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This is a proposed problem for the American Mathematical Monthly.

1 Problem Statement

Andrew and Barbara are competing in a curious Easter-egg hunt. There are n
boxes numbered 1 to n, of which the organizers have randomly chosen k to put
Easter eggs in. To play, a contestant submits a permutation π : {1, 2, . . . , n} →
{1, 2, . . . , n}. The smallest i for which the box numbered π(i) contains an Easter
egg is the contestant’s score, and the contestant with the smallest score wins
(ties are possible).

(a) Suppose Barbara learns what Andrew’s permutation is before submitting
her own. What permutation should she choose to maximize her chances of
beating Andrew?

(b) Say that a permutation π is fair if, regardless of the value of k, π is
equally likely to win or lose against the identity permutation. Show that π is
fair if and only if it is balanced, meaning that for every i, π(i) > i if and only if
π−1(i) > i.

(c) Deduce that if fn is the number of fair permutations of n, and we adopt
the convention that f0 = 1, then

∞
∑

n=0

fn

xn

n!
= ex secx.

(d) Suppose there are a thousand boxes arranged in ten rows of a hundred
boxes each. Andrew decides to search the boxes row by row, starting with the
top row, and searching from left to right within each row. Barbara decides to
search the boxes column by column, starting with the leftmost column, and
searching from top to bottom within each column. Which player is more likely
to win?

2 Solution

(a) Assume without loss of generality that Andrew’s permutation is the identity
permutation. Then as long as k 6= n, Barbara’s best choice is unique:

π := (π(1), π(2), . . . , π(n)) = (2, 3, 4, . . . , n, 1).

(Of course if k = n then whatever permutation Barbara chooses, the outcome
will be a tie.) With this choice of π, Barbara wins if and only if box 1 does not

contain an Easter egg. Barbara cannot do better than this, because whenever
box 1 does contain an Easter egg, then no matter what permutation Barbara
chooses, she cannot do better than tie. Furthermore, in order to win whenever
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box 1 does not contain an Easter egg, Barbara must look in box 2 first in order
to clinch the scenarios in which box 1 does not contain an Easter egg but box 2
does. Similarly, she must look in box 3 next, and so on down the line.

Note that the above argument is robust in the sense that it goes through
even if the Easter eggs are not distributed uniformly.

(b) Let π be a permutation of {1, 2, . . . , n}. Our proof uses the concept of
the π-transform Ŝ of a subset S ⊆ {1, 2, . . . , n}, which we now define. First, let

Σ := {(i, 0) : π(i) = i} ∪ {(i,−1) : i < π(i)} ∪ {(i, +1) : π−1(i) > i}.

(Since ordered pairs are notationally clumsy, from now on we write i0, i+, and i−
instead of (i, 0), (i, +1) and (i,−1).) Equivalently, Σ contains the symbol i0 if
i is a fixed point of π (i.e., π(i) = i), the symbol i− if i is a upgrade of π (i.e.,
π−1(i) < i < π(i)), the symbol i+ if i is a downgrade of π (i.e., π−1(i) > i >
π(i)), and both the symbols i− and i+ if i is a valley of π (i.e., π−1(i) > i < π(i)).

Given S ⊆ {1, 2, . . . , n}, we define Ŝ to be the following subset of Σ:

Ŝ := {i0 : i ∈ S and π(i) = i} ∪ {i− : i ∈ S and i < π(i)}

∪ {i+ : π−1(i) ∈ S and π−1(i) > i}.

In words, we take each element i ∈ S in turn and consider j := π(i); if i = j,
then we put i0 in Ŝ; if i < j, then we put i− in Ŝ; if i > j, then we put j+ (note:
not i+) in Ŝ. It is easy to check that the map S 7→ Ŝ is a cardinality-preserving
bijection from the set of all subsets of {1, 2, . . . , n} to the set of all subsets of Σ.

The point of the π-transform is that if S is the set of boxes containing Easter
eggs, then we can easily read off from Ŝ whether π wins or loses or ties against
the identity permutation. Intuitively, Ŝ “remembers,” for each i ∈ S, whether
i or π(i) is smaller, and this information is all we need. More precisely, let i be
the smallest number appearing in Ŝ (meaning that i0 ∈ Ŝ or i− ∈ Ŝ or i+ ∈ Ŝ).
Then one readily verifies that

1. if i0 ∈ Ŝ, or if both i− and i+ are in Ŝ, then π ties;

2. if i− ∈ Ŝ but i+ /∈ Ŝ, then π wins;

3. if i+ ∈ Ŝ but i− /∈ Ŝ, then π loses.

Let us now assume that π is balanced and argue that π is fair. It follows from
the definition that a balanced permutation contains no upgrades or downgrades.
Now fix any k. We give a bijection φ between the set Wk of π-transforms of
winning k-element subsets and the set Lk of π-transforms of losing k-element
subsets. If Ŝ ∈ Wk, then the smallest number i appearing in Ŝ appears as i− but
not as i+. So let φ(Ŝ) be the set we obtain from Ŝ by replacing i− with i+. This
definition makes sense because i must be a valley, and hence Σ contains both
i− and i+. It is easy to see that φ is a bijection (a “sign-reversing involution”
if you like) between Wk and Lk.

Conversely, suppose that π is not balanced. Then π must contain a upgrade
or a downgrade. Let i be the smallest upgrade or downgrade. If there are f
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fixed points and v valleys smaller than i, then let k = n−f −2v. We claim that
|Wk| 6= |Lk|. If Ŝ is a k-element subset of Σ that does not yield a tie, then the
smallest number i′ appearing in Ŝ is either i or a valley that is smaller than i.
For any valley z, the wins and losses with i′ = z are equinumerous, by the same
sign-reversing-involution argument (i′

−
↔ i′+) as before. All that remains is the

unique k-element set Ŝ for which i′ = i, and this Ŝ yields either a win or a loss
(according to whether i is a upgrade or a downgrade), and not a tie. So for this
value of k, the total wins and losses are not equinumerous; that is, π is not fair.

(c) It is easy to see that if π is a balanced permutation, then each cycle of π
is either a fixed point or an alternating cycle of even length, meaning that if z
is the largest element of the cycle, then

z > π(z) < π(π(z)) > π(π(π(z))) < · · · < z.

By deleting z, we see that the number of ways to arrange a fixed set of 2m
elements into an alternating cycle of length 2m equals the number of alternating
permutations σ of length 2m − 1, by which we mean that

σ(1) < σ(2) > σ(3) < · · · > σ(2m − 1).

If a2m−1 is the number of alternating permutations of length 2m− 1, then it is
a standard result [1, page 149] that

∞
∑

m=1

a2m−1
x2m−1

(2m − 1)!
= tan x.

Therefore the exponential generating function for alternating cycles of even
length is

∞
∑

m=1

a2m−1
x2m

(2m)!
=

∫

tan x dx = ln secx.

So the exponential generating function for the kinds of cycles appearing in a
balanced permutation is x + ln sec x (the x accounts for fixed points), and by
standard generatingfunctionology, the exponential generating function for bal-
anced permutations is therefore exp(x + ln sec x) = ex sec x.

We remark that if n = 2m is even, then the number of fair permutations is
twice the number of Salié permutations, which are permutations σ such that for
some r ≤ m,

σ(1) < σ(2) > σ(3) < · · · < σ(2r)

and
σ(2r) < σ(2r + 1) < σ(2r + 2) < · · · < σ(2m).

It would interesting to construct an explicit 2-to-1 map from fair permutations
to Salié permutations.

(d) Andrew is more likely to win, unless k = 1 or 981 < k ≤ 1000, in which
case both players are equally likely to win.
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We number the boxes so that Andrew’s search order is given by the identity
permutation, but instead of numbering the boxes from 1 to 1000, we number
them from 000 to 999. That is, the boxes are labeled with three-digit base-ten
numbers abc. With this notation, Barbara’s permutation π is simply a right
circular shift; i.e., π(abc) = cab. Then we see that abc is an upgrade if and only
if c ≥ a > b, and abc is a downgrade if and only if c ≤ a < b.

If i is a downgrade (respectively, an upgrade), then let Ai (respectively, Bi)
be the set of k-element subsets Ŝ ⊆ Σ such that i is the smallest number appear-
ing in Ŝ. The sets Ai (respectively, Bi) are winners for Andrew (respectively,
Barbara). As explained in the solution to part (b) above, all other k-element
subsets of Σ either tie or cancel out by a sign-reversing involution, so to show
that Andrew’s chances are at least as good as Barbara’s, it suffices to exhibit
a bijective map φ from the set of downgrades to the set of upgrades such that
|Ai| ≥ |Bφ(i)| for all downgrades i.

If abc is a downgrade, then let φ(abc) = a′b′c′ where a′ = a + 1, b′ = c, and
c′ = b. Note that a′ ≤ 9 because a < b ≤ 9, so a′b′c′ is indeed a three-digit
number. Moreover, c′ ≥ a′ > b′ so φ(abc) is an upgrade. Similarly, given an
upgrade, we can decrement the leading digit and swap the two remaining digits
to obtain a downgrade; this map is clearly the inverse of φ, so φ is indeed a
bijection as claimed.

By construction, φ has the property that i < φ(i) for all downgrades i. It
follows that |Ai| ≥ |Bφ(i)| for all downgrades i, because the size of Ai (or Bi) is

just
(

m
k−1

)

where m is the number of elements of Σ larger than i. Finally, note
that 000 is a fixed point and that 001, 002, . . . , 009 are valleys, so there are 20
elements of Σ less than or equal to the upgrade 010. Hence

|A010| =

(

1000− 20

k − 1

)

=

(

980

k − 1

)

,

which is strictly greater than |Bφ(010)| = |B101| as long as 0 < k − 1 ≤ 980.
Thus Andrew has an advantage over Barbara provided 1 < k ≤ 981. On the
other hand if k > 981 then there are no sets Ai or Bi, and if k = 1 then
|Ai| = |Bφ(i)| = 1 for all downgrades i; in either case, Andrew and Barbara
have equal chances of winning.
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