
We are given a Hessenberg function m. Let P denote the associated natural unit
interval order and let G denote the incomparability graph of P . See Shareshian–Wachs for
the definition of a P -tableau and of a G-inversion of a P -tableau.

Lemma 1. If T is a P -tableau with a unique G-inversion, then the G-inversion has the
form {i, i+ 1} for some i in the range 1 ≤ i ≤ n− 1.

Proof. Suppose that {j, k} is a G-inversion with 1 ≤ j < k ≤ n. Then by definition,
j appears in a lower row of T than k does, and there is an edge between j and k in G. It
follows that there exists i with j ≤ i < k such that i appears in a lower row of T than i+1
does. By the definition of a unit interval order, {i, i+1} must be an edge of G. Therefore,
{i, i+1} is a G-inversion. We have shown that if there is any G-inversion at all, then there
must be a G-inversion of the form {i, i + 1}, so if the G-inversion is unique then it must
have this form.

Lemma 2. If T is a P -tableau and {j, k} with j < k is not a G-inversion of T , then k
does not appear immediately above j (i.e., in the same column and in the preceding row).

Proof. If j and k are adjacent in G then k appearing immediately above j would
constitute a G-inversion, which we have ruled out by hypothesis. On the other hand, if
j and k are not adjacent in G, then because P is a natural unit interval order, we must
have j ≺ k in P , and k appearing immediately above j would violate the definition of a
P -tableau.

Assumption. From now on, assume thatmi ≥ i+1 for all i < n (i.e., that G is connected).

Define ai by setting a0 = 0 and, for 1 ≤ i ≤ n− 2, by setting

ai =

{
0, if mi ≥ i+ 2;
1, if mi = i+ 1 and either mi+1 ≥ i+ 3 or i = n− 2;
i+ 1, otherwise.

Theorem. For 1 ≤ j ≤ n − 1, let Tj be the set of P -tableaux whose unique G-inversion
is {j, j + 1}. Then for 0 ≤ i ≤ n− 2,

eaien−ai =
∑

T∈Ti+1

sshape(T ).

Before proving the Theorem, let us note a simple corollary.

Corollary 1. The coefficient of t in XG(t) is
∑n−2

i=0 eaien−ai .
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Proof. Theorem 6.3 of Shareshian–Wachs says that the coefficient of t in XG(t) is∑
T sshape(T ), where the sum is over all P -tableaux with a single G-inversion. By Lemma 1,

every P -tableau belongs to exactly one Ti. So Corollary 1 follows from the Theorem.

The proof of the Theorem requires some preliminaries.

Lemma 3. Let T be a P -tableau. If 1 ≤ i < n and {i, i + 1} is not a G-inversion, then
i+ 1 appears in a lower row of T than i does.

Proof. By the Assumption, i and i + 1 are adjacent in G. So by the definition of a
G-inversion, i + 1 cannot appear in a higher row than i. Moreover, i and i + 1 cannot
appear in the same row either, because by the definition of a P -tableau, elements in the
same row must form a totally ordered subset of P and hence cannot be adjacent in G.

Proposition 1. Let T be a P -tableau with exactly one G-inversion {i, i+ 1}, and let rj
denote the row in which j appears. Then T has at most two columns. If T has a single
column then the entries down that column are

1, 2, 3, . . . , i− 2, i− 1, i+ 1, i, i+ 2, i+ 3, . . . , n.

If T has two columns then the first i entries in column 1 are the numbers from 1 to i in
order, the first entry in column 2 is i + 1, and the sequence ri+2, ri+3, . . . , rn is strictly
increasing.

Proof. By Lemma 3, the sequence r1, r2, . . . , ri is strictly increasing, and the sequence
ri+1, ri+2, . . . , rn is strictly increasing. Therefore the only entries that can possibly appear
in the first row of T are 1 and i+ 1, so T has at most two columns.

If T has a single column, then by Lemma 2, the entries down column 1 must be
arranged in increasing numerical order except that i + 1 can appear before i (and in fact
must appear before i since {i, i+1} is a G-inversion). The only possibility is therefore the
one stated in Proposition 1.

If T has two columns then as noted above, the entries in row 1 are 1 and i+ 1, with
1 appearing in column 1 and i + 1 appearing in column 2 since the entries in a row of a
P -tableau must appear in increasing order according to the partial order P , and P is a
natural unit interval order. The remaining entries in column 2 cannot contain any number
from 1 to i−1 or else there would be a violation of Lemma 2 in column 2, so the numbers 1
to i−1 must appear in column 1; moreover, they must be the first i−1 entries in column 1
or else there would be a violation of Lemma 2 in column 1.

We can now narrow down the possibilities for the position of i in T to either row 2,
column 2, or row i, column 1, because otherwise something larger than i+1 would appear
directly above i, violating Lemma 2. But row 2, column 2 is not actually possible, because
{i − 1, i} is not a G-inversion, so by Lemma 3, i − 1 would have to be in row 1, forcing
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i − 1 = 1, i.e., i = 2, but then whatever is in row 2, column 1 will be larger than 2,
violating the definition of a P -tableau in row 2. We have now proved all the assertions of
Proposition 1.

Proof of Theorem. Recall the well-known expansion

eµ =
∑

λ:λ′≥µ

Kλ′,µsλ

where the coefficients are the Kostka numbers and ≥ denotes the dominance order. The
Theorem concerns only the case in which µ has at most two parts, and in this case,
Kλ′,µ = 1 if λ′ ≥ µ and Kλ′,µ = 0 otherwise. By Proposition 1, we know that the P -
tableaux in Ti+1 have at most two columns. So to prove the Theorem, it suffices to prove
that for each j in the range 0 ≤ j ≤ min(ai, n − ai), there is a unique P -tableau in Ti+1

whose second column has height j.

First let us show that there is always exactly one single-column P -tableau in Ti+1.
Proposition 1 tells us that there is at most one single-column P -tableau, and says what it
must be if it exists. The only thing to note is that this is indeed a P -tableau, because by
the Assumption, i+ 1 is adjacent to i+ 2, so the appearance of i+ 2 directly above i+ 1
does not violate the definition of a P -tableau.

Now observe that if i = 0 then there cannot be a two-column T ∈ Ti+1 = T1 because T
would have to have 1 and 2 in row 1, which is not possible because the Assumption implies
that 1 and 2 are incomparable in P . So T1 contains only the single-column P -tableau.
Since a0 = 0, this proves the Theorem in this case. From now on, let us assume that i ≥ 1.

If mi ≥ i+2, then i and i+2 are adjacent in G. We claim that T ∈ Ti+1 cannot have
two columns. If it did, then by Proposition 1, the entry in row 1, column 2 would be i+2,
and i would appear somewhere in column 1. Since i and i + 2 are adjacent, they cannot
appear in the same row of T , so i would appear in a lower row than i+2 did, and {i, i+2}
would be a G-inversion, which is not allowed by Lemma 1. Therefore Ti+1 contains only
the single-column P -tableau, and since ai = 0 when mi ≥ i+ 2, the Theorem is proved in
this case as well.

Next, suppose that mi = i + 1 and either mi+1 ≥ i + 3 or i = n − 2. We claim
that the only T ∈ Ti+1 with two columns has a single element in column 2, namely i + 2
in row 1. By Proposition 1, any other two-column P -tableau would have i + 3 in row 2,
column 2. If i = n − 2 then this is impossible simply because i + 3 > n. Otherwise, the
argument is similar to the one in the previous paragraph: i+ 1 appears in column 1, row
i + 1 ≥ 2; the fact that mi+1 ≥ i + 3 implies that i + 1 and i + 3 are adjacent, so they
cannot appear in the same row, so i+1 appears in a lower row than i+3, so {i+1, i+3}
is a G-inversion, contradicting Lemma 1. So we just need to verify that T , which has i+2
in row 1, column 2, and all the remaining entries in increasing order down column 1, is
indeed a P -tableau with unique G-inversion {i+1, i+2}. Certainly T has the G-inversion
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{i+1, i+2} because i+1 appears in row i+1 > 1 (which is lower than row 1, where i+2
appears), and i + 1 and i + 2 are adjacent by the Assumption. Also, since mi = i + 1, it
follows that i+ 2 ≻ j in P for all j < i. That means that there are no other G-inversions
in T , and also the two elements 1 and i+ 2 in row 1 do form a chain in P . Since ai = 1,
this proves the Theorem in this case as well.

Finally, we are left with the case mi = i+1, mi+1 = i+2, and 1 ≤ i < n− 2. The P -
tableaux with two columns allowed by Proposition 1 are obtained by picking j in the range
1 ≤ j ≤ min(ai, n − ai), then placing the first j numbers in the set {i + 2, i + 3, . . . , n}
in increasing order down column 2, and placing the remaining numbers in that set in
increasing order down column 2 (underneath i+1). So we just need to show that all these
are actually valid P -tableaux. The argument in the previous paragraph shows that since
mi = i + 1, there are no illegitimate G-inversions where i + 2 is the larger number, and
row 1 is a chain in P . The fact that mi+1 = i + 2 similarly shows that if j ≤ i + 1 and
k ≥ i + 3 then j ≺ k in P so all the rows of T are indeed chains in P and there are no
illegitimate G-inversions where the larger number is greater than i+2. This completes the
proof.
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