
The purpose of this note is to give a combinatorial proof that for any indifference
graph G, the set

PG := {λ : ⟨XG, sλ⟩ ̸= 0}

of partitions λ such that the coefficient of sλ in the Schur-function expansion of XG is
nonzero has a unique maximal element µ in dominance order.

For the proof, it is useful to think of the vertices of G as represented explicitly by a
finite set of closed unit intervals in the real line. From now we use the terms “vertex” and
“unit interval” interchangeably. Let vi denote the ith unit interval, counting from the left.
The following algorithm is crucial.

First Fit Coloring Algorithm. Assign a color (i.e., a positive integer) to each vi
as follows. Go through the vertices in the order v1, v2, v3, etc., and at each step, assign
to the current vi the smallest available color, i.e., the smallest color that has not already
been assigned to some vj that overlaps with vi. Let f denote the coloring so obtained; i.e.,
for every vertex v, let f(v) be the color assigned to v by the First Fit Coloring Algorithm.

Example. If G is a path, then the First Fit Coloring Algorithm will assign colors
1, 2, 1, 2, 1, . . . to the vertices.

Definition. Given a coloring c of G, let shape(c) be the sequence whose kth element
is the number of vertices v ∈ G such that c(v) = k.

Example. If G is a path with n vertices, then shape(f) is the sequence ⌈n/2⌉, ⌊n/2⌋.

Theorem 1. shape(f) is the unique maximum element of PG in dominance ordering.

At the moment it is not even obvious that shape(f) is a weakly decreasing sequence,
but this will follow as a corollary of the following theorem.

Theorem 2. Let c be any coloring of G. Then shape(f) ≥ shape(c).

Proof. Let u be the leftmost unit interval such that c(u) ̸= f(u). We now construct
another coloring c′ such that

1. c′(v) = f(v) for all v weakly to the left of u, including u itself, and

2. shape(c′) ≥ shape(c).

This will prove the theorem, because iterating the procedure will eventually produce f ,
and at each step, the shape will increase in dominance order.

Note first that c(u) > f(u) since if c(u) were less than f(u) then the First Fit Coloring
Algorithm would have assigned the smaller color c(u) to u. We tentatively construct c′(u)
by setting c′(v) = c(v) for all v except v = u and to set c′(u) = f(u). If this results in
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a legal coloring c′ then we stop. Otherwise, u overlaps with some v further to the right
such that c(v) = f(u). The geometry of unit intervals implies that there is at most one
such v (if there were more than one then they would themselves overlap and c could not
assign them both the same color) so if this happens, we set c′(v) = c(u). Again, we stop
if c′ is now a legal coloring. If c′ is not legal, then the only possible problem is that there
is another unit interval w overlapping with v to the right of v such that c(w) = c(u), and
if this happens then we set c′(w) = f(u). We continue the process in the obvious way;
it must terminate because we are moving further and further to the right at each step.
The end result is that c′ agrees with c except that the colors of some unit intervals have
switched from c(u) to f(u) or vice versa. The number that switch from c(u) to f(u) is
either equal to or one more than the number that switch from f(u) to c(u), and since
c(u) > f(u), it follows that shape(c′) ≥ shape(c). This completes the proof.

The property asserted by Theorem 2, that there exists a coloring of the graph whose
shape dominates that of every other coloring, is something that I’m sure has come up
in the literature before, but it seems surprisingly hard to track down references. Years
ago, I formulated a conjecture that a certain class of graphs has this property, and that
conjecture is still open to this day. I remember that when I first formulated that conjecture,
I similarly had a hard time tracking down references.

Anyway, given Theorem 2, it follows that shape(f) is weakly decreasing, because
otherwise we could permute the colors to obtain another coloring f ′ with shape(f ′) weakly
decreasing and shape(f ′) would strictly dominate shape(f).

This means that if we construct a P -array by taking the vertices of G one at a time
from left to right and appending it to the end of the first row that we can, then at each
stage we maintain the shape of a Young diagram (i.e., the row lengths weakly decrease),
because we are just applying the First Fit Coloring Algorithm to the subgraph formed by
an initial segment of the unit intervals.

Finally, we note that the resulting P -array is actually a P -tableau. A violation of the
column constraint would mean u directly below v with the unit interval u being to the left
of the unit interval v, but this is not possible because v must be placed earlier than u in
the First Fit Coloring Algorithm, and therefore v must lie weakly to the left of u.

Thus there exists a P -tableau with shape equal to shape(f). The shape of any other
P -tableau is equal to shape(c) for some coloring c and is therefore dominated by shape(f).
This proves Theorem 1.
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