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Abstract— In this paper, we study the problem of traffic grooming to
reduce the number of transceivers in optical networks. We show that this
problem is equivalent to a certain traffic maximization problem. We give
an intuitive interpretation of this equivalence and use this interpretation
to derive a greedy algorithm for transceiver minimization. We discuss
implementation issues and present computational results comparing the
heuristic solutions with the optimal solutions for several small example
networks. For larger networks, the heuristic solutions are compared with
known bounds on the optimal solution obtained using integer program-
ming tools.

I. I NTRODUCTION

It is widely believed that “All Optical Networks” withwave-
length division multiplexing (WDM)will be the future wide-
area backbone networks. A WDM network consists of several
nodes interconnected with fiber optical (physical) links. The
traffic signals in the network propagate through the optical fiber
at different wavelengths and therefore the network can be alter-
natively thought of as a set of nodes interconnected bylight-
paths.A lightpath is a path of physical links in which a partic-
ular wavelength on each link is reserved for the lightpath. The
traffic signals in the network remain optical (or almost optical)
throughout their flow through a lightpath. We consider net-
works with fixed (static) full-duplex lightpaths. The lightpaths
are terminated at each end by transceivers which are optoelec-
tronic equipment that convert the optical signals into electronic
signals for further processing. The cost of the transceivers is
a dominant cost in the network. Therefore, in this paper we
study network design to minimize the number of transceivers.
Since the number of transceivers is twice the number of light-
paths, minimizing the number of transceivers is equivalent to
minimizing the number of lightpaths.

We assume that the networks are circuit-switched and sup-
port lower-speed full duplex end-to-end connections or traffic
streams, all at same rate. We also assume that all lightpaths
have the same transmission capacity measured in the units of
traffic streams. For example, if each traffic stream is an OC-3
connection and a lightpath is an OC-48 connection, we will say
that capacity of the lightpath is 16 traffic streams. There are

two topologies associated with such WDM optical networks.
They are
1. Physical topology, determined by the set of physical links,
and
2. Virtual topology, determined by the set of lightpaths or log-
ical links.
Note that several virtual topologies can be implemented on a
physical topology and that not all virtual topologies are sup-
ported by a given physical topology. Moreover, the number
of transceivers in a network depends only on the virtual topol-
ogy, whereas other system parameters like performance, num-
ber of wavelengths, etc., depend on how the lightpaths are im-
plemented on the given physical topology. Since we are inter-
ested only in the cost of transceivers, it is sufficient to restrict
ourselves to virtual topologies in this paper. In particular, our
algorithms prescribe only a virtual topology. They do not de-
scribe how the virtual topology is realized on the physical net-
work.

The general problem of designing a WDM network (i.e., de-
signing virtual topology on a given physical topology) to op-
timize system cost and system performance is known to be an
NP-hard problem. In this paper, we study a very special case in
which all costs except the cost of transceivers are neglected. It
is also assumed that all virtual topologies are implementable on
the given physical topology. Although this assumption is very
restrictive, it is satisfied in the following situation.

In wide-area optical WDM networks, if the number of phys-
ical links (fibers) available between neighboring nodes is large,
then the number of wavelengths in the system is not important
and two lightpaths can always be routed on two different physi-
cal links even though they use the same wavelength. Moreover,
if any two nodes can be connected by a path of physical links,
then between any two nodes any number of lightpaths can be
implemented.

With these assumptions, the cost in the network will be
concentrated mainly in the transceivers. The number of
transceivers used in the system can be reduced by careful ag-
gregation of traffic streams on to lightpaths. In the next section,
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Fig. 1. Example network

we motivate this transceiver minimization problem with an ex-
ample and give a precise formulation of the problem. In the
subsequent sections, we discuss our heuristic and present com-
putational results.

The transceiver minimization problem can be thought of as
a very special case of virtual topology design of optical net-
works [1]. Typically, researchers have concentrated on net-
work design to optimize number of wavelengths, delay, prob-
ability of blocking and congestion. References [2], [3], [4]
were the first to consider transceiver costs. They decompose
the design of WDM ring networks into two phases. In the first
phase, the low-speed traffic streams are aggregated on to light-
paths to minimize the number of transceivers and the number
of wavelengths. In the second phase, these lightpaths are as-
signed wavelengths. In contrast, we consider only the first
design phase and restrict ourselves to minimizing transceiver
costs which depend only on how the traffic streams are aggre-
gated on to lightpaths.

Although we present our algorithms in the context of op-
tical networks, they can be applied to any networks involv-
ing two layers (e.g., electronic and optical in optical networks)
and when transceivers are required to aggregate several traffic
streams of one layer into a traffic stream of the other layer.

II. M OTIVATION AND PROBLEM STATEMENT

As an example, consider a network with three nodes A, B
and C with the physical topology as shown in Fig. 1. With
this physical topology, assuming that the number of fibers is
not a constraint, lightpaths between any two nodes in the net-
work can be implemented. Assume that we need to build a
network with one traffic stream between each pair of nodes and
the capacity of each lightpath is 2 traffic streams. There are
two different ways of aggregating the traffic streams as shown
in Fig. 2. One way is to have a lightpath between every pair
of nodes and route the traffic such that it takes the shortest path
of lightpaths. This solution uses six transceivers. In the second
solution, the network has only two lightpaths AB and AC. The
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Fig. 2. Two solutions

traffic between nodes A and C is routed through B. Between
B and A the two traffic streams AB and BC share the same
lightpath and similarly, between A and C the traffic streams
AC and BC share the same lightpath. This solution saves one
lightpath and two transceivers. This example shows that care-
ful aggregation of low speed traffic streams on to lightpaths can
decrease the cost of the transceivers used in the network. This
decrease in cost, compared to the cost of obvious solutions, can
be substantial in large networks. In the following subsection,
we formally state this problem of minimizing transceiver cost.

A. Problem Statement

Given a traffic pattern and the capacityc of the lightpaths
in the network, the problem is to design a virtual topology with
least possible number of lightpaths and route each traffic stream
through these lightpaths. In ann-node network, the traffic pat-
tern can be represented by ann × n matrix T = [Tij ], where
Tij equals the number of traffic streams from nodei to node
j. Similarly, the virtual topology of the network can be rep-
resented by ann × n matrix L = [Lij ], whereLij equals
the number of lightpaths from nodei to nodej. Note thatT
andL are symmetric matrices as lightpaths and traffic streams
are full-duplex. The routing of the traffic streamsT through a
virtual topology with lightpathsL can be represented by non-
negative integersfijkl , for eachi, j, k, l wherefijkl equals the
number of traffic streams from nodek to nodel routed through
the lightpath from nodei to nodej. It is easy to see thatfijkl
should satisfy the following constraints.
1. The constraint that each lightpath can carry at mostc traffic
streams can be expressed as: for eachi, j,

∑
k,l

fijkl ≤ cLij . (1)

2. Similarly, the constraint that traffic streams and lightpaths
are full-duplex can be expressed as: for eachi, j, k, l,

fijkl = fjilk. (2)



3. Finally, the constraint that traffic flowing into a nodek is
equal to the traffic flowing out of the nodek plus the traffic
dropped at that node can be written as: for eachk, l,m,

∑
i

fiklm −
∑
i

fkilm = b
k
lm, (3)

where

bklm = 0 if k 6= l and k 6= m,
= Tlm if k = m,
= −Tml if k = l.

The problem is to minimize
∑
i,j Lij subject to constraints

(1),(2) and (3) for a given matrixT . This is an integer lin-
ear program (ILP) withO(n4) variables. This ILP is a special
case of multicommodity flow problems [5] which become un-
manageable even for moderate sized networks (say 20 nodes).
Therefore, we have to resort to heuristics to obtain “good” so-
lutions in a reasonable amount of time. In the next section, we
develop one such heuristic based on an intuitive observation
which we call “duality”.

Given a traffic patternT one obvious virtual topology
through which the traffic can be routed is the following. Be-

tween each pair of nodesi andj,
⌈
Tij
c

⌉
lightpaths are used and

all the traffic streams between these nodes are routed through
these lightpaths. This solution is viable if the number of traf-
fic streamsTij is less than but close to capacityc. On the other
hand, if the differencec−Tij between the capacity of the light-
path and the part of it used by the traffic streams is large this
solution becomes very expensive as a lot of capacity is wasted.
To decrease the cost, some of the lightpaths can be removed
from this virtual topology and the traffic streams routed through
these lightpaths can be rerouted through the surplus capacity in
the remaining lightpaths. In our heuristic, we start with an ini-
tial network and delete lightpaths one by one and reroute the
traffic in the deleted lightpaths until no more deletions are pos-
sible.

III. D UALITY AND HEURISTICS

In order to understand duality, we need a further abstraction
of the networks. A network can be viewed as a set of nodes in-
terconnected by capacities represented by a matrixC = [Cij ],
whereCij is the capacity between nodesi andj. For example,
the capacities of a network with virtual topologyL are repre-
sented by the matrixcL. Note that, whether or not a given
traffic pattern can be routed through a network depends only
on the capacities in the network. Suppose traffic patternsT
andT ′ can be routed through capacitiesC andC′ respectively.
Then, it is easy to see that the traffic patternT + T ′ can be
routed on capacitiesC + C′. Using this observation, we state
our principle of duality in the following subsection.
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Fig. 3. Loss in surplus capacities

A. Duality

Suppose the traffic patternT can be routed through capaci-
tiesC. LetK = [Kij ] be a matrix such thatKij ≥ Cij+Tij for
all i andj. Then the traffic patternK−C = (K−C−T )+T
can be routed through the capacitiesK−T = (K−C−T )+C.

Using capacities instead of virtual topology, we can rewrite
the transceiver minimization problem as:

Problem 1: Minimize
∑
i,j Lij subject to the constraint that

the traffic patternT can be routed on capacitiescL.
Using variable transformationsDij = L̃ij − Lij , for suffi-
ciently large matrixL̃, and the above duality, this problem can
be rewritten as:

Problem 2: Maximize
∑
i,j Dij subject to constraint that

the traffic patterncD can be routed on capacitiescL̃− T .
This dual problem has the following interpretation. Consider a
network with lightpaths̃L. SinceL̃ is large, we can route each
traffic stream through the lightpaths between its terminal nodes.
This routing leaves capacitiescL̃−T unused, and we call these
the surplus capacities. Suppose we wish to remove a lightpath
carryingt traffic streams and reroute this traffic. This rerouting
is possible only if we can routet traffic streams through the
surplus capacities in theremainingnetwork. The decrease in
surplus capacities due to removal of the lightpath and rerouting
of the traffic streams is as shown in Fig. 3. Note that these
capacities correspond to those used by some routing ofc traf-
fic streams through the surplus capacities between nodesi and
j. From this discussion, it is easy to deduce that the removal
of a lightpath between nodesi and j and rerouting of traffic
streams carried by this lightpath is possible if and only ifc traf-
fic streams can be routed through surplus capacitiescL̃−T be-
tween nodesi andj. More generally, we can delete lightpaths
represented by matrixD from the network with lightpaths̃L
and reroute the traffic carried by these lightpaths if and only
if cD traffic streams can be routed through surplus capacities
cL̃− T . Therefore, the dual problem can be viewed as starting



with an initial network withL̃ lightpaths and removing as many
lightpaths as possible in the network and rerouting the traffic in
these deleted lightpaths. This view immediately suggests the
following greedy heuristic to minimize lightpaths.

B. Heuristic

1. Start with a network withL := L̃ lightpaths for some large
L̃. Use the shortest path routing of traffic streams through these
lightpaths. With this routing the surplus capacities in the net-
work is equal tocL̃− T.
2. While the surplus capacities supportc traffic streams be-
tween some pair of nodes repeat steps 3, 4 and 5.
3. Find the pair(i, j) of nodes between which the shortest path
routing ofc traffic streams through surplus capacities uses least
amount of the total capacity.
4. Delete a lightpath between nodesi andj in the network and
reroute all the traffic through this lightpath through the surplus
capacities used in the Step 3, i.e., letLij := Lij − 1.
5. Delete the capacities used by Step 3 from the current surplus
capacities.
Note that Step 3 involves enumerating all pairs of nodes(i, j)
and solving a minimum cost flow problem for each pair. Al-
though, the way we presented our algorithm suggests that we
have to keep track of the route of each traffic stream through-
out the algorithm, this is not necessary as the algorithm moves
from one shortest path routing to another. One can delete the
lightpaths from the network with out worrying about how these
deletions affect the routes of individual traffic streams. When
the final network is obtained, the route of each traffic stream
can be obtained by shortest path routing which is a solution to a
minimum cost network flow problem. The number of iterations
performed by the above heuristic depends on how large the ini-
tial set of lightpaths̃L is chosen. Since, the greedy heuristic
deletes all lightpaths that do not carry any traffic streams before
deleting a lightpath that carries some traffic stream, it is opti-

mal to choose the initial network with̃Lij =
⌈
Tij
c

⌉
, whered·e

represents the ceil function. Finally, we would like to point out
that the above heuristic can be applied using different selection
strategies for Step 3, and can be extended to more complicated
problems, e.g., with transceiver costs dependent on nodes.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we compare solutions obtained by applying
our heuristic to some example traffic patterns with the optimal
solutions. The optimal solutions were obtained using integer
linear programming tools of CPLEX 6.0. For some patterns,
these tools were unable to solve the problem. For such prob-
lems, our solutions are compared with the bounds obtained us-
ing these tools.

A. Uniform traffic pattern

The following table shows computational results for an 8-
node network with 8 units of capacity for each lightpath. The
traffic pattern is uniform in the sense that there are same num-
ber of traffic streams between any two nodes.

Traffic Optimal Heuristic

1 9 10
3 17 18
5 23 24

The following table shows results for a 10-node network
with capacity of 8 units for each lightpath.

Traffic Optimal Heuristic

3 25 28
5 35 37

B. Random traffic pattern

The following table shows results for networks for which the
traffic patterns have been generated randomly.

Number of
Nodes

Fiber Capacity Optimal Heuristic

8 8 18 20
16 24 <122,

>96
106

V. CONCLUSIONS

The computational experiments clearly show that our al-
gorithm does not give optimal solutions. However, we do
not understand well why this is so. Moreover, we do not
know whether the transceiver minimization problem is NP-
hard. There are no known bounds on the performance of the
above heuristic compared to the optimal solution.
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