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Motivated by a 1993 conjecture of Stanley and Stembridge, 
Shareshian and Wachs conjectured that the characteristic map 
takes the character of the dot action of the symmetric group 
on the cohomology of a regular semisimple Hessenberg variety 
to ωXG(t), where XG(t) is the chromatic quasisymmetric 
function of the incomparability graph G of the corresponding 
natural unit interval order, and ω is the usual involution 
on symmetric functions. We prove the Shareshian–Wachs 
conjecture.
Our proof uses the local invariant cycle theorem of Beilinson–
Bernstein–Deligne to obtain a surjection, which we call the 
local invariant cycle map, from the cohomology of a regular 
Hessenberg variety of Jordan type λ to a space of local 
invariant cycles. As λ ranges over all partitions, the local 
invariant cycles collectively contain all the information about 
the dot action on a regular semisimple Hessenberg variety. We 
then prove a result showing that, under suitable hypotheses, 
the local invariant cycle map is an isomorphism if and only 
if the special fiber has palindromic cohomology. (This is a 
general theorem, which is independent of the Hessenberg 
variety context.) Applying this result to the universal family of 
Hessenberg varieties, we show that, in our case, the surjections 

* Corresponding author.
E-mail addresses: pbrosnan @umd .edu (P. Brosnan), tchow @alum .mit .edu (T.Y. Chow).

1 Partially supported by NSF grant DMS-1361159.
https://doi.org/10.1016/j.aim.2018.02.020
0001-8708/© 2018 Published by Elsevier Inc.

https://doi.org/10.1016/j.aim.2018.02.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
mailto:pbrosnan@umd.edu
mailto:tchow@alum.mit.edu
https://doi.org/10.1016/j.aim.2018.02.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2018.02.020&domain=pdf


956 P. Brosnan, T.Y. Chow / Advances in Mathematics 329 (2018) 955–1001
are actually isomorphisms, thus reducing the Shareshian–
Wachs conjecture to computing the cohomology of a regular 
Hessenberg variety. But this cohomology has already been 
described combinatorially by Tymoczko, and, using a new 
reciprocity theorem for certain quasisymmetric functions, 
we show that Tymoczko’s description coincides with the 
combinatorics of the chromatic quasisymmetric function.

© 2018 Published by Elsevier Inc.

1. Introduction

Let G be the incomparability graph of a unit interval order (also known as an in-
difference graph), i.e., a finite graph whose vertices are closed unit intervals on the real 
line, and whose edges join overlapping unit intervals. It is a longstanding conjecture [50]
related to various deep conjectures about immanants that if G is such a graph, then the 
so-called chromatic symmetric function XG studied by Stanley [48] is e-positive, i.e., a 
nonnegative combination of elementary symmetric functions. (In fact, Stanley and Stem-
bridge conjectured something seemingly more general, but Guay-Paquet [20] has reduced 
their conjecture to the one stated here.) Early on, Haiman [22] proved that the expansion 
of XG in terms of Schur functions has nonnegative coefficients, and Gasharov [17] showed 
that these coefficients enumerate certain combinatorial objects known as P -tableaux. It 
is well known that if χ is a character of the symmetric group Sn, then the image of χ
under the so-called characteristic map ch

chχ := 1
n!

∑
σ∈Sn

χ(σ) pcycletype(σ) (1)

(where p here denotes the power-sum symmetric function) is a nonnegative linear com-
bination of Schur functions, with the coefficients giving the multiplicities of the corre-
sponding irreducible characters of Sn. One may therefore suspect that XG is the image 
under ch of the character of some naturally occurring representation of Sn, but until 
recently, there was no candidate, even conjecturally, for such a representation.

Meanwhile, independently and seemingly unrelatedly, De Mari, Procesi, and Shay-
man [11] inaugurated the study of Hessenberg varieties. Let m = (m1, m2, . . . , mn−1) be 
a weakly increasing sequence of positive integers satisfying i ≤ mi ≤ n for all i, and let 
s : Cn → Cn be a linear transformation. The (type A) Hessenberg variety H (m, s) is 
defined by

H (m, s) := {complete flags F0 ⊆ F1 ⊆ · · · ⊆ Fn : sFi ⊆ Fmi
for 1 ≤ i < n}. (2)

The geometry of a Hessenberg variety depends on the Jordan form of s. If the Jordan 
blocks have distinct eigenvalues then we say that s is regular, and, by extension, we also 
say that H (m, s) is regular. Similarly, if s is diagonalizable then we say that H (m, s) is 
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semisimple. We say that s has Jordan type λ if λ is the partition of n given by the sizes 
of the Jordan blocks on s. Hessenberg varieties have many interesting properties, but of 
particular interest to us is the fact that there is a representation, called the dot action, 
of Sn on the cohomology of regular semisimple Hessenberg varieties. This dot action 
was first defined by Tymoczko, who asked for a complete description of it [53]; e.g., a 
combinatorial formula for the multiplicities of the irreducible representations and/or for 
the character values.

A connection between these two apparently unrelated topics has been conjectured 
by Shareshian and Wachs [43,44]. Motivated by the e-positivity conjecture, they have 
generalized XG to something they call the chromatic quasisymmetric function XG(t) of a 
graph, which is a polynomial in t with power series coefficients that reduces to XG when 
t = 1. They also noted that, if we are given a sequence m as above, and we let G(m)
be the undirected graph on the vertex set {1, 2, . . . , n} such that i and j are adjacent if 
i < j ≤ mi, then G(m) is an indifference graph, and moreover that every indifference 
graph is isomorphic to some G(m). They then made the following conjecture. Let ω
denote the usual involution on symmetric functions [49, Section 7.6].

Conjecture 3. Let y be a regular semi-simple n ×n-matrix and let χm,d denote the char-
acter of the dot action on H2d(H (m, y)). Then chχm,d equals the coefficient of td in 
ωXG(m)(t).

This conjecture is intriguing because not only would it answer Tymoczko’s question, 
but it would also open up the possibility of proving the e-positivity conjecture by geo-
metric techniques.

The main result of the present paper is a proof of Conjecture 3 (Theorem 129). The 
linchpin of our proof is the following result (which is stated more formally later as 
Theorem 127).

Theorem 4. Let λ = (λ1, . . . , λ�) be a partition of n. Let s be a regular element with 
Jordan type λ, and let Sλ := Sλ1 × · · · ×Sλ�

be the corresponding Young subgroup of the 
symmetric group Sn. Consider the restriction of χm,d to Sλ. Then the dimension of the 
subspace fixed by Sλ equals the Betti number β2d of H (m, s).

What Theorem 4 does is to reduce the problem of computing the dot action on a 
regular semisimple Hessenberg variety to computing the cohomology of regular (but not 
necessarily semisimple) Hessenberg varieties. Fortunately, this latter task has already 
been largely carried out by Tymoczko [52], who has given a combinatorial description 
of the Betti numbers β2d for all Hessenberg varieties in type A. So with Theorem 4 in 
hand, all that remains to prove Conjecture 3 is to give a bijection between Tymoczko’s 
combinatorial description and the combinatorics of ωXG(m)(t). More precisely, let mλ

denote the monomial symmetric function associated to the partition λ. (See [49, Sec-
tion 7.3] or §2.2 below for monomial symmetric functions.) It is then a standard fact, 
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proved explicitly in Proposition 10 below, that the dimension of the subspace fixed by 
Sλ in a representation χ is the coefficient of mλ in the monomial symmetric function 
expansion of chχ. So the first step of our proof is to compute the coefficients cd,λ(m)
of tdmλ in the monomial symmetric function expansion of ωXG(m)(t). We do this with 
a generalization of a combinatorial reciprocity theorem of Chow (Theorem 29). This 
yields a description of cd,λ(m) that is almost, but not quite, identical to Tymoczko’s 
description of β2d; we show that the descriptions are equivalent by describing an explicit 
bijection between the two (Theorem 35). As a corollary (Corollary 36), we derive the 
fact that the Betti numbers of regular Hessenberg varieties form a palindromic sequence 
(even though the varieties are not smooth), because Shareshian and Wachs have proved 
that ωXG(m)(t) is palindromic.

The idea behind the proof of Theorem 4 is to show that Tymoczko’s dot action coin-
cides with the monodromy action for the family H rs(m) → grs of Hessenberg varieties 
over the space of regular semisimple n × n matrices (Theorem 125). This allows us to 
apply results from the theory of local systems and perverse sheaves to questions involving 
the dot action. In particular, the local invariant cycle theorem of Beilinson–Bernstein–
Deligne, which is stated in our context as Theorem 54, implies that there is a surjective 
map from the cohomology of a regular Hessenberg variety to the space of local invariants 
of the monodromy action near a regular element s in the space g of all n × n-matrices.

In Theorem 57, we show that the local invariant cycle map is an isomorphism if and 
only if the Betti numbers of the special fiber are palindromic in a suitable sense. This 
is a general result in that it holds for any projective morphism of smooth, complex, 
quasi-projective schemes. Then, in Theorem 126, we show that the local invariant cycles 
near a regular element s with Jordan type λ coincide with the Sλ invariants of the 
dot action on the regular semisimple Hessenberg variety. The latter fact is proved by a 
monodromy argument that uses the Kostant section.

Here is a brief description of the contents by section. Section 2 mainly fixes notation 
and gives preliminary results. Section 3 proves the combinatorial reciprocity theorem, 
Theorem 29, mentioned above. Section 4 proves Theorem 35 on the Betti numbers of 
regular Hessenberg varieties, and derives palindromicity as a corollary of a theorem of 
Shareshian and Wachs. Section 5 reviews the concept of local monodromy and the related 
notion of a good fundamental system of neighborhoods of a point in a topological space. 
Section 6 proves Theorem 57 on palindromicity and the local invariant cycle map. Along 
the way we review the proof of the local invariant cycle map from [5] and prove a slightly 
stronger version of it (Theorem 84) using the Kashiwara conjecture [26] (which, by the 
work of several authors, is now a theorem). We also prove Theorem 102, a more general 
version of our theorem on palindromicity and the local invariant cycle map. Section 7
proves Proposition 106 on the local monodromy of a Galois cover, which is applied later 
(in Lemma 112) to compute the local monodromy near a matrix s of type λ. Section 8
introduces the family H (m) → g of Hessenberg varieties. Finally, Section 9 shows that 
the monodromy action coincides with Tymoczko’s dot action, and uses this fact to prove 
Theorem 129, which is a restatement of Conjecture 3.
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1.1. Previous work

Prior to our work, Conjecture 3 was already known for some graphs G: a complete 
graph (trivial), a complete graph minus an edge [51], a complete graph minus a path 
of length three (Tymoczko, unpublished), and a path (by piecing together known re-
sults as explained in [44]). In a different direction, Abe, Harada, Horiguchi and Masuda 
(AHHM) proved that the multiplicity of the trivial representation is indeed as predicted 
by Conjecture 3. Hearing about this development and reading the last paragraph of the 
research announcement [2], which explains how to compute the multiplicity of the trivial 
representation in terms of the regular nilpotent Hessenberg variety, partially inspired 
our own proof. Full details of the work of AHHM appeared on the arXiv in [1] shortly 
after the first draft [7] of this paper. (Later, Abe, Horiguchi and Masuda computed the 
ring structure on regular semisimple Hessenberg varieties of type (m1, n, . . . , n) in a way 
that is compatible with the dot action and used this to deduce the structure of the 
cohomology as an Sn-representation in that case [3].)

In addition to the above work, very shortly after posting the first version of this 
paper on the arXiv, we learned of the series of papers by Chen, Vilonen and Xue (CVX) 
studying the motives of certain generalized Hessenberg varieties as well as the action of 
monodromy as they vary in families. (See, for example, [8].) The context of this work 
is different from ours because, roughly speaking, generalized Hessenberg varieties are 
much further from combinatorics than the Hessenberg varieties which appear in our 
work. However, to the best of our knowledge, CVX were the first to exploit the idea of 
studying a universal family of Hessenberg varieties using its monodromy.

1.2. Later work

Since the first version of this paper appeared on the arXiv there have been a few related 
developments that may be helpful for understanding this work. Firstly, Guay-Paquet 
posted a proof of Conjecture 3 which is completely independent of and, in many ways, 
complementary to our proof [21].

On the other hand, using her generalization [37] of Tymoczko’s computation of the 
Betti numbers of Hessenberg varieties in type A, Precup generalized our palindromicity 
results (Corollaries 36 and 37) to regular Hessenberg varieties for arbitrary complex semi-
simple Lie algebras [36]. As it happens, our proof of palindromicity is rather indirect, 
relying in an essential way on the chromatic quasisymmetric function and a palindromic-
ity theorem for that function proved by Shareshian and Wachs ([44, Corollary 4.6]). So, 
even in the type A case dealt with in this paper, Precup’s direct proof is an important 
contribution.

Finally, using some of the ideas in this paper, Harada and Precup have proved the 
e-positivity of the coefficients of XG(m)(t) for certain sequences m corresponding to 
abelian ideals in the Lie algebra of strictly upper-triangular matrices [23]. This generalizes 
Remark 4.4 to Theorem 4.3 of [50].
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2. Preliminaries

We fix some notation that will be used throughout the paper.

2.1. General notation

We let P denote the positive integers. If n ∈ P, we let [n] denote the set {1, 2, . . . , n}.
The vector m = (m1, . . . , mn−1) will always denote a Hessenberg function, by which 

we mean a sequence of positive integers satisfying

1. m1 ≤ m2 ≤ · · · ≤ mn−1 ≤ n, and
2. mi ≥ i for all i.

We also define

|m| :=
n−1∑
i=1

(mi − i). (5)

Given m, let P (m) denote the poset on the vertex set [n] whose order relation ≺ is given 
by

i ≺ j ⇐⇒ j ∈ {mi + 1,mi + 2, . . . , n}.

Such a poset is called a natural unit interval order. The incomparability graph G(m) is 
the undirected graph on the vertex set [n] in which i and j are adjacent if and only if i
and j are incomparable in P (m). In other words, if i < j then i and j are adjacent in 
G(m) if and only if j ≤ mi.

An integer partition λ = (λ1, λ2, . . . , λ�) of a positive integer n is a weakly decreasing 
sequence of positive integers that sum to n. Each λi is a part of λ, and the number 
of parts of λ is denoted by �(λ). The Young diagram of λ comprises � rows of boxes, 
left-justified, with λi boxes in the ith row from the top. We write λ 
 n to indicate that 
λ is a partition of n.

A composition α = (α1, α2, . . . , α�) of a positive integer n is a (not necessarily mono-
tonic) sequence of positive integers that sum to n. Each αi is a part of α, and the number 
of parts of α is denoted by �(α). It can be useful to visualize a composition of n by draw-
ing vertical bars in some subset of the n − 1 spaces between consecutive objects in a 
horizontal line of n objects; the parts are then the numbers of objects between successive 
bars. Motivated by the equivalence between compositions and sets of bars, we define:

• |α| for the number of bars of α (equivalently, |α| = �(α) − 1; CAUTION: |α| is not
the sum of the parts of α);

• α for the composition that has bars in precisely the positions where α does not have 
bars;
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• α ∪ β for the composition whose bars comprise the union of the bars of α and the 
bars of β; and

• α ≤ β if the bars of α are a subset of the bars of β.

We write Sn for the symmetric group. If Sn acts in the usual way on a set of size n, 
and α is a composition of n, then the Young subgroup Sα is the subgroup

Sα1 × Sα2 × · · · × Sα�
⊆ Sn (6)

comprising all the permutations that permute the first α1 elements among themselves, 
the next α2 elements among themselves, and so on.

An ordered (set) partition σ = (σ1, σ2, . . . , σ�) of a finite set S is a sequence of pairwise 
disjoint non-empty subsets of S whose union is S.

A sequencing q of a finite set S of cardinality n is a bijective map q : [n] → S. It is 
helpful to think of q as the sequence q(1), . . . , q(n) of elements of S.

By a digraph we mean a finite directed graph with no loops or multiple edges but that 
may have bidirected edges, i.e., it may contain both u → v and v → u simultaneously. 
If D is a digraph, we write D for the complement of D, i.e., the digraph with the same 
vertex set as D but with a directed edge u → v if and only if there does not exist a 
directed edge u → v in D.

2.2. Symmetric and quasisymmetric functions

We mostly follow the notation of Stanley [49] for symmetric and quasisymmetric 
functions. For convenience, we recall some of the notation here.

Let x = {x1, x2, x3, . . .} be a countable set of independent indeterminates. If 
κ : [n] → P is a map then we write xκ for the monomial xκ(1)xκ(2) · · ·xκ(n). A formal 
power series in Q[[x]] = Q[[x1, x2, . . .]] is a symmetric function if it is of bounded degree 
and invariant under any permutation of the variables x. We write Λ for the subring of 
Q[[x]] consisting of symmetric functions. Then Λ = ⊕n≥0Λn where Λn denotes the space 
of homogeneous symmetric functions of degree n.

If λ = (λ1, λ2, . . . , λ�) is an integer partition, then the monomial symmetric func-
tion mλ is the symmetric function of minimal support that contains the monomial 
xλ1

1 xλ2
2 · · ·xλ�

� . For example,

m2,1,1 = x2
1x2x3 + x2

2x1x3 + x2
3x1x2 + x2

1x3x4 + x2
3x1x4 + x2

4x1x3 + · · ·

There is an unfortunate conflict between our notation for monomial symmetric functions 
and our notation m for Hessenberg functions. It should be clear from context which is 
meant since the subscript of a monomial symmetric function is a partition, whereas the 
entries of m have integer subscripts.

Set hn :=
∑

λ�n mλ. Then, if λ is a partition, set hλ =
∏

hλi
. The hλ are called the 

complete homogeneous symmetric functions [49].
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Both {hλ}λ�n and {mλ}λ�n form bases of Λn. So we get a non-degenerate scalar 
product on Λn (and on Λ as well) by setting

〈mλ, hμ〉 = δλμ (Kronecker delta) (7)

as in [49, Equation 7.30]. This scalar product is symmetric [49, Proposition 7.9.1].
Write CFn for the space of Q-valued class functions on Sn, and set CF = ⊕n≥0CFn. 

The characteristic map ch : CFn → Λn is a function that sends class functions χ on the 
symmetric group to symmetric functions via the formula

chχ := 1
n!

∑
σ∈Sn

χ(σ) pcycletype(σ) (8)

where cycletype(σ) is the integer partition consisting of the cycle sizes of σ, listed with 
multiplicity in weakly decreasing order, and p denotes the power-sum symmetric function. 
It turns out that ch is an isomorphism of Q-vector spaces. Moreover, if we give CFn the 
standard inner product 〈·, ·〉 on class functions, then ch is an isometry [49, Proposition 
7.18.1]:

〈ch f, ch g〉 = 〈f, g〉. (9)

Note that all complex characters of finite dimensional representations of Sn are ac-
tually rational. In fact, even the representations themselves are realizable over Q [42, 
Example 1, page 103]. So it makes sense to work with the Q-valued class functions even 
if we are interested in complex representations of Sn.

As we explained in the introduction, the following standard fact is an important 
ingredient in our proof.

Proposition 10. Let ρ be a finite-dimensional complex representation of Sn, and let χ

be its character. Let chχ =
∑

λ cλmλ be the monomial symmetric function expansion of 
chχ. Then cλ equals the dimension of the subspace fixed by any Young subgroup Sλ ⊆ Sn. 
In particular, knowing cλ for all λ uniquely determines χ.

Proof. Let χ↓Sn

Sλ
denote the restriction of χ to Sλ, and let dλ be the dimension of the 

subspace fixed by Sλ. Then dλ equals the multiplicity of the trivial representation 1 in 
χ↓Sn

Sλ
, i.e., dλ = 〈1, χ↓Sn

Sλ
〉. By Frobenius reciprocity [40, Theorem 1.12.6],

〈1, χ↓Sn

Sλ
〉 = 〈1↑Sn

Sλ
, χ〉, (11)

where 1↑Sn

Sλ
is the induction of 1 from Sλ up to Sn. But ch 1↑Sn

Sλ
is just the homogeneous 

symmetric function hλ [49, Corollary 7.18.3]. The monomial symmetric functions and the 
complete homogeneous symmetric functions are dual bases, so dλ = 〈hλ, chχ〉 = cλ. �
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Let α = (α1, α2, . . . , α�) be a composition of n. The monomial quasisymmetric func-
tion Mα is the formal power series defined by

Mα :=
∑

i1<···<i�

xα1
i1

· · ·xα�
i�
, (12)

where the sum is over all strictly increasing sequences (i1, . . . , i�) of positive integers. In 
addition, we define a degree-zero monomial quasisymmetric function by M∅ := 1. A for-
mal power series is a quasisymmetric function if it is a finite rational linear combination 
of monomial quasisymmetric functions. We write Q for the algebra of quasisymmetric 
functions and Qn for the space of homogeneous quasisymmetric functions of degree n [49, 
Section 7.19]. Clearly, we have Q = ⊕Qn, and clearly Λ is a subalgebra of Q. Note that 
it is a proper subalgebra. (For example, M2,1 ∈ Q \ Λ.)

The fundamental quasisymmetric function Fα of Gessel [18] is defined by

Fα :=
∑
β≥α

Mβ , (13)

and again we set F∅ := 1. By inclusion–exclusion,

Mα =
∑
β≥α

(−1)|β|−|α|Fβ . (14)

2.3. Hessenberg varieties

As mentioned in the introduction, if m is a Hessenberg function and s : Cn → Cn is 
a linear transformation, then we define the Hessenberg variety (of type A, which is the 
only type that we consider in this paper) by

H (m, s) := {complete flags F0 ⊆ F1 ⊆ · · · ⊆ Fn : sFi ⊆ Fmi
for 1 ≤ i < n}.

If the Jordan blocks of s have distinct eigenvalues then we say that H (m, s) is regular, 
if s is diagonalizable then we say that H (m, s) is semisimple, and if s is nilpotent then 
we say that H (m, s) is nilpotent. Since H (m, s) can equal H (m, s′) for s �= s′ (e.g., if 
s′−s is a constant), this is a (very minor) abuse of terminology. We adopt the convention 
of writing y for s in the regular semisimple case.

Remark 15. The Hessenberg varieties are defined on affine open subsets of the complete 
flag variety by fairly obvious equations. So they are closed subschemes of the complete 
flag variety in a natural way. In general, they are not irreducible. For example, the reg-
ular semisimple Hessenberg variety corresponding to the function � = (1, 2, . . . , n − 1)
is a collection of n! distinct points. They are also not always reduced. For example, 
when n = 2 and m = � as above, the regular nilpotent Hessenberg variety is defined by 
the equation x2 = 0 in A1. (See [4, Theorem 7.6] for a much more general statement.) 
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Hartshorne defines an abstract variety to be an integral separated scheme of finite type 
over an algebraically closed field [24, p. 105]. So, perhaps, it is unfortunate that Hes-
senberg varieties are called varieties as they are not, in general, integral. However, it 
happens that we are only interested in the Betti cohomology of these varieties in this 
paper. So the non-reduced structure will not play a role. Moreover, we will reserve the 
term “Hessenberg scheme” for the families discussed in §8. So we will stick with tradition 
and continue to call the schemes H (m, s) Hessenberg varieties.

However, we ask the reader to regard “Hessenberg variety” as one word. The term 
variety by itself will still refer to an integral, separated scheme of finite type over an 
algebraically closed field.

3. The chromatic quasisymmetric function

Given a graph G whose vertex set is a subset of P, Shareshian and Wachs [44] define 
the chromatic quasisymmetric function XG(x, t) of G.

Definition 16. Let G be a graph whose vertex set V is a finite subset of P. Let C(G)
denote the set of all proper colorings of G, i.e., the set of all maps κ : V → P such that 
adjacent vertices are always mapped to distinct positive integers. Then

XG(x, t) :=
∑

κ∈C(G)

tasc κ xκ, (17)

where

ascκ := |{{u, v} : {u, v} is an edge of G and u < v and κ(u) < κ(v)}| .

As Shareshian and Wachs point out, it is obvious that XG(x, t) ∈ Q[t]. On the other 
hand, while the proof of the following result, [44, Theorem 4.5], is not long, the result 
itself is not at all obvious:

Theorem 18 (Shareshian–Wachs). Suppose G = G(m) is the incomparability graph of a 
natural unit interval order. Then XG(x, t) ∈ Λ[t].

For brevity, we sometimes write XG(t) for XG(x, t). It will be convenient for us to 
restate the definition of XG(t) in terms of monomial quasisymmetric functions.

Proposition 19. Let G be a graph whose vertex set V is a finite subset of P. Then

XG(x, t) =
∑

σ=(σ1,...,σ�)

tasc σ M|σ1|,...,|σ�|, (20)

where the sum is over all ordered partitions σ of V such that every σi is a stable set of G
(i.e., there is no edge between any two vertices of σi), and ascσ is the number of edges 
{u, v} of G such that u < v and v appears in a later part of σ than u does.
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Proof. Given a coloring κ ∈ C(G), let σi be the set of vertices that are assigned the ith 
smallest color. Then it is immediate that

1. σ = (σ1, . . . , σ�) is an ordered partition of the vertex set of G;
2. σi is a stable set for all i; and
3. ascκ = ascσ.

It is easy to see that if we sum xκ over all κ ∈ C(G) that yield the same ordered 
partition σ, then we obtain the monomial quasisymmetric function Mα where the ith 
part αi of the composition α is the cardinality |σi| of σi. The proposition follows. �

We remark that if we set t = 1 then the chromatic quasisymmetric function specializes 
to the chromatic symmetric function XG of Stanley [48].

3.1. Reciprocity

If f is a symmetric function, then a “reciprocity theorem,” loosely speaking, is a result 
that gives a combinatorial interpretation of ωf , where ω is a well-known involution 
on symmetric functions [49, Section 7.6]. Since Conjecture 3 concerns ωXG(t) rather 
than XG(t) itself, one might expect a reciprocity theorem to be relevant. This is indeed 
the case. Specifically, the coefficients of the monomial symmetric function expansion of 
ωXG(t) play an important role in our arguments, so we now introduce some notation for 
them.

Definition 21. Given a Hessenberg function m, we let cd,λ(m) be the coefficients defined 
by the following expansion of ωXG(m)(x, t) in terms of monomial symmetric functions:

ωXG(m)(x, t) =
∑
d

td
∑
λ

cd,λ(m)mλ. (22)

It is possible to derive a combinatorial interpretation for cd,λ(m) by using the reci-
procity theorem of Shareshian and Wachs [44, Theorem 3.1]. However, as we now explain, 
we shall take a different route.

Our starting point is the observation that Chow [9, Theorem 1] has proved a reci-
procity theorem for a symmetric function invariant of a digraph called the path-cycle 
symmetric function ΞD. There is a certain precise sense in which ΞD is equivalent to 
Stanley’s XG in the case of posets, but the nice thing about reciprocity for ΞD is that 
it naturally yields a combinatorial interpretation for the coefficients of the monomial 
symmetric function expansion of ωΞD, which is not immediately evident from Stanley’s 
reciprocity theorem [48, Theorem 4.2] for XG. This fact suggests the following plan: Gen-
eralize ΞD to ΞD(t) (just as Shareshian and Wachs have generalized XG to XG(t)), prove 
reciprocity for ΞD(t), and read off the desired combinatorial interpretation of cd,λ(m). 
This plan works, and we now show how to carry it out.
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We define the path quasisymmetric function ΞD(x, t) of a digraph D; as its name 
suggests, it enumerates paths only and not cycles (since for our present purposes we 
do not care about enumerating cycles), and it has a definition analogous to that of the 
chromatic quasisymmetric function.

Definition 23. Let D be a digraph whose vertex set V is a subset of P. An ordered path 
cover of D is an ordered pair (q, β) such that q is a sequencing of V , β = (β1, . . . , β�) is 
a composition of n := |V |, and

q(βi−1 + 1) → q(βi−1 + 2) → · · · → q(βi)

is a directed path in D for all i ∈ [�] (adopting the convention that β0 = 0). Define

ΞD(x, t) :=
∑
(q,β)

tasc q Mβ (24)

where the sum is over all ordered path covers (q, β) of D and asc q is the number of pairs 
{u, v} of vertices of D such that

1. either u → v and v → u are both edges of D or neither one is,
2. u < v, and
3. v appears later in the sequencing q than u does.

For brevity, we sometimes write ΞD(t) for ΞD(x, t). The chromatic quasisymmetric 
function and the path quasisymmetric function coincide for posets. More precisely, we 
have the following proposition.

Proposition 25. Let P be a poset whose vertex set V is a finite subset of P. Let D(P ) be 
the digraph on V that has an edge u → v if and only if v ≺ u in P . Let G(P ) be the 
incomparability graph of P . Then ΞD(P )(x, t) = XG(P )(x, t).

Proof (sketch). The proof is mostly a routine verification that the two definitions coin-
cide in this special case. Only a few points require some attention. First, if S is a stable 
subset in G(P ), then S is a totally ordered subset of P , and hence there is exactly one 
directed path in D(P ) through the vertices of S. Hence ordered partitions σ of V such 
that every σi is a stable set of G(P ) are in bijective correspondence with ordered path 
covers (q, α) of D(P ). Second, because P is a poset, it is not possible for u ≺ v and v ≺ u

simultaneously, so the condition that “either u → v and v → u are both edges of D(P )
or neither one is” is equivalent to adjacency in G(P ). Third, one might worry that asc q
counts some pairs {u, v} where v appears later in the sequencing but in the same path
while ascσ counts only pairs from different parts, but in fact this cannot happen because 
vertices in the same path are part of the same totally ordered subset of P and thus have 
a directed edge between them in exactly one direction. �
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Although we are ultimately interested in expansions in terms of monomial symmetric
functions, it turns out that the proofs are more naturally stated in terms of monomial 
quasisymmetric functions. So we need to describe the action of ω on monomial quasisym-
metric functions.

Definition 26. The linear map ω on quasisymmetric functions is defined by the following 
action on monomial quasisymmetric functions.

ωMβ := (−1)|β|
∑
α≤β

Mα. (27)

It is known (e.g., see the proof of [48, Theorem 4.2]) that the usual map ω is character-
ized by the equation ωFα = Fα, so the following proposition confirms that our definition 
of ω coincides with the standard one.

Proposition 28. ωFα = Fα.

Proof. Applying ω to Equation (13) and invoking Equation (27) yields

ωFα =
∑
β≥α

ωMβ =
∑
β≥α

(−1)|β|
∑
γ≤β

Mγ .

So the coefficient of Mγ in ωFα is

∑
β:(β ≥ α and β ≥ γ)

(−1)|β| =
∑

β≥α∪γ

(−1)|β| =
{

1, if α ∪ γ = ∅;
0, otherwise.

But α ∪ γ = ∅ is equivalent to γ ≥ α, so ωFα =
∑

γ≥α Mγ = Fα. �
We are ready for the reciprocity theorem for ΞD(t).

Theorem 29. Let D be a digraph whose vertex set V is a subset of P. Then ωΞD(x, t) =
ΞD(x, t).

Proof. Let us apply ω to both sides of Equation (24) and invoke the definition of ω.

ωΞD(x, t) =
∑
(q,β)

tasc qωMβ =
∑
(q,β)

tasc q(−1)|β|
∑
α≤β

Mα.

Now we interchange the order of summation; i.e., we want to compute the coefficient of 
Mα in ωΞD(t). This involves a sum over all ordered path covers (q, β) such that β ≥ α. 
The summands involving a fixed sequencing q are

∑
tasc q(−1)|β| = tasc q

∑
(−1)|β|. (30)
β≥α β≥α
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Now note that if (q, α) is an ordered path cover and β is any composition such that β ≥ α, 
then (q, β) is also an ordered path cover, because deleting an edge from a directed path 
simply subdivides it into two smaller directed paths. Therefore the alternating sum in 
Equation (30) is zero unless the only β ≥ α for which (q, β) is an ordered path cover 
is the maximal composition (βi = 1 for all i), in which case the alternating sum equals 
one. But this condition is equivalent to the condition that there is no directed edge in D

between any consecutive vertices in the sequencing q that are in the same segment of α, 
i.e., that (q, α) is an ordered path cover of D. Finally, note that the definition of asc q is 
invariant under taking complements of the digraph. The theorem follows. �

Theorem 29 gives us a nice combinatorial interpretation of cd,λ(m).

Corollary 31. Let m be a Hessenberg function, and let D(m) denote the digraph on [n]
that has an edge u → v if and only if v ≺ u in P . Then for any composition α whose 
parts are a permutation of the parts of λ, cd,λ(m) equals the number of ordered path 
covers (q, α) of D(m) with asc q = d.

Proof. By Proposition 25, we know that XG(m)(t) = ΞD(m)(t). By Theorem 18, XG(m)(t)
is actually a symmetric function (whose coefficients are polynomials in t). Therefore 
ωXG(m)(t) = ωΞD(m)(t) is also a symmetric function, and the coefficient of tdmλ equals 
the coefficient of tdMα for any composition α whose parts are a permutation of the parts 
of λ. The result then follows from Theorem 29. �
Corollary 32. For a sequencing q of a digraph whose vertex set is a subset of P, let the 
definition of des q be the same as the definition of asc q except with “u < v” replaced by 
“v < u.” then Corollary 31 holds with des q in place of asc q.

Proof. For a proper coloring κ of a graph whose vertex set is a subset of P, let the 
definition of desκ be the same as the definition of ascκ except with “κ(u) < κ(v)” 
replaced by “κ(u) > κ(v).” Shareshian and Wachs prove [44, Corollary 2.7] that the 
value of XG(t) is unchanged if “asc” is replaced by “des.” It is readily checked that 
the proofs of Proposition 25 and Theorem 29 go through if “asc” is replaced by “des” 
everywhere. �

As we remarked before, Corollaries 31 and 32 can be derived from Shareshian–Wachs 
[44, Theorem 3.1], but we have taken our approach because we believe that Theorem 29
is of independent interest.

4. Betti numbers of regular Hessenberg varieties

The main result of this section is that if H (m, s) is a regular Hessenberg variety and 
s has Jordan type λ, then its Betti number β2d equals cd,λ(m).
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Tymoczko [52, Theorem 7.1] has already done a lot of the work needed to prove this 
result, by showing that Hessenberg varieties admit a paving (or cellular decomposition) 
by affine spaces, and obtaining a combinatorial interpretation of the dimensions of the 
cells. For regular Hessenberg varieties, Tymoczko’s theorem simplifies as follows. If λ is 
an integer partition of n then by a tableau of shape λ we mean any filling of the boxes 
of the Young diagram of λ with one copy each of the numbers 1, 2, . . . , n.

Theorem 33 (Tymoczko). Let H (m, s) be a regular Hessenberg variety and let the par-
tition λ encode the sizes of the Jordan blocks of s. Then H (m, s) is paved by affines. 
The nonempty cells are in bijection with tableaux T of shape λ with the property that 
k appears in the box immediately to the left of j only if k ≤ mj. The dimension of a 
nonempty cell is the sum of:

1. the number of pairs i, k in T such that
(a) i and k are in the same row,
(b) i appears somewhere to the left of k,
(c) k < i, and
(d) if j is in the box immediately to the right of k then i ≤ mj;

2. the number of pairs i, k in T such that
(a) i appears in a lower row than k, and
(b) k < i ≤ mk.

It remains for us to establish a correspondence between the combinatorics of The-
orem 33 and the combinatorics of ωXG(m)(t), or equivalently (by the results of the 
previous section) the combinatorics of ordered path covers.

Definition 34. If X is a topological space and i is an integer, we write βi or βi(X) for 
the ith Betti number dim Hi(X, C) of X.

Theorem 35. Let H (m, s) be a regular Hessenberg variety and let the Jordan type of s
be λ. Then the Betti number β2d of H (m, s) equals cd,λ(m), and βi = 0 for i odd.

Proof. As Tymoczko [52, Proposition 2.2] mentions, it is well known that if we have 
a paving by affines, then β2d is just the number of nonempty cells with dimension d. 
Furthermore, βi = 0 for i odd [52, Corollary 6.2]. On the other hand, by Corollaries 31
and 32, we know that cd,λ(m) is the number of ordered path covers (q, α) of D(m) with 
des q = d, where we may take the parts of the composition α to be any permutation of the 
parts of λ. So it suffices to show, firstly, that there is a bijection between nonempty cells 
and ordered path covers (q, α), and secondly, that under this bijection, the dimension of 
the nonempty cell is equal to des q.

First we should specify α. If λ has � parts λ1, . . . , λ�, we set αi := λ�+1−i. That is, 
the parts of α are the parts of λ in reverse order.
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Instead of nonempty cells, we use the tableaux T of Theorem 33 to describe our 
bijection. Given an ordered path cover (q, α) of D(m), take the elements of the ith path

q(αi−1 + 1) → q(αi−1 + 2) → · · · → q(αi)

and place them from left to right in the ith row (from the bottom) of T . We need to 
verify that Tymoczko’s condition k ≤ mj is equivalent to the condition that k → j is 
a directed edge in D(m). By definition, there is a directed edge k → j in D(m) if and 
only if there is not a directed edge k → j in D(m), i.e., if and only if either k and j are 
incomparable in P (m), or k ≺ j in P (m). The only way this property can fail is if j ≺ k

in P (m), i.e., if k > mj . So indeed the conditions are equivalent.
Let us call a pair i, k satisfying the conditions in Theorem 33 a “T-inversion.” Using 

the above bijection, we can think of T-inversions as certain pairs i, k in an ordered path 
cover (q, λ). The statistic des can also be thought of as counting certain pairs i, k of 
(q, λ), namely those satisfying

1. either i → k and k → i are both edges of D(m) or neither is,
2. i > k, and
3. k appears later in the sequencing q than i does.

Call such a pair an “SW-inversion.” We claim that for any ordered path cover, the number 
of T-inversions equals the number of SW-inversions. This will prove the theorem.

First let us note that the condition k < i implies that k ≤ mi (since m is a Hessenberg 
function) and therefore, by the argument we gave above, k → i is an edge of D(m). That 
is, if k < i then it is not possible for neither i → k nor k → i to be an edge of D(m), so 
in fact both must be, and in particular we must have i → k, or in other words i ≤ mk. 
Therefore an SW-inversion can be redefined as a pair i, k such that

1. i appears earlier in the sequencing q than k does, and
2. k < i ≤ mk.

It is now immediate that if i and k are in different paths then i, k is a T-inversion if and 
only if i, k is an SW-inversion, because by construction, i appearing in an earlier path 
than k is equivalent to appearing in a lower row than k in the tableau.

If i and k are in the same path then the situation is more complicated because 
T-inversions and SW-inversions do not necessarily coincide. However, we now give a 
bijection from the set of SW-inversions to the set of T-inversions, thereby showing that 
they are equinumerous.

Given an SW-inversion i, k, let k1, k2, . . . , kr denote the remaining elements, in order, 
that succeed k in the path. For convenience, set k0 := k and kr+1 := ∞. Now let j be 
the smallest number such that i ≤ mkj+1 . Then we claim that i, kj is a T-inversion, and 
that this is a bijection.
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First let us verify that i, kj is a T-inversion. Condition 1(d) is satisfied almost by 
definition because what the construction is doing is scanning to the right until condition 
1(d) is satisfied, and it will always succeed, since we just take j = r in the worst case. So 
we just need to verify that i > kj . If j = 0 then we are done, because (i, k0) = (i, k) is 
an SW-inversion by assumption, and in particular i > k. Otherwise, by minimality of j, 
we know that i > mkj

≥ kj .
Thus the construction scans rightwards from k until the first T-inversion i, kj is 

reached.
To see that this map is injective, observe that by minimality of j, we have i > mkj′ for 

every 0 ≤ j′ ≤ j, so (i, kj′) is not an SW-inversion. Thus, as we scan rightwards from k

in search of the first T-inversion i, kj, we do not encounter any other SW-inversions en 
route. If more than one SW-inversion were mapped to the same T-inversion, then the 
leftmost one would have to cross over the other ones en route.

To see that the map is surjective, we can define an inverse map, that scans leftwards
from a T-inversion until it finds a pair that satisfies i ≤ mk. Such a scan always succeeds 
because in the worst case it ends up at the successor i′ of i, and i ≤ mi′ because they 
are consecutive elements of a path. Then by minimality, if we arrive at a pair i, k with 
k′ being the successor of k, we must have k > mk′ ≥ k, so what we have arrived at is 
indeed an SW-inversion. �

Let us remark that our proof shows that at least in the case of regular Hessenberg 
varieties, the two cases of Theorem 33 can be unified, namely that the dimension is just 
the number of pairs i, k such i appears to the left of k or in a lower row than k, and 
k < i ≤ mk.

Corollary 36. Let H (m, s) be a regular Hessenberg variety with s of type λ as in Theo-
rem 35. Set

q = qH (m,s) :=
∑
i∈Z

βit
i−|m|.

Then q(t) = q(t−1).

Proof. First note that |m| (as defined in Equation (5)) is the number |E| of edges in the 
incomparability graph G = G(m) of P (m). This follows directly from the description of 
G(m) given in §2.1. By [44, Corollary 4.6], XG(x, t) is palindromic. More precisely, we 
have XG(x, t) = t|m|XG(x, t−1). Therefore, for each partition λ, we have∑

d

cd,λ(m)td = t|m|
∑
d

cd,λt
−d.

So

q(t) =
∑

βit
i−|m| =

∑
cd,λ(m)t2d−|m|
i d
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= t−|m|
∑
d

cd,λ(m)t2d = t−|m|t2|m|
∑
d

cd,λ(m)t−2d

= t|m|
∑
d

cd,λ(m)t−2d =
∑
d

cd,λ(m)t|m|−2d

= q(t−1). �
Corollary 37. Suppose s is a regular matrix. Then, for all i ∈ Z, we have βi = β2|m|−i. 
Consequently, dim H (m, s) = |m|.

Proof. The first assertion follows (after a few algebraic manipulations) from Corollary 36. 
It is well known that, for a complex, projective variety X, we have dimX = max{i :
H2i(X, C) �= 0}. So, the second assertion is a direct consequence of the first. �
5. Local monodromy and local fundamental groups

5.1. Local systems

In this subsection, we review some terminology concerning local systems. This material 
is standard (going back in some ways to Riemann [39]), but we realized that including it 
might help to make our paper more broadly accessible. Moreover, since we are making 
considerable use of local systems, it seems appropriate to be as precise as possible about 
what they are. To have a specific (modern) reference, we follow the dictionary on page 3 
of Deligne’s book on differential equations [12].

By a locally constant sheaf on a topological space X, we simply mean a sheaf of sets 
F which is locally isomorphic to a constant sheaf of sets. In other words, each x ∈ X has 
an open neighborhood U such that the restriction of F to U is constant. We can consider 
the class of locally constant sheaves as a full subcategory of the class of all sheaves. On 
the other hand, it is well known and easy to see that the category of locally constant 
sheaves on X is equivalent to the category of covering spaces of X (cf. [54, Definition 
and Proposition 3.41]).

By a local system on a topological space X, we mean a sheaf of finite dimensional 
C-vector spaces F on X which is locally isomorphic to a constant sheaf of C-vector 
spaces. Note that this definition differs slightly from Deligne’s in [12] in that Deligne 
requires the dimension of the stalks to be constant. However, this is guaranteed by our 
definition if X is connected, which is the most important case, and the added flexibility 
is useful.

For any ring R, we could equally well define R-local systems by replacing C with R
(and finite dimensional vector spaces by finitely generated R-modules). But, to avoid 
cluttering up the notation, we refer the reader to [15] for this notion. (For most of the 
paper we only use C-local systems; however, we do use Z-local systems in §8 and A-local 
systems for A a polynomial ring in §9.)
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We view the class of local systems as a full subcategory of the category of sheaves 
of C-vector spaces on X. Clearly, there is a forgetful functor from the category of local 
systems on X to the category of locally constant sheaves on X (by forgetting the C-vector 
space structures).

Suppose now that X is non-empty. Pick a point x0 ∈ X, which we call a “basepoint.” 
Then the fundamental group π1(X, x0) acts on the fiber Fx0 of any locally constant sheaf 
F giving us a homomorphism ρ : π1(X, x0) → AutFx0 . If F is a local system then ρ
respects the C-vector space structure giving us a group homomorphism

ρ : π1(X,x0) → GL(Fx0) (38)

which is usually called the monodromy representation. The fundamental fact about local 
systems and locally constant sheaves is then the following standard result (which can be 
found on pages 3 and 4 of [12]).

Theorem 39. Suppose that X is a locally path connected, locally simply connected, con-
nected topological space equipped with a point x0. Then the functor F � Fx0 induces 
an equivalence from the category of locally constant sheaves (resp. local systems) on X
to the category of π1(X, x0)-sets (resp. finite dimensional complex representations of 
π1(X, x0)).

Sketch. Since Deligne does not actually prove Theorem 39 in [12], we give a sketch.
The main point is that, under the assumption that X is locally path connected, locally 

simply connected and connected, there exists a universal cover X̃ of X. For a proof, see 
the discussion starting on page 64 of Hatcher’s book [25], where X̃ is constructed as 
a space of homotopy classes of paths starting from the point x0. Moreover π1(X, x0)
acts freely on X̃ with quotient X. Given a π1(X, x0)-set E (resp. a finite dimensional 
π1(X, x0)-representation E), we consider the quotient FE := (X̃ × E)/π1(X, x0) where 
the fundamental group acts on the product by γ(x̃, e) = (γx̃, γ−1e). That is, we form 
the Borel construction, where here E is given the discrete topology.

The space FE is naturally a covering space of X via the map FE → X induced by 
projection on the first factor in the product X̃ × E. If E is a C-vector space, the sheaf 
corresponding to FE has the natural structure of a sheaf of C-vector spaces. We leave 
the rest of the verification to the reader. �
Corollary 40. Suppose F is a local system on a topological space X as in Theorem 39. 
Then there is a natural isomorphism H0(X, F) = Fπ1(X,x0)

x0 .

Proof. Write CX for the constant local system on X, which corresponds to the trivial 
representation of π1(X, x0). Then we have Fπ1(X,x0) = Hom(CX , F) by Theorem 39. 
But it is easily seen that the natural map Hom(CX , F) → F(X) is an isomorphism. �
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Remark 41. By Proposition A.4 on page 531 of Hatcher’s book [25], CW complexes are 
locally contractible. It follows that if X is a CW complex and Y is a closed subcomplex, 
then X \ Y is locally contractible. In particular, if X \ Y is connected then it satisfies 
the hypotheses of Theorem 39.

5.2. Local homotopy type

In this subsection we review the definition and some of the main properties of local 
homotopy type. This material is probably well known to some readers, but we feel that 
it will be convenient to review it. Our treatment follows the book by Looijenga [30], a 
paper by Kumar [28] and another paper by Prill [38].

Suppose X is a topological space and x ∈ X. A fundamental system of neighborhoods
U of x is a system of open neighborhoods such that any open neighborhood V of x
contains a U ∈ U .

The following Lemma is [28, Lemma 1.1].

Lemma 42. Suppose X is a CW complex, x ∈ X and Y is a closed subcomplex of X
containing x. Then there exists a fundamental system {U}U∈U of open neighborhoods of 
x in X such that the following condition is satisfied:

For any U, V ∈ U with V ⊂ U, the inclusion V \ Y ↪→ U \ Y
is a homotopy equivalence.

(43)

A system of neighborhoods U as in Lemma 42 is called a good fundamental system 
of neighborhoods relative to Y .

Lemma 44. Suppose C is a category and

A
f→ B

g→ C
h→ D

is a sequence of morphisms. Assume that g ◦ f and h ◦ g are isomorphisms. Then f, g
and h are all isomorphisms.

Proof. Easy exercise. �
We have adapted the proof of the following Proposition from Looijenga’s [30, p. 114], 

and Prill’s Proposition 2 [38].

Proposition 45. Suppose {Uα}α∈I is a non-empty collection of good fundamental systems 
of neighborhoods as in Lemma 42. Then so is U := ∪α∈IUα. Consequently, the union 
of all good fundamental systems of neighborhoods is itself a good fundamental system of 
neighborhoods.
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Proof. Take U ∈ Uα and V ∈ Uβ with V ⊂ U . We can find U ′ ∈ Uα such that U ′ ⊂ V , 
and V ′ ∈ Uβ such that V ′ ⊂ U ′. Then apply Lemma 44 to the sequence of inclusions

V ′ \ Y → U ′ \ Y → V \ Y → U \ Y.

This shows that the inclusion V \ Y → U \ Y is a homotopy equivalence. �
Definition 46. Suppose X is a CW complex and Y is a closed subcomplex containing a 
point x. We say an open neighborhood U of x is good relative to Y if U is an element of 
a good fundamental system of neighborhoods. The local homotopy type of X \ Y at x is 
the homotopy type of U \ Y where U is any good neighborhood.

If A and B are objects in any category C, we say that A is a retract of B if there are 
morphisms i : A → B and r : B → A such that r ◦ i = idA. In other words, we follow 
Mac Lane’s terminology in [31, p. 19].

Suppose U is a good neighborhood of x and W is an arbitrary (not necessarily good) 
open neighborhood of x contained in U . Then we can find a good neighborhood V such 
that V ⊂ W . Since V is good, Proposition 45 shows that the composition

V \ Y → W \ Y → U \ Y

is a homotopy equivalence. In other words, the local homotopy type of X \ Y at x is a 
retract of the homotopy type of W \ Y .

Now suppose X is an analytic space, Y is a Zariski closed subspace and x ∈ Y . We can 
find an analytic open neighborhood W of x in X such that W has the topological struc-
ture of a CW complex with W ∩Y a subcomplex. (See, for example, [29].) Consequently, 
there exist good neighborhoods of x in X relative to Y .

The following fact is certainly well known (see, e.g., [38, Corollary 1]), but we give a 
proof because it is short.

Fact 47. Suppose X is a complex manifold and Y is a closed, nowhere dense, analytic 
subspace of X containing a point x. Then U \ Y is non-empty and connected for any 
good neighborhood of x.

Proof. Let U be a good neighborhood of x and let V be any connected neighborhood of x
contained in U . Then V \Y is connected (for example, by the Criterion for Connectedness 
on page 133 of [19]). It is also non-empty. But the homotopy type of U \ Y is a retract 
of the homotopy type of V \ Y . So U \ Y is connected and non-empty as well. �

If X is smooth at x, we can find a contractible good neighborhood U of x. (See [38].) 
In fact, we can take a sufficiently small ball as in the following theorem, which follows 
from Theorem 5.1 of Dimca’s [13].
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Theorem 48. Suppose X is a complex manifold of dimension n at x and Y is a closed 
analytic subspace of X containing x. For each positive real number r, write Br for the 
ball of radius r centered at 0 in Cn. Then there exists a good neighborhood U of x relative 
to Y and a biholomorphism ϕ : U → B1 such that the following holds: For each r ∈ (0, 1), 
ϕ−1Br is a good neighborhood of x.

5.3. Local fundamental group

Fact 47 leads to the following definition.

Definition 49. Suppose X is a complex manifold, and Y is a closed, nowhere dense, 
analytic subspace of X containing a point x. Then the local fundamental group of X \Y
at x is the isomorphism class of the group π1(U \Y, p) where U is any good neighborhood 
of x (with respect to Y ) and p ∈ U \ Y .

Since the smoothness of X in the Definition 49 (together with Fact 47) implies that 
U \ Y is connected, the isomorphism class of π1(U \ Y, p) is indeed well-defined. But, 
since we have not given a way to fix a base point, it is only defined up to a non-canonical 
isomorphism.

On the other hand, suppose X as in Definition 49 is connected. Pick any point q ∈
X \ Y . Given a good neighborhood U of x relative to Y , we can find a point p ∈ U \ Y
and a path γ from p to q. From this, we get a group homomorphism

ϕγ : π1(U \ Y, p) → π1(X \ Y, q).

Changing γ has the effect of conjugating ϕγ by an element of π1(X \ Y, q). So the 
conjugacy class of the subgroup ϕγ(π1(U \ Y, p)) is independent of γ.

Proposition 50. Suppose f : X ′ → X is a morphism of complex analytic spaces admit-
ting a section ε : X → X ′. Let Y be a closed, nowhere dense, analytic subspace of X
containing x ∈ X, and set Y ′ := f−1Y . Then the local homotopy type of X \ Y at x is 
a retract of the local homotopy type of X ′ \ Y ′ at ε(x). In particular, if X and X ′ are 
complex manifolds, then the local fundamental group of X \ Y at x is a retract of the 
local fundamental group of X ′ \ Y ′ at ε(x).

Proof. Pick a good neighborhood U of x. Then find a good neighborhood V of ε(x)
contained in f−1U . Finally, find a good neighborhood U ′ of x contained in ε−1V . We 
then have a composition

U ′ \ Y ε→ V \ Y ′ f→ U \ Y

which is a homotopy equivalence. The result follows. �
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5.4. Local systems and local invariant cycles

Suppose X is a CW complex containing a closed subcomplex Y which contains a 
point x, and L is a local system of complex vector spaces on X \ Y . For any two good 
neighborhoods U1 and U2 of x and any integer k, the sheaf cohomology groups Hk(Ui \
Y, L), i = 1, 2 are canonically isomorphic. To see this, take a good neighborhood V ⊂
U1∩U2, and note that the restriction maps Hk(Ui\Y, L) → Hk(V \Y, L) are isomorphisms. 
So we write Hk(x, L) for the group Hk(U \Y, L) where U is any good neighborhood of x. 
It is isomorphic to the group colim Hk(U \ Y, L) where the colimit is taken over all open 
neighborhoods of x. The group H0(x, L) is called the space of local invariants.

If X is a complex manifold and Y is a nowhere dense analytic subspace, then U \ Y
is connected for any good neighborhood of x relative to Y . Pick a basepoint p ∈ U \ Y . 
Then the data of the local system L defines an action of π1(U \ Y, p) on the fiber Lp

at p. Moreover, via Corollary 40, the space of local invariants is given by the invariants 
of the action:

H0(x,L) = Lπ1(U\Y,p)
p . (51)

Corollary 52. Suppose X is smooth and B is any connected neighborhood of x contained 
in a good neighborhood U . Then H0(x, L) = H0(B \ Y, L).

Proof. Pick a point b ∈ B \ Y . We have H0(B \ Y, L) = Lπ1(B\Y,b)
b . But π1(U \ Y, b) is a 

retract of π1(B \ Y, b). So Lπ1(B\Y,b)
b = Lπ1(U\Y,b)

b = H0(x, L). �
We can also describe the space Hk(x, L) sheaf theoretically. Write j : X \ Y → X for 

the inclusion. Then the group Hk(x, L) is naturally isomorphic to (Rkj∗L)x; i.e., to the 
stalk at x of the kth higher direct image Rkj∗L.

The following is certainly well known, but we sketch a short proof.

Lemma 53. Suppose X is a connected complex manifold and Y is a nowhere dense closed 
analytic subspace. Then, for p ∈ X \ Y , the homomorphism π1(X \ Y, p) → π1(X, p) is 
surjective.

Sketch. Let π : X̃ → X denote the universal cover of X. Then π−1(X \Y ) = X̃ \π−1(Y )
is connected because X̃ is a complex manifold and π−1(Y ) is a closed, nowhere dense, 
complex analytic subspace [19, p. 133]. It follows that π1(X \ Y, p) acts transitively on 
π−1(p). If we pick a point p̃ in π−1(p), we get an identification of π−1(p) with π1(X, p). 
Moreover, the action of π1(X, p) on π−1(p) corresponds to the left regular action of 
π1(X, p) on itself. From this, we see that the action of π1(X \ Y, p) on π1(X, p) induced 
by the group homomorphism π1(X \ Y, p) → π1(X, p) is transitive. Therefore the map 
of fundamental groups is surjective. �
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Now, suppose X is a connected, complex manifold, Y is a closed, nowhere dense, 
analytic subspace, L is a local system on X \ Y , x ∈ Y and q ∈ X \ Y . The monodromy 
group of L is the image M of the group homomorphism π1(X \ Y, q) → GL(Lq). By 
Lemma 53, M is unchanged if we replace Y by a larger closed, nowhere dense analytic 
subset Y ′. That is, if Y ′ contains Y (but not q), then the image of the homomorphism 
π1(X \ Y ′, q) is also M .

Suppose U is a good fundamental neighborhood of x relative to Y and p ∈ U \ Y . 
Then the local monodromy group of L at y is the image H = H(y) of the composition

π1(U \ Y, p) ϕγ→ π1(X \ Y, q) → M

where γ is a path from p to q. It depends on the choice of U , γ and p, but only up to 
conjugacy by an element of M . Like M itself, H is independent of Y in the sense that 
enlarging Y does not change H.

6. Palindromic Betti numbers and the local invariant cycle theorem

6.1. Main theorems

A crucial tool in our argument is the local invariant cycle theorem of Beilinson, Bern-
stein, and Deligne (BBD), which we state here in the generality relevant to this paper.

Theorem 54 ([5, Corollaire 6.2.9]). Suppose f : X → Y is a proper morphism of smooth, 
separated, irreducible complex schemes. Let y ∈ Y (C), and set Xy := f−1(y). Suppose 
that U is a Zariski dense, Zariski open subset of Y such that the restriction of f to 
f−1U is smooth. Then, for every sufficiently small ball B = B(y) centered at y as in 
Theorem 48, the natural map

Hi(Xy,C) −→ H0(B(y) ∩ U,Rif∗C) (55)

is a surjection. Moreover, B(y) ∩ U is nonempty, and we have

H0(B(y) ∩ U,Rif∗C) = Hi(Xz)π1(B(y)∩U,z) (56)

for any z ∈ B(y) ∩ U .

The vector space H0(B(y) ∩U, Rif∗C) is called the space of local invariant cycles, and 
we call the map in (55) (which we will explain in some detail below) the local invariant 
cycle map. The assumption that f is smooth and proper over U implies that the sheaves 
Rif∗C restrict to local systems on U . It follows from Corollary 52 that, for a fixed U , 
the spaces H0(B(y) ∩ U, Rif∗C) are canonically isomorphic for B(y) sufficiently small. 
Moreover, as BBD point out, up to a canonical isomorphism, (55) is independent of U .



P. Brosnan, T.Y. Chow / Advances in Mathematics 329 (2018) 955–1001 979
When Z is a scheme, we write dZ := dimZ to save space. This notation is useful in 
the main result of this section, which is the following.

Theorem 57. Suppose that f : X → Y is a projective morphism between smooth, sepa-
rated, irreducible complex schemes, and let y be a closed point of Y . Set d = dX − dY . 
Then the local invariant cycle map (55) is an isomorphism for all i ∈ Z if and only if

dim Hi(Xy,C) = dim H2d−i(Xy,C) (58)

for all i.

The rest of this section is devoted to a proof of Theorem 57. Our proof uses the ideas 
behind the proof of Theorem 54 extensively. Somewhat unfortunately for us, in [5], the 
proof of Theorem 54 in the case of complex varieties is more or less left to the reader to 
construct using the proof given earlier in the book of the �-adic analogue of the theorem 
for schemes of finite type over a finite field. While it is probably fairly clear how to do 
this for anyone who has made it to the last few pages of [5] where Theorem 54 appears, 
it makes it difficult for us to cite passages in the text where specific results we need 
are proved. In the original arXiv version of this paper [7], we handled this essentially by 
assuming that the reader was familiar with the proof of Theorem 54. However, we realized 
that this approach has serious disadvantages. So, to help make our proof of Theorem 57
as clear and precise as possible, we have decided to include a proof of Theorem 54 in the 
complex case.

One advantage of this is that we are able to use the Kashiwara conjecture for semisim-
ple perverse sheaves [26], which has been proved by T. Mochizuki and independently by 
combining work of A.J. de Jong, Drinfeld, Gaitsgory, and Böckle–Khare [32,33,10,14,
16,6]. This allows us to point out strong forms of Theorems 54 and Theorem 57. See 
Theorem 84 and Theorem 102 below.

6.2. The local invariant cycle map

6.2.1. Geometric definition
The map (55) in the statement of Theorem 54 can be defined in two equivalent ways, 

geometrically and sheaf-theoretically. We start with the geometric component of the 
definition. To explain it, write XS for f−1S when S ⊂ X, and write fS for the map 
XS → S coming from the restriction of f . Then, for B = B(y) a sufficiently small ball, 
the restriction morphism

Hi(XB ,C) → Hi(Xy,C) (59)

is an isomorphism. This follows from proper base change. On the other hand, we have a 
map
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Hi(XB∩U ,C) → H0(B ∩ U,Rif∗C) (60)

coming from the edge homomorphism in the Leray–Serre spectral sequence applied to 
the fibration fB∩U : XB∩U → B ∩U . Composing the map in (60) with the inverse of the 
map in (59) gives the local invariant cycle map (55).

6.2.2. General definition
Theorem 54 is proved (and even stated) in [5] in a much more general sheaf-theoretic 

context. This allows for greater generality in the statements, but it also allows for more 
flexibility in the proof. As we will use this generality to prove Theorem 57, we now 
explain how to generalize the local invariant cycle map for complexes of sheaves on Y . 
This essentially involves unwinding the definition of the edge homomorphism in the 
hypercohomology spectral sequence.

Suppose Y is any scheme of finite type over C. We write Db
cY for the bounded derived 

category of sheaves of complex vector spaces on Y with constructible cohomology. Given 
a complex K ∈ Db

cY and an integer i, we write HiK for the ith cohomology sheaf of K. 
For j ∈ Z, we write K[j] for the shift of K by j units to the left. So HiK[j] = Hi+jK. 
If y ∈ Y (C) and F is a sheaf on Y , then, as usual, Fy denotes the stalk of F over 
y. Similarly, if K is a complex, Ky denotes the object in the derived category of C
vector spaces obtained by taking stalks. Since taking stalks is exact, we have a canonical 
isomorphism Hi(Ky) = (HiK)y. Usually, we simply write HiKy for this vector space.

Now, let j : U ↪→ Y denote the inclusion of a Zariski open subset and let y ∈ Y (C)
be a closed point. Adjunction then gives us maps

λ : HiK → j∗j
∗HiK (61)

λ(y) : HiKy → (j∗j∗HiK)y (62)

which we call the (generalized) local invariant cycle maps. Here we get (62) from (61) by 
taking stalks, and j∗ denotes the pushforward of sheaves (not the derived pushforward 
as it often does in [5]). The functor j∗ is just the restriction to U . So for M ∈ Db

cY , j∗M
is synonymous with M|U .

When K = Rf∗C as in Theorem 54, HiKy = Hi(Xy, C) by proper base change, and 
(j∗j∗HiK)y = (j∗j∗Rif∗C)y which is equal to H0(B(y) ∩U, Rif∗C) for B(y) sufficiently 
small by the constructibility of the sheaves involved. (Compare with the statement of 
the local invariant cycle theorem in [5, Corollaire 6.2.9]). Moreover, it is easy to see that 
λ(y) agrees with the geometric description of (55) in §6.2.1.

Note that λ and λ(y) are natural in K. To make this explicit, write Shvc Y for 
the category of constructible sheaves of C vector spaces on Y . Then K � HiK and 
K � j∗j

∗HiK are both additive functors from Db
cY to Shvc Y , and λ is a natural trans-

formation from the first to the second (as it comes from the adjunction, which is itself 
natural). So write λi

K for the map in (61) to keep track of the index and the complex. 



P. Brosnan, T.Y. Chow / Advances in Mathematics 329 (2018) 955–1001 981
Then, λi
K[j] = λi+j

K , and, for K1, K2 ∈ Db
cY , λi

K1⊕K2
= λi

K1
⊕λi

K2
. Similar remarks hold 

obviously for λ(y).
Following [5], we are going to isolate a class of objects K in Db

cY on which λ, and 
thus λ(y), turn out to be surjections. However, it might help to start out with a trivial 
example along with a trivial non-example.

Example 63. Let Y = A1
C
, the affine line and let j : U ↪→ Y denote the inclusion of the 

complement of the origin. Consider the sheaves F = j!CU and G = CY as objects in 
Db

cY . For i �= 0, both the source and target of λ are 0 for both F and G. So there is 
nothing interesting happening. For i = 0, λ is an isomorphism for G. But for F it is the 
inclusion of j!CU in CY , which is not a surjection (in Shvc Y ): we have F0 = 0 while 
(j∗j∗F)0 = C.

6.3. Recollections concerning perverse sheaves

The definition of the class of objects in Db
cY we are looking for is tied up with the 

theory of perverse sheaves. So we will explain the part of that theory that we need here.
For the rest of this subsection, we fix a scheme Y which is reduced and of finite type 

over C. We point out that everything we are going to do goes on in Db
cY and is essentially 

topological with respect to Y (C). So we do not really need the assumption that Y is 
reduced: if W is a scheme of finite type over C, then Db

cW is the same as Db
cWred. But 

it makes it slightly more convenient to say certain things. On the other hand, while we 
do not require Y to be separated, this is mostly to conform to the setup of [5]. In the 
end, the theorems we are really interested in are local near a closed point in Y . So we 
could just as well assume that Y is separated (or even affine).

We write PervY for the category of perverse sheaves on Y (for the middle perversity). 
This is a full subcategory of the derived category Db

cY . For K ∈ Db
cY and i ∈ Z, we 

write pHiK for the ith perverse cohomology sheaf. So, while HiK is a usual sheaf on Y , 
pHiK is an object in PervY . We have pHiK[j] = pHi+jK.

Suppose j : V ↪→ Y is a (locally closed) immersion of schemes, and K is a perverse 
sheaf on V . Then we write j!∗K for the intermediate extension of K to Y , a perverse 
sheaf on Y supported on the Zariski closure of V . The intermediate extension is an 
extension of K in the sense that there is a natural isomorphism j∗j!∗K = K. In other 
words, the restriction of the intermediate extension to V is just K. In fact, we have the 
following characterization of the intermediate extension.

Theorem 64 (BBD). The intermediate extension j!∗K is the unique extension of K in 
Perv Y supported on V with no nontrivial sub or quotient object supported on V \ V .

Proof. This follows from [5, Corollaire 1.4.25]. �



982 P. Brosnan, T.Y. Chow / Advances in Mathematics 329 (2018) 955–1001
Proposition 65. Suppose V is a (locally closed) subscheme of Y and K is a perverse sheaf 
on V . Then

Hi(j!∗K) = 0 for i /∈ [−dV , 0]. (66)

Moreover, if we write j : V ↪→ Y for the inclusion, then

H−dV (j!∗K) = j∗H
−dV K. (67)

Proof. Since K is perverse, so is j!∗K, and it is supported on the Zariski closure V of V . 
Therefore Hij!∗K = 0 for i > 0 by [5, Definition 2.1.2]. But, by the discussion in the two 
paragraphs just after Definition 2.1.2, Hij!∗K = 0 for i < −dV . So (66) is proved.

Since j!∗K is an extension of K supported on V , j∗H−dV (j!∗K) = H−dV K. So ad-
junction gives a natural morphism H−dV (j!∗K) → j∗H

−dV K. Now (67) follows easily 
from Deligne’s formula [5, Proposition 2.1.11], which computes j!∗K in terms of a series 
of derived pushforwards and truncations. �

If V is smooth and irreducible and L is a local system on V , then L[dV ] is a perverse 
sheaf on V . So the intermediate extension ICL := j!∗L[dV ] is a perverse sheaf on Y , 
which is colloquially called the IC sheaf or the intersection cohomology sheaf. For dV > 0, 
Deligne’s formula actually implies that Hi IC(L) = 0 for i /∈ [−dV , 0). So we get a 
slightly stronger vanishing statement than (66). Note that, if V ′ is a Zariski dense, Zariski 
open subset of V , then IC(L|V ′) = ICL, i.e., the two perverse sheaves are canonically 
isomorphic [5, Lemme 4.3.2].

By [5, Theorem 4.3.1], a perverse sheaf K on Y is simple (as an object in the abelian 
category PervY ) if and only if it is isomorphic to ICL where L is an irreducible local sys-
tem on a smooth, irreducible subscheme V as above. So, a perverse sheaf K is semisimple 
if and only if it is a direct sum of such sheaves. (Such a direct sum is necessarily finite 
because the category of perverse sheaves is artinian.) Suppose Z is a closed subvariety 
of Y (that is, Z is an integral, closed subscheme). Following M. Saito’s notation from [41], 
we say that a perverse sheaf K has strict support Z if it is supported on Z and has no 
proper sub or quotient object supported on a proper subscheme of Z. We write PervZ Y

for the full subcategory of PervY consisting of perverse sheaves with strict support Z. 
By Theorem 64, if L is a local system on a non-empty, smooth, Zariski open subscheme 
V of Z, then ICL has strict support Z. It follows that any semisimple perverse sheaf K
on Y can be written as a direct sum

K = ⊕ZKZ (68)

where Z ranges over all closed subvarieties of Y and KZ ∈ PervZ Y (with KZ = 0 for 
all but finitely many Z). This decomposition is easily seen to be unique (as there are no 
nonzero morphisms between objects in PervZ Y and PervZ′ Y for Z �= Z ′).
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Obviously, if K is simple, then we must have KZ = 0 for all but one irreducible closed 
subscheme Z of Y . We call this subscheme the strict support of K.

Lemma 69. Suppose K is a perverse sheaf on a scheme Y of finite type over C, and let 
j : V ↪→ Y denote the inclusion of a Zariski dense, Zariski open subset. Then j∗K is 
perverse on V . If K is simple with strict support equal to an irreducible component of Y , 
then

K = j!∗j
∗K. (70)

Proof. If j is an open immersion (or even an étale morphism), then j∗ always takes 
perverse sheaves to perverse sheaves [5, Corollaire 2.2.6 (ii)]. This proves the first asser-
tion.

Now suppose K is simple with strict support equal to an irreducible component Z
of Y . Then K is an extension of j∗K with no non-trivial sub or quotient object supported 
on Z \ V . Since, by Theorem 64, j!∗j∗K is the unique such extension, it follows that 
K = j!∗j∗K. �
Lemma 71. Suppose Y is a scheme of finite type over C and let {F}ni=1 be a finite 
collection of sheaves on Y . If F := ⊕Fi is a local system, then each Fi is as well.

Proof. Any idempotent p ∈ EndF is locally constant on F . In particular, p has lo-
cally constant rank. So ker p and ker 1 − p are local systems. The result then follows by 
induction. �
Definition 72. Suppose U is a Zariski open subset of Y and K ∈ Db

cY . We say that U is 
a mollifying subset for K if U is Zariski dense in Y and, for all i ∈ Z, HiK|U is a local 
system on U .

Lemma 73. Suppose K ∈ Db
cY . Then K has a mollifying subset. In fact, we can even 

find one which is smooth.

Proof. This follows from generic smoothness and the definition of a constructible 
sheaf. �
Remark 74. It turns out that we will not really need the existence of smooth mollifying 
subsets, and in [5, Corollaire 6.2.9], BBD do not use it.

Proposition 75. Suppose K is a simple perverse sheaf on Y with strict support Z, and 
j : U ↪→ Y is the inclusion of a mollifying subset for K.
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1. If Z is an irreducible component of Y , then K|U = M[dZ ] where M := H−dZK|U , 
and K = j!∗M[dZ ]. Moreover, j∗j∗HiK = 0 for i �= −dZ and the local invariant 
cycle map λ−dZ

K is an isomorphism.
2. Otherwise j∗K = 0. Therefore j∗j∗HiK = 0 for all i.

Proof. Suppose V is an irreducible component of U . If Z does not contain V , then, for 
each i, HiK|V is a local system on V supported on the closed, proper subscheme Z ∩ V

of V . Since V is connected, it follows that HiK|V = 0 for all i. This proves (2).
So assume Z is an irreducible component of Y and let V = Z ∩ U . Since U is dense 

in Y , V is dense in Z. So dV = dZ . We then have HiK = 0 for i /∈ [−dZ , 0] by 
Proposition 65. On the other hand, if i > −dZ , then dim suppHiK|V ≤ −i < dZ . So 
again HiK|V = 0 as it is a local system. Therefore HiK|U = 0 for all i �= −dZ , and it 
follows that K|U = M[dZ ] where M = H−dZK|U . This shows that j∗j∗HiK = 0 for 
i �= −dZ .

By Lemma 69, we then get that K = j!∗M[dZ ]. Then, by Proposition 65,

H−dZK = H−dZ (j!∗M[dZ ]) = j∗H
−dZ (M[dZ ]) = j∗j

∗H−dZK.

So the local invariant cycle map λ−dZ

K is an isomorphism. �
Corollary 76. Suppose K is a simple perverse sheaf on Y , and j : U ↪→ Y is the inclusion 
of a mollifying open subset for K.

1. The local invariant cycle map λi
K : HiK → j∗j

∗HiK is a surjection for all i.
2. Suppose every irreducible component of Y has dimension dY and suppose i is an 

integer not equal to −dY . Let y ∈ Y (C) be a closed point of Y , and write λi
K(y) for 

the map in (62). Then λi
K(y) is an isomorphism if and only if HiKy = 0.

3. If Y is equidimensional as in (2), then λ−dY

K is an isomorphism.

Proof. Proposition 75 shows that either λi
K is an isomorphism or j∗j∗HiK = 0. So 

(1) holds, because, in either case, λi
K is a surjection. Similarly, (3) holds because, in 

case (1) of Proposition 75, λ−dZ

K = λ−dY

K was proven to be an isomorphism and, oth-
erwise, H−dY K = 0 by Proposition 65, which, by (1), trivially implies that λ−dY

K is an 
isomorphism.

For (2), suppose i �= −dY . Then j∗j∗HiK = 0, again by Proposition 75. Therefore, 
λi
K(y) is an isomorphism if and only if HiKy = 0. �

Corollary 77. Suppose K is a simple perverse sheaf on Y and U and V are two mollifying 
open subsets for K with inclusions jU (resp. jV ) into Y . Then the local invariant cycle 
maps for U and V are canonically isomorphic. More precisely, U ∩V is also a mollifying 
subset, and, if we let jU∩V : U ∩ V ↪→ Y denote the inclusion, then, for each i ∈ Z, we 
have a commutative diagram
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jU∗j∗UH
iK

Res

HiK

λi
K

λi
K

λi
K

j(U∩V )∗j
∗
U∩V H

iK

jV ∗j
∗
V H

iK

Res

where Res denotes restriction. Moreover, each map labeled Res is an isomorphism.

Proof. It is obvious that U ∩ V is a mollifying subset, and it is also very easy to see 
that the diagram above commutes. So, let Z be the strict support of K. If Z is not 
an irreducible component of Y or if i �= −dZ , then, by Proposition 75, the right three 
vertices are all 0. So there is nothing to prove.

Otherwise, all of the arrows labeled λi
K are isomorphisms. So the commutativity of 

the diagram shows that the maps labeled Res are all isomorphisms. �
Definition 78. Suppose Y is a scheme of finite type over C. An object K ∈ Db

cY is said to 
be semisimple if K ∼= ⊕i∈Z(pHiK)[−i] with each summand a semisimple perverse sheaf.

Remark 79. If K ∈ Db
cY , then it is not hard to see (directly from the definitions in [5]) 

that pHiK = 0 for all but finitely many i ∈ Z.

Lemma 80. Suppose K is a semisimple object in Db
cY and U is a Zariski dense, Zariski 

open subset of Y . Then U is mollifying for K if and only if it is mollifying for every sub 
perverse sheaf of every perverse cohomology sheaf pHiK.

Proof. Since the direct sum of local systems is a local system, it is obvious that, if U
mollifies all the pHiK, it mollifies K as well. This proves one direction of the assertion. 
The converse direction follows from Lemma 71. �
Theorem 81. Suppose K is a semisimple object in Db

cY and let U be mollifying for K. 
Then, for each i, the local invariant cycle map λi

K is a surjection.

Proof. Using Lemma 80 along with the naturality of λ explained in §6.2.2, we can assume 
that K is a simple perverse sheaf. Then the result follows from Corollary 76 (1). �

Theorem 81 and the decomposition theorem, [5, Théorème 6.2.5], are the main in-
gredients in the proof of Theorem 54. Analogously, the main ingredients of the proof of 
Theorem 57 are the decomposition theorem, the perverse hard Lefschetz theorem and 
the next result.
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Theorem 82. Suppose that Y is equidimensional and K is a semisimple object in Db
cY . 

Let y ∈ Y (C) be a closed point, and let j : U ↪→ Y be the inclusion of a mollifying subset 
for K. Then the following are equivalent.

1. λ(y) : HiKy → (j∗j∗HiK)y is an isomorphism for all i.
2. For all j and all i �= −dY , Hi(pHjK)y = 0.

Proof. By shifting and passing to direct summands via 80, we can assume that K is 
a simple perverse sheaf. The theorem is then a direct consequence of Corollary 76 (2) 
and (3). �
6.4. Proof of the local invariant cycle theorem

Suppose now that X is a reduced scheme of finite type over C and K ∈ Db
cX. If 

i : W → X is the inclusion of a subscheme, we write Hj(W, K) := Hj(W, i∗K).
Suppose Y is another reduced scheme of finite type over C and y ∈ Y (C) is a closed 

point. Then by a ball centered at y, we mean any open neighborhood of y in Y (C) which 
is obtained by intersecting an affine open neighborhood V of y embedded in An

C
with a 

ball in Cn.

Remark 83. We have to distinguish this notion of a ball from the notion of a ball as in 
Theorem 48 which we use when Y is smooth. The issue is that, if Y is singular, then we 
cannot necessarily find an open neighborhood of y which is homeomorphic to an actual 
ball in CdY .

In the proof of the next theorem, we are going to use the Kashiwara conjecture. As 
we mentioned above in §6.1, this is now a theorem owing to the work of many authors. 
We will not cite these authors again here, but we point out that Drinfeld’s paper [14] is 
short and has a very efficient statement of the part of the conjecture having to do with 
perverse sheaves (which is the part that we use).

Theorem 84. Suppose f : X → Y is a proper morphism of reduced schemes of finite type 
over C, and let K be a semisimple object in Db

cX. Let y ∈ X(C) be a closed point and 
set Xy = f−1(y). Let U ⊂ Y be a mollifying open subset for the complex Rf∗C. Then, 
for every sufficiently small ball B(y) centered at y, the local invariant cycle map induces 
a natural surjection

Hi(Xy,K) � H0(B(y) ∩ U,Rif∗K). (85)

Moreover, the target of (85) is independent of the mollifying open subset U .

Proof. First note that, since the whole theorem is a Zariski local statement near y, 
we can easily reduce to the situation where Y (and, therefore, X) are separated. For 
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example, we can replace Y with an affine Zariski open neighborhood of y and X with 
the inverse image of that neighborhood. So we assume X and Y are separated. (We do 
this in order to freely use work on Kashiwara’s conjecture.)

The source of (85) is naturally isomorphic to HiKy by proper base change. The 
target is naturally isomorphic to (j∗j∗HiK)y for B(y) sufficiently small. Since K is 
semisimple, it follows from the Kashiwara conjecture that Rf∗K is semisimple. Therefore 
the surjectivity result follows from Theorem 81.

The independence of U follows from Corollary 77. �
Proof of Theorem 54. Since X is smooth, the constant sheaf C = CX is semisimple. In 
fact, we even assumed that X is irreducible, so C[dX ] is the IC sheaf of the simple local 
systems CX . Therefore C[dX ] is a simple perverse sheaf. Since f is smooth and proper 
over U , U is a mollifying subset for Rf∗K. So take K = C in Theorem 84. This proves 
that (55) of Theorem 54 holds.

Since a ball B(y) as in Theorem 48 is homeomorphic to an open ball in CdY , B(y) ∩U

is non-empty and connected. This follows from Fact 47 in the case dY > 0 and it is 
obvious otherwise. Then (56) follows from proper base change and Corollary 40. �
Remark 86. In [5], BBD prove Theorem 84 for K semisimple of geometric origin. (These 
are essentially the complexes that can be obtained from the constant sheaf by the stan-
dard operations of sheaf theory, e.g., Grothendieck’s six operations.) The reason for the 
restriction was that they were only able to prove the decomposition theorem [5, Théorème 
6.2.5] for such complexes.

BBD also state Theorem 84 for arbitrary schemes of finite type (without the restriction 
that X or Y be reduced). But, as we mentioned at the beginning of §6.3, there is actually 
no loss of generality in assuming that the schemes involved are reduced.

6.5. The palindromicity theorem

It will be convenient to introduce some notation concerning palindromic polynomials.

Definition 87. Suppose p ∈ R[t, t−1] is a Laurent polynomial. We say that p is palindromic
if p(t) = p(t−1).

Lemma 88. Suppose p ∈ R[t, t−1] is palindromic. Then p′(1) = 0.

Proof. By palindromicity and the chain rule,

p′(t) = d

dt
p(t−1) = −p′(t−1)t−2.

So p′(1) = −p′(1). Therefore, p′(1) = 0. �
If p is any Laurent polynomial, we think of p′(1) as the center of mass of p.
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Lemma 89. Suppose q =
∑

�≥0 p�t
� where the p� are palindromic Laurent polynomials 

with real coefficients. Assume that, for � > 0, the coefficients of the p� are non-negative. 
Then

q′(1) ≥ 0. (90)

Moreover, the following are equivalent:

1. We have equality in (90).
2. p� = 0 for all � > 0.
3. q is palindromic.

Proof. Since the p� are all palindromic, we have p′�(1) = 0 for all � ≥ 0. Therefore

q′(1) =
∑
�>0

�p�(1). (91)

Since the coefficients of the p� are non-negative for � > 0, (91) implies (90). From (91), it 
is also immediate that (1) implies (2). Then (2) ⇒ (3) is obvious, and (3) ⇒ (1) follows 
from Lemma 88. �
Theorem 92. Suppose Y is a scheme of finite type over C and K ∈ Db

cY is a semisimple 
complex. Assume that

pH−iK ∼= pHiK (93)

for all i ∈ Z. Fix y ∈ Y (C) and r ∈ Z, and suppose that

Hj(pHiK)y = 0 for i, j ∈ Z such that j < r. (94)

Set

q(t) :=
∑
k∈Z

tk dimHk(K[r])y. (95)

Then q′(1) ≥ 0. Moreover, the following are equivalent:

1. q′(1) = 0.
2. We have

Hj(pHiK)y = 0 for j �= r. (96)

3. q is palindromic.
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Proof. Since K is semisimple, we have

K = ⊕(pHiK)[−i]. (97)

Here we sum over i ∈ Z, but, since this is clear from the context, we leave this out of 
summation notation to save clutter (as we will do in the rest of the proof as well).

Substituting in (97) for K in (95), we get

q(t) =
∑

tk dimHk(K[r])y

=
∑
k∈Z

tk
∑
i∈Z

dimHk
(
(pHiK)[r − i]

)
y

=
∑

tk dimHk+r−i(pHiK)y (98)

=
∑
�,i∈Z

ti+� dimH�+r(pHiK)y, (99)

=
∑
�

t�
∑
i

ti dimH�+r(pHiK)y, (100)

where we go from (98) to (99) by substituting k = i + �.
Now, for � ∈ Z, set

p� :=
∑
i∈Z

ti dimH�+r(pHiK)y. (101)

By (94), p� = 0 for � < 0. So, by 99, q =
∑

�≥0 t
�p�. But, by (93), each p� is palindromic. 

The theorem now follows from Lemma 89. �
Theorem 102. Suppose f : X → Y is a projective morphism of reduced schemes of finite 
type over C with Y equidimensional. Let y ∈ Y (C) be a closed point and let K be a 
semisimple complex in PervX. Set

q(t) :=
∑
k∈Z

tk dim Hk−dY (Xy,K). (103)

Then q′(1) ≥ 0. Moreover, the following are equivalent:

1. q′(1) = 0.
2. The local invariant cycle maps in (85) are isomorphisms for all i.
3. q is palindromic.

Proof. As in the proof of Theorem 84, we can (and do) assume that Y is separated. 
Then, by Kashiwara’s conjecture, Rf∗K is a semisimple complex and, for each i, we 
have an isomorphism pH−iRf∗K ∼= pHiRf∗K. (This is the “Hard Lefschetz” part of the 
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Kashiwara conjecture, Item 2 in Drinfeld’s statement [14].) On the other hand, we have 
a canonical isomorphism Hk−dY (Xy, K) = Hk(Xy, Rf∗K[−dY ]) = Hk(Rf∗K[−dY ])y. 
Finally, for any complex C on Y , we have Hj(pHiC) = 0 for j < −dY by Proposition 65. 
So, in particular, Hj(pHiRf∗K)y = 0 for j < −dY .

Now, by Theorem 82 we have Hj(pHiRf∗K)y = 0 for all j �= −dY for all j if and 
only if the local invariant cycle maps are all isomorphisms. So the theorem now follows 
from Theorem 92. �
Proof of Theorem 57. Since X is smooth and irreducible, C[dX ] is semisimple perverse. 
So let K = C[dX ] in Theorem 102. Set

q(t) =
∑
i∈Z

ti dim Hi(Xy,C[d]) =
∑
i∈Z

ti dim Hi(Xy,C[dX − dY ]).

Then q is palindromic if and only if (58) holds. So the result follows from Theo-
rem 102. �
7. Galois covers

The purpose of this section is to prove a lemma about the local monodromy groups 
of Galois covers. We use the concepts of §5, but we have changed some of the notation 
(partially to avoid running out of capital letters towards the end of the alphabet).

7.1. Covers and monodromy

Suppose U is a smooth, connected, complex, quasi-projective variety and G is a finite 
group acting freely on U . Let V = U/G, and write π : U → V for the quotient morphism. 
(It is well known that U/G is a scheme. See, for example, [47, Tag 0725].)

For each (closed) point u ∈ U , we get a surjective group homomorphism

ψu : π1(V, π(u)) � G. (104)

If γ : [0, 1] → V represents an element of π1(V, π(u)) and γ̃ is a lift of γ to U with 
γ̃(0) = u, then ψu(γ)u = γ̃(1). From this description, we see that, if π(u′) = π(u), then 
ψu and ψu′ differ by conjugation by an element of π1(V, π(u)). (See [25] for a complete 
discussion of these matters.)

Now, suppose that V is contained as a Zariski open subset of a smooth, quasi-
projective variety Y . Set Z = Y \ V , and suppose z is a closed point of Z. Let W
be a good neighborhood of z in Y relative to Z, and let w be a point in W \ Z. The 
choice of a path from w to π(u) gives us a sequence of group homomorphisms

π1(W \ Z,w) → π1(V, π(u)) � G. (105)
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Moreover, up to conjugation by an element of G, this map is independent of u, the path 
from w to π(u), W and w. We call the image H(z) of the composition in (105) the local 
monodromy subgroup at z. (The conjugacy class of H(z) is independent of any choices.) 
Note that, if we replace V with any non-empty Zariski open subset V ′ of V containing 
π(u) and we replace U with π−1(V ′), then H(z) does not change. This follows from 
Lemma 53.

Proposition 106. Let G be a finite group acting on a smooth, quasi-projective variety X, 
and suppose G acts freely on a Zariski dense open subset U of X. Suppose π : X → Y

is the quotient of X by G and let V = π(U). Pick a closed point x ∈ X \U , and suppose 
that Y is smooth. Then H(π(x)) is the stabilizer Gx of the point x.

Proof. Take a good neighborhood B of y := π(x) with respect to Z := Y \ V . Pick b ∈
B ∩V and set A = π−1B. Let Ax denote the component of A containing x. There exists 
a ∈ Ax such that π(a) = b. Let H denote the image of the composition π1(B ∩ V, b) →
π1(V, b) � G, where the last homomorphism is ψa. Then H = H(a). The group G acts 
transitively on the connected components of A ∩U , and the stabilizer of the component 
of A ∩ U containing a is H. Since Ax ∩ U is connected, Ax ∩ U is this component. So 
the stabilizer in G of this component is the same as the stabilizer of the Ax. But, by 
possibly shrinking B, we can arrange that this is just Gx. �
Remark 107. We use the assumption that Y is smooth because we have only defined the 
local fundamental group in that case. However, since Y is a quotient of a smooth variety, 
it is automatically normal. And good neighborhoods of normal quasi-projective varieties 
are connected. (See Chapter 3 of Mumford’s [34]). It follows that the assumption that 
Y is smooth can be dropped.

8. Geometry of Hessenberg schemes

In this section, we study the geometry of the family of Hessenberg varieties over the 
space of regular matrices. We also study the family of maximal tori defined by centralizers 
of regular, semisimple matrices. Ngô’s paper on the Hitchin fibration [35] significantly 
influenced our thinking about these matters, and we have consequently borrowed Ngô’s 
notation.

8.1. Regular matrices

Fix a positive integer n and write g for the Lie algebra gln. Recall that a matrix s ∈ g

is regular if the Jordan blocks of s have distinct eigenvalues. A matrix s is regular if and 
only if its centralizer has dimension n. As in §1, we say that s is regular of type λ for 
a partition λ of n if the Jordan blocks of s are of sizes λ1, . . . , λr. We write gr for the 
subset of regular matrices and gr

λ for the subset of regular matrices of type λ. We write 
grs for the subset of regular semisimple matrices. This is a dense open subset of g.
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8.2. Hessenberg schemes

Fix a Hessenberg function m = (m1, . . . , mn−1) with m(i) := mi, and set mn = n. 
Write X for the variety of complete flags in Cn, and set

H (m) := {(F, s) ∈ X × g : sFi ⊆ Fmi
for 1 ≤ i ≤ n}.

Note that the projection pr1 on the first factor makes H (m) into a vector bundle of 
rank 

∑n
i=1 mi over X . So H (m) is a smooth, connected scheme with

dim H (m) = dim X +
n∑

i=1
mi = n(n− 1)

2 +
n∑

i=1
mi. (108)

Let π : H (m) → g denote the projection on the second factor. Then the fiber of π
over a matrix s ∈ g is simply the Hessenberg variety H (m, s). Note that π is smooth 
over grs.

Theorem 109. The map π : H (m) → g is flat over the locus gr of regular matrices.

Proof. Both H (m) and g are smooth over C, and, by Corollary 37, all fibers of π over gr

have the same dimension, |m|. It follows from the theorem that is sometimes called 
“miracle flatness” that the restriction of π to the inverse image of gr is flat. (See [24, Ex. 
III.10.9] for miracle flatness.) �
8.3. Diagonal matrices and characteristics

Write G := GLn and write D for the diagonal subgroup of G. Write d for the Lie 
algebra of D, and dr for the regular elements of d. The symmetric group Sn acts on 
d = An in the obvious way: σ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)). The quotient is the 
characteristic variety car = carG = d/Sn. We can view car as the variety of monic 
polynomials tn + an−1t

n−1 + · · ·+ a0 of degree n. The Chevalley morphism χ : g → car
is the morphism sending a matrix s ∈ g to its characteristic polynomial χ(s).

8.4. The smallest Hessenberg scheme

Let � denote the Hessenberg function �(i) = i. Then the restriction H rs(�) → grs of 
π : H (�) → g to the inverse image of grs is an étale cover of degree n!. Since H (�) is 
connected and smooth, so is H rs(�). So, since grs is also connected, H rs(�) → grs is an 
étale cover corresponding to an index n! subgroup of the fundamental group of grs.

We call H (�) the smallest Hessenberg scheme because, for any Hessenberg function m, 
there is a canonical inclusion H (�) → H (m) (which is a closed immersion).

We have a morphism χ̃ : H (�) → d sending a pair (s, F ) to the diagonal matrix with 
GrFi s in the (i, i)-entry. This gives rise to a commutative diagram
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H (�)
χ̃

π

d

χ|d

g
χ

car,

(110)

which coincides with Grothendieck’s simultaneous resolution of χ. (For a discussion of 
Grothendieck’s resolution, see Springer [46, §4.1] or Slodowy [45, §4.7].) The restriction 
of (110) to the inverse image of carrs := dr/Sn is a pullback diagram. In other words, 
H rs(�) = grs ×carrs dr. This shows that H rs(�) is a (connected) Galois cover of grs with 
Galois group Sn.

We can describe this Galois covering a little bit more explicitly if we introduce the 
closed subscheme Z of (Pn−1)n × grs consisting of ordered tuples ([v1], . . . , [vn]; y) where 
the vi form a basis of eigenvectors of y. Given a point z = ([v1], . . . , [vn]; y) in Z, we 
can define a complete flag F (z) by setting Fi = 〈v1, . . . , vi〉. This defines a morphisms 
Z → H rs(�) given by z �→ (F (z), y). Using the fact that Z and H rs(�) are both étale 
covers of grs of the same degree, it is easy to see that Z → H rs(�) is an isomorphism. 
Then Sn acts on Z by permuting the vi: σ([v1], . . . , [vn]; y) = ([vσ−1(1)], . . . , [vσ−1(n)], y). 
It is easy to see that the map χ̃ : H rs(�) → dr is Sn-equivariant.

8.5. The fundamental groups

Suppose z = (F, y) ∈ H rs(�). We get a surjection ψz : π1(grs, y) � Sn corresponding 
to the Galois covering H rs(�) → grs with Galois group Sn. Similarly, for a regular 
diagonal matrix u ∈ dr, we have a surjection ψu : π1(carrs, χ(u)) → Sn. Since

H rs(�)
χ̃

dr

χ|dr

grs χ
carrs

is a pullback diagram of Galois étale covers with Galois group Sn, we have ψz = ψχ̃(z)◦χ∗.

Definition 111. We say a polynomial p ∈ car is of type λ if p =
∏�

i=1(x − xi)λi where 
x1, . . . , x� are distinct.

Lemma 112. Suppose p =
∏�

i=1(x − xi)λi is a polynomial of type λ. Then the local 
monodromy subgroup H(p) of Sn at p for the Sn-cover dr → carrs is Sλ.

Proof. Let τ denote the diagonal matrix

diag(x1, . . . , x1, x2 . . . , x2, . . . , xr, . . . , xr).
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Then the stabilizer in Sn of τ is precisely Sλ. The results then follows from Proposi-
tion 106. �
8.6. The Kostant section

The Kostant section is a morphism ε : car → gr which is a section of χ; i.e., χ ◦ ε = id. 
We give the definition of ε following Ngô’s paper [35, Theorem 2.1]. We remark, however, 
that, while the general definition makes sense for any reductive Lie algebra, we only 
discuss it for gln.

Let x− (resp. x+) denote the n × n matrix with 1’s just below (resp. just above) the 
diagonal and 0’s everywhere else. Then let gx+ denote the centralizer of x+ in g. In [27], 
Kostant showed that the subspace x−+gx+ is contained in gr. Moreover, he showed that 
the restriction of χ to x− + gx+ induces an isomorphism onto car. The Kostant section 
is the inverse morphism ε : car → x− + gx+ . In the case of gln,

x− + gx+ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝
x0 x1 x2 . . . xn−2 xn−1
1 x0 x1 . . . xn−3 xn−2
0 1 x0 . . . xn−4 xn−3
...

...
...

. . .
...

...
0 . . . . . . 1 x0

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

From this, it is elementary to compute the Kostant section. For example, for n = 2, it 
sends the characteristic polynomial p = x2 + a1x + a0 to the matrix of the form above 
with x0 = −a1/2, x1 = a2

1/4 − a0.

Proposition 113. Suppose s ∈ gr is a regular matrix of type λ. Then the local monodromy 
H(s) at s for the Sn-cover H rs(�) → grs is conjugate to the Young subgroup Sλ.

Proof. We can assume that s = ε(p) for some p ∈ car. Then, by Proposition 50, the 
local fundamental group at p is a retract of the local fundamental group at s. Since 
the Sn-cover H rs(�) → grs is a pullback of the Sn-cover dr → carrs, it follows that 
the local monodromy subgroup at s is equal to the local monodromy subgroup at p. By 
Lemma 112, this subgroup is Sλ. �
Remark 114. We could have used any (continuous) section of the map χ : g → car to 
prove Proposition 113.

8.7. The commuting group scheme

Write I := {(g, x) ∈ G × g : Ad g(x) = x}. The projection p : I → g is a group scheme 
in a more or less obvious way. Write prs : T → grs for the restriction of p to the inverse 
image of grs. Then T is a torus bundle: the fiber over a point y ∈ grs is the maximal 
torus in G centralizing y.
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Identify the scheme Z from §8.4 with H rs(�) and form a pullback diagram

TZ T

prs

Z
π

grs.

Then TZ is equipped with an isomorphism TZ → Gn
mZ to the split torus over Z. To see 

this, suppose z = ([v1], . . . , [vn]; y) and g ∈ G is an element commuting with y. Then g
preserves the eigenspaces of y. So for each i = 1, . . . , n, there is a unique character ti ∈
X∗(TZ) such that gvi = ti(g)vi. The n-tuple of characters �t := (t1, . . . , tn) : TZ → Gn

m,Z

is easily seen to give an isomorphism.
Over grs, the torus T is determined up to isomorphism by its group of characters 

X∗(T ) viewed as a Z-local system over grs. Moreover, this local system is canonically 
isomorphic to R1prs

∗ Z. For any point y ∈ grs, the fundamental group π1(grs, y) acts on 
the fiber of X∗(T ) lying over y by permuting the characters t1, . . . , tn.

9. Monodromy and Tymoczko’s dot action

9.1. Fiberwise cohomology of BT

For each y ∈ grs(C), we have a torus Ty and its associated classifying space BTy. The 
cohomology of BTy is naturally a polynomial ring C[t1, . . . , tn] = C[X∗(Ty)] generated 
in degree 2 by the characters of Ty. As we vary y, these glue together to form a local 
system A of polynomial algebras over grs. In fact, since T is étale locally trivial, we can 
construct a fiber bundle a : BT → grs over grs such that the fiber over each y ∈ grs is 
BTy. Then we have A = ⊕k≥0A

k where A k = R2ka∗C.
Let y0 denote the regular semisimple matrices with diagonal entries 1, 2, 3, . . . , n

(written in order). Let F 0 denote the standard flag

〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · ·

where ei is the standard basis of Cn. Set z0 = (F 0, y0) ∈ H (�, y0). This gives rise to a 
surjection

ψ : π1(grs, y0) → Sn, (115)

where, for simplicity, we write ψ := ψz0 .
Let T denote the fiber of T over y0. So T is simply the diagonal subgroup of G. 

Then, by the discussion in §8.7, π1(grs, y0) acts on X∗(T ) by permuting the characters. 
Explicitly, if we let σ(ti) = tσ−1(i) for σ ∈ Sn, then γ(ti) = (ψ(γ))(ti). Consequently, 



996 P. Brosnan, T.Y. Chow / Advances in Mathematics 329 (2018) 955–1001
if we let A = Ay0 = C[t1, . . . , tn], then π1(grs, y0) acts on the polynomials in A by 
γ(p) = (ψ(γ))(p), where Sn acts on A in the standard way:

(σp)(t1, . . . , tn) = p(tσ(1), . . . , tσ(n)). (116)

9.2. Fiberwise equivariant cohomology of Hessenberg varieties

Now, for each Hessenberg function m, the torus T acts on the Hessenberg scheme 
H rs(m) → grs. So for each y ∈ grs, we can take the equivariant cohomology 
groups H∗

Ty
(H (m), y) (with complex coefficients). By localization, we know that 

H∗
Ty

(H (m), y)) is a free module of rank n! over Ay = H∗(BTy). Moreover, the canon-
ical inclusion H (�) → H (m) induces an inclusion H∗

Ty
(H (m, y)) → H∗

Ty
(H (�, y)). 

(See Tymoczko’s paper [53] for results on localization applied to Hessenberg varieties.) 
The modules H∗

Ty
(H (m, y)) glue together to form a local system L (m) over grs of 

A -modules. This can be seen explicitly using Tymoczko’s description of the equivariant 
cohomology of Hessenberg varieties in terms of moment graphs.

Proposition 117. Write πm : H rs(m) → grs for the projection morphism, and let A+
denote the sheaf of ideals in A generated by the positive degree elements. Then we have 
an isomorphism of sheaves

L (m)/L (m)A+ → R∗πm∗C.

Proof. This follows from the fact that Hessenberg varieties are GKM spaces. (See [53, 
§2 and Proposition 5.4]). �

For each m, localization induces an inclusion L (m) → L (�) of A -modules. Write 
L(m) for the fiber, H∗

T (H (m, y0)) of L (m) over y0. Then L(m) is free as an A-module, 
and both A and L(m) are equipped with compatible actions of π1(grs, y0). If we write 
A+ for the ideal of positive degree polynomials, then we have

H∗(H (m, y0)) = L/A+L(m), (118)

and the monodromy action of π1(grs, y0) on both sides is compatible.

Proposition 119. The action of π1(grs, y0) on L(m) factors through the homomorphism 
ψ : π1(grs, y0) � Sn.

Proof. The pullback TZ of T to the Sn-cover Z → grs is a constant group scheme, and 
the pullback of H rs(�) = Z to Z is disjoint union of copies of Z indexed by elements 
of Sn. It follows that the action of π1(grs, y0) on H∗

T (H (�, y0)) is trivial on the image of 
the map π1(Z, z0) → π1(grs, y0). In other words, the action of π1(grs, y0) on H∗

T (H (�, y0))
factors through Sn.
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Since L (m) → L (�) is an inclusion of local systems, we have a π1(grs, y0)-equivariant 
inclusion L(m) → L(�). The result follows. �
Corollary 120. The action of π1(grs, y0) on H∗(H rs(m, y0)) induced from the local system 
R∗πm∗C factors through ψ : π1(grs, y0) � Sn.

Proof. This follows directly from Propositions 119 and 117. �
Definition 121. The action of Sn on L(m) (resp. H∗(H rs(m, y0))) coming from Propo-
sition 119 (resp. Corollary 120) is called the monodromy action of Sn.

9.3. Monodromy action for H rs(�)

To make the monodromy action of Sn on L(�) explicit, recall from §9.1 that z0

denotes the element of Z0 := H (�, y0) corresponding to y0 with the standard or-
dering of its eigenspaces. So z0 = ([e1], . . . , [en], y0). Given σ ∈ Sn, we have σz0 =
([eσ−11], . . . , [eσ−1(n)]; y0). The cohomology group H∗Z0 = H0Z0 is simply the group of 
functions f : Z0 → C. If, for w ∈ Sn, we write δw for the function taking wz0 to 1 and all 
other elements of Z0 to 0, then we have (σδw)(z) = δw(σ−1z). From this it easily follows 
that σδw = δσw.

Lemma 122. As an A-module, L(�) is isomorphic to the module A|Sn| of functions from 
the set Sn to A. The monodromy action of Sn on L(�) is given by

((wp)(v))(t1, . . . , tn) = (p(w−1v))(tw(1), . . . , tw(n))

where v, w ∈ Sn, p ∈ A|Sn| and t1, . . . , tn are variables.

Proof. Under the identification Sn → Z0 given by w �→ wz0, the δw form a C-basis of 
H0(Z0). Moreover, the map H0

T (Z0) → H0(Z0) is an Sn-equivariant isomorphism, and, 
under this identification, the δw freely generate H∗

T (Z0) as an A-module. The result now 
follows by direct verification using the fact that Sn acts on A as in (116). �
Corollary 123. The monodromy action of Sn agrees with Tymoczko’s dot action of Sn on 
H∗

T (H (�, y0)).

Proof. This follows immediately by comparing the description of the monodromy action 
in Lemma 122 with Tymoczko’s description of the dot action [53, §3.1]. �
Theorem 124. Let m be a Hessenberg function. The monodromy action of Sn on 
H∗

T (H (m, y0)) is the same as Tymoczko’s dot action.
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Proof. Under Tymoczko’s dot action, H∗
T (H (m, y0)) is an Sn-equivariant A-submodule 

of H∗
T (H (�, y0)). The same is true of the monodromy action of Sn. Therefore, by Corol-

lary 123, the two actions must coincide. �
Corollary 125. Tymoczko’s dot action of Sn on the non-equivariant cohomology group 
H∗(H (m, y0)) coincides with the monodromy action.

Proof. Tymoczko defines the dot action on H∗(H (m, y0)) as the dot action on the 
quotient L(m)/A+L(m). The monodromy action is also given by this quotient. �

Since Tymoczko’s dot action and the monodromy action of Sn coincide, we will not 
distinguish between them from now on: it will be the only action of Sn appearing in the 
remainder of the paper.

Theorem 126. Let s ∈ gr be a regular element of type λ and let π = πm : H (m) → g. 
Let B(s) be a sufficiently small ball in g centered at s. Then, for each k ∈ Z, there is a 
C-vector space isomorphism

H0(B(s) ∩ grs, Rkπ∗C) ∼= Hk(H (m, y0))Sλ .

Proof. By (51) applied with L = Rkπ∗C, we have

H0(B(s) ∩ grs, Rkπ∗C) = Hk(H (m, b))π1(B(s)∩g
rs,b)

where b is any point in B(s) ∩ grs. The last vector space is isomorphic to the invari-
ants of Hk(H (m, y)) under the local monodromy at s. The result then follows from 
Proposition 113. �
Theorem 127. Suppose s ∈ gr is a regular element of type λ. Then, for each k ∈ Z,

dim Hk(H (m, s)) = dim Hk(H (m, y0))Sλ . (128)

Proof. We are going to apply Theorem 57 to the morphism π : H (m) → g. Both 
the source and the target of π are smooth, quasi-projective varieties. Moreover, π has 
relative dimension |m|. (One way to check this is to use the fact that the projection 
pr1 : H (m) → X has relative dimension 

∑n
i=1 mi, while dim X =

∑n−1
i=1 i. Another 

way to see it, is to use the fact that the regular semisimple Hessenberg varieties have 
dimension |m|.)

By Corollary 36, we have

dim Hi(H (m, s),C) = dim H2|m|−i(H (m, s),C)

for all i.
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It follows then from Theorem 57 that the local invariant cycle map

Hi(H (m, s)) → H0(B(s) ∩ grs, Riπ∗C)

is an isomorphism, where B(s) is any sufficiently small ball centered at s in g. The result 
now follows from Theorem 126. �

Finally we can put all the pieces together to prove Conjecture 3.

Theorem 129. If χm,d denotes the character of the dot action on the cohomology group 
H2d of the regular semisimple Hessenberg variety H (m, s), then chχm,d equals the co-
efficient of td in ωXG(m)(t).

Proof. By Theorem 35, the left-hand side of Equation (128) (in Theorem 127) equals 
cd,λ(m) when k = 2d. On the other hand, by Proposition 10, the right-hand side of 
Equation (128) equals the coefficient of mλ in chχm,d. �
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