Unit Interval Orders and Hessenberg Varieties

Timothy Y. Chow
Center for Communications Research

July 9, 2017

Stanley's chromatic symmetric function X_{G}

Let G be a graph with vertex set $V=\{1,2, \ldots, n\}$. A coloring κ of G is a map $\kappa: V \rightarrow \mathbb{N}$ such that adjacent vertices are mapped to different integers ("colors").

Stanley's chromatic symmetric function X_{G}

Let G be a graph with vertex set $V=\{1,2, \ldots, n\}$.
A coloring κ of G is a map $\kappa: V \rightarrow \mathbb{N}$ such that adjacent vertices are mapped to different integers ("colors").

Definition. The chromatic symmetric function X_{G} is

$$
X_{G}:=\sum_{\kappa} x_{\kappa(1)} x_{\kappa(2)} \cdots x_{\kappa(n)},
$$

where the sum is over all colorings κ of G.

Stanley's chromatic symmetric function X_{G}

Let G be a graph with vertex set $V=\{1,2, \ldots, n\}$.
A coloring κ of G is a map $\kappa: V \rightarrow \mathbb{N}$ such that adjacent vertices are mapped to different integers ("colors").

Definition. The chromatic symmetric function X_{G} is

$$
X_{G}:=\sum_{\kappa} x_{\kappa(1)} x_{\kappa(2)} \cdots x_{\kappa(n)},
$$

where the sum is over all colorings κ of G.

Example.

$$
\begin{aligned}
X_{G} & =6\left(x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+\cdots\right)+\left(x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}^{2} x_{3}+x_{3}^{2} x_{1}+\cdots\right) \\
& =6 e_{3}+e_{1} e_{2}-3 e_{3} \\
& =3 e_{3}+e_{1} e_{2}
\end{aligned}
$$

Indifference graphs

Note that in the above example, X_{G} is e-positive; i.e., it is a polynomial in the e_{i} with nonnegative coefficients.

This is not true for all graphs; however...

Indifference graphs

Note that in the above example, X_{G} is e-positive; i.e., it is a polynomial in the e_{i} with nonnegative coefficients.

This is not true for all graphs; however...
Definition. An indifference graph is a graph whose vertex set is a set of (distinct) closed unit intervals on the real line, and in which two intervals are adjacent if and only if they overlap.

Conjecture (Stanley-Stembridge, 1993). For every indifference graph G, X_{G} is e-positive.

Indifference graphs

Note that in the above example, X_{G} is e-positive; i.e., it is a polynomial in the e_{i} with nonnegative coefficients.

This is not true for all graphs; however...
Definition. An indifference graph is a graph whose vertex set is a set of (distinct) closed unit intervals on the real line, and in which two intervals are adjacent if and only if they overlap.

Conjecture (Stanley-Stembridge, 1993). For every indifference graph G, X_{G} is e-positive.

Note. The original Stanley-Stembridge conjecture was seemingly more general; Guay-Paquet reduced it to the statement above.

Schur function expansion of X_{G}

Theorem (Haiman 1993, Gasharov 1996). If G is an indifference graph then X_{G} is s-positive, i.e., a nonnegative linear combination of Schur functions. The coefficients count certain tableau-like objects.

Schur function expansion of X_{G}

Theorem (Haiman 1993, Gasharov 1996). If G is an indifference graph then X_{G} is s-positive, i.e., a nonnegative linear combination of Schur functions. The coefficients count certain tableau-like objects.

Question. If G is an indifference graph, is $X_{G}=c h \rho$ for some "naturally occurring" representation ρ, where ch denotes the characteristic map?

Schur function expansion of X_{G}

Theorem (Haiman 1993, Gasharov 1996). If G is an indifference graph then X_{G} is s-positive, i.e., a nonnegative linear combination of Schur functions. The coefficients count certain tableau-like objects.

Question. If G is an indifference graph, is $X_{G}=\mathrm{ch} \rho$ for some "naturally occurring" representation ρ, where ch denotes the characteristic map?

Conjecture (Shareshian-Wachs, 2011). ch $\rho=\omega X_{G}$ where ρ is the dot action on the cohomology of a regular semisimple Hessenberg variety and ω is a standard involution on symmetric functions. In fact, ωX_{G} naturally decomposes into summands corresponding to each cohomology group $H^{2 d}$ separately.

Schur function expansion of X_{G}

Theorem (Haiman 1993, Gasharov 1996). If G is an indifference graph then X_{G} is s-positive, i.e., a nonnegative linear combination of Schur functions. The coefficients count certain tableau-like objects.

Question. If G is an indifference graph, is $X_{G}=\mathrm{ch} \rho$ for some "naturally occurring" representation ρ, where ch denotes the characteristic map?

Conjecture (Shareshian-Wachs, 2011). ch $\rho=\omega X_{G}$ where ρ is the dot action on the cohomology of a regular semisimple Hessenberg variety and ω is a standard involution on symmetric functions. In fact, ωX_{G} naturally decomposes into summands corresponding to each cohomology group $H^{2 d}$ separately.

Our main result is a proof of this conjecture (2015). Shortly afterwards, Guay-Paquet gave an independent proof using completely different methods (Hopf algebras).

Classification of indifference graphs

Let $\mathbf{m}=\left(m_{1}, \ldots, m_{n-1}\right)$ be a weakly increasing sequence of integers such that $i \leq m_{i} \leq n$ for all i.

Example. If $n=3$ then $\mathbf{m} \in\{(1,2),(1,3),(2,2),(2,3),(3,3)\}$.

Classification of indifference graphs

Let $\mathbf{m}=\left(m_{1}, \ldots, m_{n-1}\right)$ be a weakly increasing sequence of integers such that $i \leq m_{i} \leq n$ for all i.

Example. If $n=3$ then $\mathbf{m} \in\{(1,2),(1,3),(2,2),(2,3),(3,3)\}$.
Let $G(\mathbf{m})$ be the graph with vertex set $\{1,2, \ldots, n\}$ and in which i and j are adjacent if $i<j \leq m_{i}$.

Example. If $m_{i}=i+1$ for all i then $G(\mathbf{m})$ is a path.

Classification of indifference graphs

Let $\mathbf{m}=\left(m_{1}, \ldots, m_{n-1}\right)$ be a weakly increasing sequence of integers such that $i \leq m_{i} \leq n$ for all i.

Example. If $n=3$ then $\mathbf{m} \in\{(1,2),(1,3),(2,2),(2,3),(3,3)\}$.
Let $G(\mathbf{m})$ be the graph with vertex set $\{1,2, \ldots, n\}$ and in which i and j are adjacent if $i<j \leq m_{i}$.

Example. If $m_{i}=i+1$ for all i then $G(\mathbf{m})$ is a path.
Fact (implicit in the literature, explicit in Shareshian-Wachs). $G(\mathbf{m})$ is an indifference graph, and every indifference graph is isomorphic to some $G(\mathbf{m})$.

Hessenberg varieties

A complete flag in an n-dimensional vector space V is a nested sequence of subspaces $F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{n}=V$ such that $\operatorname{dim} F_{i}=i$ for all i. The set of all complete flags forms a space called the complete flag variety.

Hessenberg varieties

A complete flag in an n-dimensional vector space V is a nested sequence of subspaces $F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{n}=V$ such that $\operatorname{dim} F_{i}=i$ for all i. The set of all complete flags forms a space called the complete flag variety.

Let $\mathbf{m}=\left(m_{1}, \ldots, m_{n-1}\right)$ be a weakly increasing sequence of integers such that $i \leq m_{i} \leq n$ for all i.

Hessenberg varieties

A complete flag in an n-dimensional vector space V is a nested sequence of subspaces $F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{n}=V$ such that $\operatorname{dim} F_{i}=i$ for all i. The set of all complete flags forms a space called the complete flag variety.

Let $\mathbf{m}=\left(m_{1}, \ldots, m_{n-1}\right)$ be a weakly increasing sequence of integers such that $i \leq m_{i} \leq n$ for all i.

Definition (De Mari-Procesi-Shayman). Let s be an $n \times n$ matrix. The Hessenberg variety $\mathscr{H}(\mathbf{m}, s)$ is defined by

$$
\mathscr{H}(\mathbf{m}, s):=\left\{\text { complete flags such that } s F_{i} \subseteq F_{m_{i}} \text { for all } i .\right\}
$$

If s is diagonalizable, we say $\mathscr{H}(\mathbf{m}, s)$ is semisimple. If the Jordan blocks of s have distinct eigenvalues, we say $\mathscr{H}(\mathbf{m}, s)$ is regular.

The dot action

Diagonal matrices form a torus T that acts on $\mathscr{H}(\mathbf{m}, s)$.
Hessenberg varieties have no odd-dimensional cohomology, so in particular, Goresky-Kottwitz-MacPherson theory tells us that the T-equivariant cohomology can be completely described by a combinatorial object called the moment graph.

The vertices of the moment graph are the T-fixed points and the edges are the one-dimensional T-orbits.

The dot action

Diagonal matrices form a torus T that acts on $\mathscr{H}(\mathbf{m}, s)$.
Hessenberg varieties have no odd-dimensional cohomology, so in particular, Goresky-Kottwitz-MacPherson theory tells us that the T-equivariant cohomology can be completely described by a combinatorial object called the moment graph.

The vertices of the moment graph are the T-fixed points and the edges are the one-dimensional T-orbits.

Ordinary cohomology is a quotient of equivariant cohomology. Tymoczko defined an action, the dot action, of the symmetric group on the cohomology of a regular semisimple Hessenberg variety $\mathscr{H}(\mathbf{m}, s)$. The action depends only on \mathbf{m} and not on the choice of regular semisimple s.

Linchpin of proof

Theorem. Let λ be a partition of n. Let $S_{\lambda}:=S_{\lambda_{1}} \times \cdots \times S_{\lambda_{\ell}}$ be a Young subgroup of S_{n}. Let s be a regular matrix with Jordan type λ. Then the dimension of the subspace of $H^{2 d}$ fixed by S_{λ} under the dot action on a regular semisimple Hessenberg variety equals the Betti number $\beta_{2 d}$ of $\mathscr{H}(\mathbf{m}, s)$.

Linchpin of proof

Theorem. Let λ be a partition of n. Let $S_{\lambda}:=S_{\lambda_{1}} \times \cdots \times S_{\lambda_{\ell}}$ be a Young subgroup of S_{n}. Let s be a regular matrix with Jordan type λ. Then the dimension of the subspace of $H^{2 d}$ fixed by S_{λ} under the dot action on a regular semisimple Hessenberg variety equals the Betti number $\beta_{2 d}$ of $\mathscr{H}(\mathbf{m}, s)$.

Standard fact. The dimensions of the above fixed subspaces are the coefficients of the monomial symmetric function expansion.

Therefore the above theorem reduces the computation of the dot action to the computation of regular (but not necessarily semisimple) Hessenberg varieties.

The combinatorial part of the proof

Tymoczko has already obtained a combinatorial description of the cohomology of $\mathscr{H}(\mathbf{m}, s)$ for all s.

The combinatorial part of the proof

Tymoczko has already obtained a combinatorial description of the cohomology of $\mathscr{H}(\mathbf{m}, s)$ for all s.

Connecting Tymoczko's work to X_{G} takes two steps.

1. We generalize a combinatorial reciprocity theorem of Chow to obtain a combinatorial description of the coefficients in the monomial symmetric function expansion.

The combinatorial part of the proof

Tymoczko has already obtained a combinatorial description of the cohomology of $\mathscr{H}(\mathbf{m}, s)$ for all s.

Connecting Tymoczko's work to X_{G} takes two steps.

1. We generalize a combinatorial reciprocity theorem of Chow to obtain a combinatorial description of the coefficients in the monomial symmetric function expansion.
2. We describe an explicit bijection between our combinatorial description and Tymoczko's combinatorial description when s is regular.

The combinatorial part of the proof

Tymoczko has already obtained a combinatorial description of the cohomology of $\mathscr{H}(\mathbf{m}, s)$ for all s.

Connecting Tymoczko's work to X_{G} takes two steps.

1. We generalize a combinatorial reciprocity theorem of Chow to obtain a combinatorial description of the coefficients in the monomial symmetric function expansion.
2. We describe an explicit bijection between our combinatorial description and Tymoczko's combinatorial description when s is regular.

Corollary. The Betti numbers of a regular Hessenberg variety form a palindromic sequence. (Follows from a theorem of Shareshian and Wachs. Note that regular Hessenberg varieties are not smooth, and the corollary is not true if s is not regular. This corollary has since been generalized to other types by Precup.)

The geometric part of the proof

A monodromy argument relates the S_{λ} invariants to a space of local invariant cycles.

Work of Beilinson-Bernstein-Deligne on perverse sheaves then implies that there is a surjection from the cohomology of regular Hessenberg varieties to the space of local invariant cycles.

The geometric part of the proof

A monodromy argument relates the S_{λ} invariants to a space of local invariant cycles.

Work of Beilinson-Bernstein-Deligne on perverse sheaves then implies that there is a surjection from the cohomology of regular Hessenberg varieties to the space of local invariant cycles.

We then show that the palindromicity of the Betti numbers implies that the surjection is actually an isomorphism.

The geometric part of the proof

A monodromy argument relates the S_{λ} invariants to a space of local invariant cycles.

Work of Beilinson-Bernstein-Deligne on perverse sheaves then implies that there is a surjection from the cohomology of regular Hessenberg varieties to the space of local invariant cycles.

We then show that the palindromicity of the Betti numbers implies that the surjection is actually an isomorphism.

Note. Abe-Harada-Horiguchi-Masuda previously carried out a similar argument in the special case of regular nilpotent s.

BACKUP SLIDES

The moment graph

Example on right: $n=3, m_{i}=i+1$.

- The vertices are the permutations of $\{1,2, \ldots, n\}$.
- A transposition (i, j) is admissible if $i<j \leq m_{i}$. For $m_{i}=i+1$, these are the adjacent transpositions.
- Two permutations are adjacent if they differ by an admissible transposition on positions.
- An edge is labeled with $t_{i}-t_{j}$
 where i and j are the transposed numbers.

The dot action

- An equivariant cohomology class c is an assignment of a polynomial $c(w)$ in the t 's to each vertex w such that polynomials on adjacent vertices differ by a multiple of the edge label.

The dot action

- An equivariant cohomology class c is an assignment of a polynomial $c(w)$ in the t 's to each vertex w such that polynomials on adjacent vertices differ by a multiple of the edge label.
- If $\sigma \in S_{n}$ then $(\sigma c)(w)$ is obtained by taking $c\left(\sigma^{-1} w\right)$ (where $\sigma^{-1} w$ means letting σ^{-1} act on the numbers of w) and then applying σ to the subscripts of the t 's.

The dot action

- An equivariant cohomology class c is an assignment of a polynomial $c(w)$ in the t 's to each vertex w such that polynomials on adjacent vertices differ by a multiple of the edge label.
- If $\sigma \in S_{n}$ then $(\sigma c)(w)$ is obtained by taking $c\left(\sigma^{-1} w\right)$ (where $\sigma^{-1} w$ means letting σ^{-1} act on the numbers of w) and then applying σ to the subscripts of the t 's.
- Equivariant cohomology classes comprise a free module over $\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$. Write down matrices for the above representation with respect to some basis, and then take the constant terms of the entries to get the dot action on the cohomology.

