We are given a Hessenberg function m. Let P denote the associated natural unit
interval order and let G denote the incomparability graph of P. See Shareshian—Wachs for
the definition of a P-tableau and of a G-inversion of a P-tableau.

Lemma 1. If T is a P-tableau with a unique G-inversion, then the G-inversion has the
form {i,i 4+ 1} for some i in the range 1 <i <n — 1.

Proof. Suppose that {j, k} is a G-inversion with 1 < j < k < n. Then by definition,
7 appears in a lower row of T than k£ does, and there is an edge between j and k in G. It
follows that there exists ¢ with j <4 < k such that ¢ appears in a lower row of T than ¢+ 1
does. By the definition of a unit interval order, {i,i+ 1} must be an edge of G. Therefore,
{i,i+1} is a G-inversion. We have shown that if there is any G-inversion at all, then there
must be a G-inversion of the form {i,i + 1}, so if the G-inversion is unique then it must
have this form. []

Lemma 2. If T is a P-tableau and {j,k} with j < k is not a G-inversion of T, then k
does not appear immediately above j (i.e., in the same column and in the preceding row).

Proof. If j and k are adjacent in GG then k appearing immediately above j would
constitute a G-inversion, which we have ruled out by hypothesis. On the other hand, if
j and k are not adjacent in GG, then because P is a natural unit interval order, we must

have j < k in P, and k appearing immediately above j would violate the definition of a
P-tableau. [

Assumption. From now on, assume that m; > i+1 for all i < n (i.e., that G is connected).

Define a; by setting ag = 0 and, for 1 <i < n — 2, by setting

0, ifm; >1+2;
al—{l, if m; =i+ 1 and either m;y1 >i+3ori=n—2;
1+ 1, otherwise.

Theorem. For 1 < j <n —1, let 7; be the set of P-tableaux whose unique G-inversion
is {7,j+1}. Then for 0 <i<n—2,

€a;bn—a; = E Sshape(T)-
TeTit1

Before proving the Theorem, let us note a simple corollary.
Corollary 1. The coefficient of t in Xg(¢) is 2?2—02 €a;€n—a;-
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Proof. Theorem 6.3 of Shareshian-Wachs says that the coefficient of ¢ in Xq(t) is
> 7 Sshape(T), Where the sum is over all P-tableaux with a single G-inversion. By Lemma 1,
every P-tableau belongs to exactly one 7;. So Corollary 1 follows from the Theorem. []

The proof of the Theorem requires some preliminaries.

Lemma 3. Let T be a P-tableau. If 1 <i < n and {i,i 4+ 1} is not a G-inversion, then
i + 1 appears in a lower row of T' than i does.

Proof. By the Assumption, ¢ and ¢ + 1 are adjacent in G. So by the definition of a
G-inversion, ¢ + 1 cannot appear in a higher row than ¢. Moreover, ¢ and ¢ + 1 cannot
appear in the same row either, because by the definition of a P-tableau, elements in the
same row must form a totally ordered subset of P and hence cannot be adjacent in G. [

Proposition 1. Let T be a P-tableau with exactly one G-inversion {i,7 + 1}, and let r;
denote the row in which j appears. Then T has at most two columns. If 7" has a single
column then the entries down that column are

1,2,3,...,i—2i—1,i+1,4,i+2,i+3,...,n.

If T has two columns then the first ¢ entries in column 1 are the numbers from 1 to ¢ in
order, the first entry in column 2 is ¢ 4+ 1, and the sequence 7;42,7;4+3,...,7, is strictly
increasing.

Proof. By Lemma 3, the sequence rq, 7o, ..., r; is strictly increasing, and the sequence
Tit1,Tit2, .-,y 1S strictly increasing. Therefore the only entries that can possibly appear
in the first row of T" are 1 and i 4+ 1, so T has at most two columns.

If T has a single column, then by Lemma 2, the entries down column 1 must be
arranged in increasing numerical order except that ¢ + 1 can appear before i (and in fact
must appear before i since {i,i+ 1} is a G-inversion). The only possibility is therefore the
one stated in Proposition 1.

If T has two columns then as noted above, the entries in row 1 are 1 and 7 + 1, with
1 appearing in column 1 and ¢ + 1 appearing in column 2 since the entries in a row of a
P-tableau must appear in increasing order according to the partial order P, and P is a
natural unit interval order. The remaining entries in column 2 cannot contain any number
from 1 to 7 —1 or else there would be a violation of Lemma 2 in column 2, so the numbers 1
to ¢ —1 must appear in column 1; moreover, they must be the first i —1 entries in column 1
or else there would be a violation of Lemma 2 in column 1.

We can now narrow down the possibilities for the position of ¢ in T to either row 2,
column 2, or row ¢, column 1, because otherwise something larger than ¢ 4 1 would appear
directly above ¢, violating Lemma 2. But row 2, column 2 is not actually possible, because
{i — 1,4} is not a G-inversion, so by Lemma 3, i — 1 would have to be in row 1, forcing
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t—1 =1, i.e., ¢ = 2, but then whatever is in row 2, column 1 will be larger than 2,
violating the definition of a P-tableau in row 2. We have now proved all the assertions of
Proposition 1. [

Proof of Theorem. Recall the well-known expansion

eM = E K,\/’MS,\

AN >p

where the coefficients are the Kostka numbers and > denotes the dominance order. The
Theorem concerns only the case in which p has at most two parts, and in this case,
Ky, =1i XN > pand Ky, = 0 otherwise. By Proposition 1, we know that the P-
tableaux in 7;41 have at most two columns. So to prove the Theorem, it suffices to prove
that for each j in the range 0 < j < min(a;,n — a;), there is a unique P-tableau in 7; 4,
whose second column has height j.

First let us show that there is always exactly one single-column P-tableau in 7T;;.
Proposition 1 tells us that there is at most one single-column P-tableau, and says what it
must be if it exists. The only thing to note is that this is indeed a P-tableau, because by
the Assumption, 7 4+ 1 is adjacent to ¢ + 2, so the appearance of ¢ + 2 directly above i 4 1
does not violate the definition of a P-tableau.

Now observe that if ¢ = 0 then there cannot be a two-column T € 7,1 = T; because T'
would have to have 1 and 2 in row 1, which is not possible because the Assumption implies
that 1 and 2 are incomparable in P. So 7; contains only the single-column P-tableau.
Since ag = 0, this proves the Theorem in this case. From now on, let us assume that i > 1.

If m; > i+ 2, then ¢ and ¢ + 2 are adjacent in G. We claim that T € T;4; cannot have
two columns. If it did, then by Proposition 1, the entry in row 1, column 2 would be 7 + 2,
and ¢ would appear somewhere in column 1. Since ¢ and ¢ + 2 are adjacent, they cannot
appear in the same row of 7', so ¢ would appear in a lower row than i+ 2 did, and {i,7+ 2}
would be a G-inversion, which is not allowed by Lemma 1. Therefore 7;.1 contains only
the single-column P-tableau, and since a; = 0 when m; > ¢ 4+ 2, the Theorem is proved in
this case as well.

Next, suppose that m; = ¢ + 1 and either m;4+1 > ¢+ 3 or i = n — 2. We claim
that the only T' € T;,1 with two columns has a single element in column 2, namely 7 + 2
in row 1. By Proposition 1, any other two-column P-tableau would have ¢ + 3 in row 2,
column 2. If ¢ = n — 2 then this is impossible simply because i + 3 > n. Otherwise, the
argument is similar to the one in the previous paragraph: ¢ 4+ 1 appears in column 1, row
1+ 1 > 2; the fact that m;11 > ¢ + 3 implies that ¢ + 1 and ¢ + 3 are adjacent, so they
cannot appear in the same row, so i + 1 appears in a lower row than i+ 3, so {i+1,i+ 3}
is a G-inversion, contradicting Lemma 1. So we just need to verify that 7', which has 7 + 2
in row 1, column 2, and all the remaining entries in increasing order down column 1, is
indeed a P-tableau with unique G-inversion {i+ 1,7+ 2}. Certainly 7" has the G-inversion
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{i+1,i+ 2} because i+ 1 appears in row i + 1 > 1 (which is lower than row 1, where 7 4 2
appears), and i + 1 and i + 2 are adjacent by the Assumption. Also, since m; =i+ 1, it
follows that ¢ +2 > j in P for all j < ¢. That means that there are no other G-inversions
in T', and also the two elements 1 and i + 2 in row 1 do form a chain in P. Since a; = 1,
this proves the Theorem in this case as well.

Finally, we are left with the case m; =i+ 1, m;31 =i +2,and 1 <i <n—2. The P-
tableaux with two columns allowed by Proposition 1 are obtained by picking j in the range
1 < j < min(a;,n — a;), then placing the first j numbers in the set {i + 2,7 + 3,...,n}
in increasing order down column 2, and placing the remaining numbers in that set in
increasing order down column 2 (underneath i+ 1). So we just need to show that all these
are actually valid P-tableaux. The argument in the previous paragraph shows that since
m; = 1 + 1, there are no illegitimate G-inversions where i 4+ 2 is the larger number, and
row 1 is a chain in P. The fact that m;+1 = ¢ 4+ 2 similarly shows that if j < ¢+ 1 and
k > i+ 3 then 5 < k in P so all the rows of T" are indeed chains in P and there are no
illegitimate G-inversions where the larger number is greater than ¢+ 2. This completes the
proof. [



