from the origin that have a total

of sn − 1 east steps and a total of tn − 1 north steps. Decompose any π ∈ S ′
2 as follows:

π = π1,north,π2,north, . . . ,north,πn,

where each π j has t − 1 north steps. Then π ∈ S2 iff for all 0 � i < n we have

|π1| + |π2| + · · · + |πi | � i(s + t − 1).
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Exactly one “cyclic shift” of π has the equivalent property that for all i,

|π1| + |π2| + · · · + |πi | � (i/n)(sn + tn − n − 1).

Thus there are 1
n

(sn+tn−2
tn−1

)
paths in S2, which is equivalent to Eq. (6).

3. Proofs of Theorem 5 and Corollary 7

Proof of Theorem 5. It is easily verified that a(1, s,0) = 2 and a(1, s,1) = a(1, s,2) = s + 4. If n � 2
and r � 2n − 2, then we claim that the following recursion holds:

a(n, s, r) =
s+2∑
d=0

(
s + 2

d

)
a(n − 1, s, r − d). (12)

The reason is that an admissible binary string of order n −1 can be extended by any sequence of s +2
bits without danger of causing inadmissibility, provided that the resulting string changes from 1 to 0
or vice versa at most 2n − 2 times. The parameter d counts the number of changes introduced by the
last s + 2 bits, and the binomial coefficient counts the number of ways to position the d changes.

By Vandermonde convolution, the recurrence (12) almost gives us a proof by induction on n, except
that we need to handle the cases r = 2n − 1 and r = 2n. Note that no string of order n can have more
than 2n − 1 changes, and that Eq. (7) takes the same value for r = 2n − 1 and r = 2n. So to complete
the proof of Theorem 5, it is enough to show that

a(n, s,2n − 1) − a(n, s,2n − 2) = 2

(
(s + 2)n − 1

2n − 1

)
− s

(
(s + 2)n − 1

2n − 2

)
,

which can be rewritten as 1
n

(
(s+2)n
2n−1

)
. The left-hand side counts the admissible strings with exactly

2n − 1 changes, and we use the proof technique of Raney as before. Any such string σ must start
with 0; we decompose it into substrings σ1, σ2, . . . , σn , where each σ j consists of a j zeroes followed
by b j ones, and a j,b j > 0. The condition for admissibility can now be expressed as

|σ1| + |σ2| + · · · + |σi| � i(s + 2) + 1

for all 0 � i < n. Exactly one cyclic shift of σ has the equivalent property that for all i,

|σ1| + |σ2| + · · · + |σi| � (i/n)
(
(s + 2)n + 1

)
.

Thus the number of admissible strings with exactly 2n − 1 changes is equal to 1/n times the number
of ways to partition (s + 2)n + 1 into 2n positive integers, corresponding to the numbers a j , b j . This

is well known to be
(
(s+2)n
2n−1

)
, and this completes the proof.

Proof of Corollary 7. We can deduce this easily from Theorem 5 just by showing that Eq. (7) reduces
to Eq. (8) when r = 2n and s = 2k. We have

a(n,2k,2n) = 2

(
2(k + 1)n − 1

2n

)
− 2(k − 1)

2n−1∑
i=0

(
2(k + 1)n − 1

i

)
;

breaking up the sum, the right-hand side becomes

2

(
2(k + 1)n − 1

2n

)
− (k − 1)

(
2(k + 1)n − 1

2n − 1

)

− (k − 1)

2n−1∑
i=0

[(
2(k + 1)n − 1

i

)
+

(
2(k + 1)n − 1

i − 1

)]
,
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or [
2

2kn

2(k + 1)n
− (k − 1)

2n

2(k + 1)n

](
2(k + 1)n

2n

)
− (k − 1)

2n−1∑
i=0

(
2(k + 1)n

i

)
,

which then collapses to formula (8).
However, we also give a direct bijective proof. If k = 0 then formula (8) simplifies to 4n , the bound-

ary conditions are nearly vacuous, and the result is easy to prove. So fix k � 1 and n � 1.
Our bijection is actually between two sets of lattice paths that are slightly different from those

mentioned in the corollary.
Let Fk(n) be the set of lattice paths of length 2(k +1)n (note the shorter length) that start at (0,0)

and avoid the line x = ky except at (0,0).
Let Gk(n) be the set of lattice paths of length 2(k + 1)n + 1 that start at (0,0) and avoid B2k , and

that touch the line x = ky + 1 at least once for y > 0.
To see that a bijection between Fk(n) and Gk(n) implies the corollary, we make two observations.

First, because 2(k + 1)n is a multiple of k + 1, every lattice path of length 2(k + 1)n that avoids x = ky
can be extended by either an east step or a north step without hitting the line x = ky; therefore
|Fk(n)| is exactly half the number of lattice paths of length 2(k + 1)n + 1 that avoid x = ky. Second,
the paths excluded by the final condition on Gk(n) are precisely those that avoid the line x = ky + 1
after (1,0), and therefore are in bijection with Fk(n)—simply prepend an east step to each path
in Fk(n).

The rest of the proof is devoted to describing a bijection ϕ : Fk(n) → Gk(n).
We define a procedure called trisection that we need in our construction of ϕ . Define the potential

of a point (x, y) to be x − ky. Let P be a lattice path, not necessarily starting at (0,0), but with
the property that the potential difference of P —i.e., the potential of the last point of P minus the
potential of the first point of P —is at least k + 1 (and hence in particular comprises at least k + 1
steps). To trisect P , first look at the last k steps of P . If all of these steps are east steps, then the
trisection procedure fails. Otherwise, let b be the segment of P consisting of the last north step of P
along with all the east steps after that. Let l be the length of b. Find the last lattice point p ∈ P such
that the initial segment a of P comprising everything up to p has potential difference exactly k+1− l.
Such a point p must exist (since increases in potential can occur only one unit at a time) and must
occur prior to b. Let P ′ be the segment of P between a and b. The decomposition P = (a, P ′,b) is
the trisection of P . Note that the potential difference of b is l − 1 − k and so the combined potential
difference of a and b is zero; thus the potential difference of P ′ is the same as that of P .

We are now ready to describe ϕ . Given P ∈ Fk(n), the construction of ϕ(P ) has two phases. In
Phase 1, we decompose P into segments; in Phase 2, we build ϕ(P ) using the segments constructed
in Phase 1.

The paths in Fk(n) with the smallest potential difference are those that terminate closest to the
line x = ky; these are readily checked to have potential difference at least k + 1. We begin Phase 1 by
trying to trisect P into (a1, P ′,b1). If this fails, we proceed to Phase 2. Otherwise, if the height of a1
(i.e., the y-coordinate of the last point of a1 minus the y-coordinate of the first point of a1) is even,
then we proceed to Phase 2. Otherwise, we try to trisect P ′ into (a2, P ′′,b2), proceeding to Phase 2 if
the trisection fails or if a2 has even height. If we still do not reach Phase 2, then we try to trisect P ′′ ,
and so on.

Each successful trisection preserves the potential difference of the middle section while shrinking
its length, so we must eventually reach Phase 2, with a decomposition

P = (a1,a2, . . . ,am−1,am, Q ,bm,bm−1, . . . ,b2,b1)

for some m, where Q denotes whatever remains in the middle. If we reach Phase 2 because the
height of am is even, then we set

ϕ(P ) = (east,am,bm,a1,b1,a2,b2,a3,b3, . . . ,am−1,bm−1, Q ),

where the “east” means that we begin ϕ(P ) with an east step. For an example with k = 2 and n = 7,
see Fig. 2.
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Fig. 2. Example of P �→ ϕ(P ) when am has even height.

The other way to reach Phase 2 is for the last k steps of Q to all be east steps. Decompose
Q = (Q ′,bm+1) where bm+1 comprises those final k east steps. Then set

ϕ(P ) = (north,east,bm+1,a1,b1,a2,b2, . . . ,am,bm, Q ′).

For an example, again with k = 2 and n = 7, see Fig. 3.
One must check that ϕ(P ) ∈ Gk(n). Define a waypoint to be a point on the line x = ky + 1 that is

midway between two consecutive southeast corners of B2k (i.e., it has the form (2ik + k + 1,2i + 1)

for some i). The claim that ϕ(P ) ∈ Gk(n) can be broken down into subclaims: (1) the part of ϕ(P )

preceding a1 avoids B2k and takes us to a waypoint; (2) each pair (a1,b1), (a2,b2), etc., resulting
from successful trisections takes us from one waypoint to another and avoids B2k; (3) the last part
Q or Q ′ starts at a waypoint and avoids B2k . Checking these subclaims is easier to do oneself than
to write out in detail, so we will just indicate the key points. The claims about waypoints follow
because an (ai,bi) pair has potential difference zero, and therefore if it starts on x = ky then it ends
on x = ky. If ai has odd height then (ai,bi) ends on a waypoint if it starts on a waypoint. At most
one ai , namely am , has even height, and then (am,bm) takes us from (1,0) to a waypoint. The other
tricky claim is that (ai,bi) avoids B2k , but this follows because by construction, the potential of ai

never drops below its initial potential so that it even stays below the line x = ky + 1; also, if we trace
bi backwards from its terminal waypoint, it takes at most k − 1 horizontal steps and therefore avoids
hitting B2k .

To invert ϕ , suppose we are given P ∈ Gk(n). Whether Fig. 2 or Fig. 3 applies depends on whether
the first step of P is north or east. Mark all the waypoints of P ; there must be at least one, since
P ∈ Gk(n). By backing up from a waypoint until we find a north step, we can construct the bi , and
therefore also the ai and Q . Hence ϕ is easily reversed. We leave the straightforward verification of
the details to the reader.
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Fig. 3. Example of P �→ ϕ(P ) when bm+1 comprises k east steps.
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