
The Erasing Marks Conjecture (Timothy Y. Chow, December 2019)

The Stanley–Stembridge e-positivity conjecture for (3+ 1)-free posets is still open as
of this writing but has been proved in some special cases. In particular, in his 1995 paper,
Stanley already proved it for a graph that is a path. However, even in this case, I know of
no explicit description of a basis for equivariant cohomology with the property that the dot
action simply permutes the basis elements. An inductive construction can be extracted
from C. Procesi’s paper, “The toric variety associated to Weyl chambers” (Mots, Lang.
Raison. Calc., Hermès, Paris, 1990, pp. 153–161), but it is not very explicit.

In 2015, I formulated (a slightly messier version of) the conjecture below. NOTE

ADDED IN LATE 2020: The conjecture has been proved by Cho–Hong–Lee,

arXiv:2008.12500.

Let Sn denote the symmetric group.

Definition. A mark set is a subset m := {m1,m2, . . . ,mk} ⊂ {1, 2, . . . , n − 1}. By
convention we assume that m1 < m2 < · · · < mk.

Definition. Given a mark set m, let Y (m) denote the Young subgroup

Sm1
× Sm2−m1

× Sm3−m2
× · · · × Sn−mk

.

Let Y (m) act on Sn on the right (i.e., on positions). Call the orbits of this action m-orbits.

Example. Let n = 9 and let m = {1, 2, 4, 7, 8}. If we write elements of Sn in one-line
notation then we can visualize each mi as “marking” the space between the mith and
the (mi + 1)st letter (with a vertical bar, say), and we can visualize Y (m) as permuting
elements between marks. So the following elements of Sn are in the same m-orbit:

3|6|85|947|1|2 ∼ 3|6|58|497|1|2

Definition. If π ∈ Sn and m is a mark set, let p(π,m) be the polynomial in t defined by
the formula

p(π,m) :=
k
∏

i=1

(

tπ(mi) − tπ(mi+1)

)

.

Definition. If m is a mark set then its erasure e(m) is the mark set defined by

e(m) := {i ∈ m : i 6= 1 and i− 1 /∈ m}.

Erasing Marks Conjecture. For each mark set m and each e(m)-orbit C, define an
equivariant cohomology class of a regular semisimple permutahedral Hessenberg variety
(i.e., hi = i + 1 for all i) by putting (on the moment graph) p(π,m) at every π ∈ C, and
putting 0 at every other vertex. Then these classes form a basis for equivariant cohomology.
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Remark. The conjecture explicitly associates a tabloid representation to each acyclic
orientation O of a path with n vertices. Number the edges 1, 2, . . . , n − 1 from left to
right, and let m be the set of edges that are oriented from left to right. The cardinality
of m is the number of ascents, and it is not hard to show that the cardinality of e(m) is
the number of sinks minus one. If λ is the type of the Young subgroup Y (e(m)) then we
associate to O the tabloid representation Mλ. Note that ℓ(λ) equals the number of sinks.

We now show, using a result of J. R. Stembridge, “Eulerian numbers, tableaux, and the
Betti numbers of a toric variety” (Discrete Math. 99 (1992), 307–320), that the conjectured
basis has the correct cardinality n!, so it “only” remains to show that the vectors are a
spanning set.

Definition. For any finite sequence α of nonnegative integers, let its support S(α) be the
set of positive integers occurring in α. Say that α is admissible if either S(α) is empty or
S(α) = {1, 2, . . . , k} for some positive integer k.

Definition. A code is an ordered pair (α, f), where α is an admissible finite sequence of
nonnegative integers, and f is a integer-valued function on S(α) such that for all i ∈ S(α),
1 ≤ f(i) < µi, where µi is the number of occurrences of i in α.

If (α, f) is a code, note that µi ≥ 2 for all i ∈ S(α); i.e., every positive integer must
occur at least twice in α if it appears at all. It is convenient to represent a code by writing
down α and then, for each i ∈ S(α), putting a hat on the (f(i) + 1)st occurrence of i.

Example. The codes of length 3 are 000, 011̂, 101̂, 11̂0, 11̂1, 111̂.

Example. The codes of length 4 are 0000, 0011̂, 0101̂, 011̂0, 1001̂, 101̂0, 11̂00, 011̂1, 101̂1,
11̂01, 11̂10, 0111̂, 1011̂, 1101̂, 111̂0, 11̂11, 111̂1, 1111̂, 11̂22̂, 121̂2̂, 122̂1̂, 211̂2̂, 212̂1̂, 22̂11̂.

The following theorem is an immediate corollary of Theorem 1.1 in the aforementioned
paper by Stembridge.

Theorem. The number of codes of length n is n!.

If (α, f) is a code, say that (α′, f) is a shuffle of (α, f) if α′ is a reordering of α. Note
that every shuffle of a code is also a code. We say that two codes are in the same shuffle

equivalence class if one is a shuffle of the other. If, as above, we let µi denote the number
of occurrences of i in (α, f), then the number of codes in the shuffle equivalence class of
(α, f) is the multinomial coefficient

(

n
µ0,µ1,µ2,...

)

.

In the setting of the Erasing Marks Conjecture, let m be a mark set and let e(m) =
{e1, . . . , er} be its erasure, where e1 < e2 < · · · < er. (If e(m) is empty then r = 0.) By
convention, set e0 = 0 and er+1 = n. Define the block lengths ℓ0, ℓ1, . . . , ℓr of e(m) by
ℓi := er−i+1− er−i. (This “backward” numbering of the block lengths may look unnatural
but it will simplify things later.) Then the number of e(m)-orbits is the multinomial
coefficient

(

n
ℓ0,ℓ1,ℓ2,...

)

.
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Therefore, to show that our conjectured basis has cardinality n!, it suffices to exhibit
a bijection from mark sets m to shuffle equivalence classes of codes with the property that
the block sizes of e(m) coincide with the multiplicities of the integers in the code.

Before describing the bijection, we make some preliminary observations. A shuffle
equivalence class of codes is uniquely determined by the values of µi and the function f .
Conversely, if we specify any nonnegative integers µ0, µ1, µ2, . . . that sum to n, along with
positive integers f(i) satisfying 1 ≤ f(i) < µi for all i ≥ 1, then there exists some shuffle
equivalence class that gives rise to these values. Thus we may identify a shuffle equivalence
class with a set of values of µi and f(i) with these properties.

Next, let us compare the structures ofm and e(m). Note first that ℓi ≥ 2 for 1 ≤ i ≤ r,
because if m contains consecutive integers then the larger one gets “erased” when we pass
to e(m). For similar reasons, if 1 ≤ i ≤ r, then between er−i and er−i+1 there can be
at most ℓi − 2 elements of m, and any such elements of m must comprise a consecutive
sequence er−i+1, er−i+2, er−i+3, . . . . The case i = 0 is special; any elements of m larger
than er must still comprise a consecutive sequence er + 1, er + 2, er + 3, . . . , but there can
be up to ℓ0 − 1 such elements of m.

It follows that a mark set m is uniquely characterized by e(m) together with integers
j0, j1, . . . , jr, where j0 ≤ ℓ0− 1 and ji ≤ ℓi− 2 for 1 ≤ i ≤ r. The number ji represents the
number of elements of m between er−i and er−i+1. Moreover, if we choose any positive
integers ℓ0, ℓ1, . . . , ℓr summing to n such that ℓi ≥ 2 for 1 ≤ i ≤ r, and we specify any
nonnegative integers j0, j1, . . . , jr such that j0 ≤ ℓ0 − 1 and ji ≤ ℓi − 2 for 1 ≤ i ≤ r, then
there is some mark set that gives rise to these numbers.

We see that the data needed to specify a shuffle equivalence class is very similar to
the data needed to specify a mark set (think µ ↔ ℓ and f ↔ j+1), except that µ0 can be
zero while ℓ0 ≥ 1, and there is no such thing as f(0) whereas there does exist j0.

To describe the desired bijection from mark sets to shuffle equivalence classes, we split
into two cases.

Case 1. j0 = 0. To specify the corresponding shuffle equivalence class, we set µi := ℓi for
0 ≤ i ≤ r. For 1 ≤ i ≤ r, set f(i) := ji + 1.

Case 2. j0 ≥ 1. To specify the corresponding shuffle equivalence class, set µ0 := 0. For
1 ≤ i ≤ r, set µi := ℓi−1. Set f(1) := j0, and for 2 ≤ i ≤ r, set f(i) := ji−1 + 1.

It is straightforward to verify that this does indeed yield a bijection. Moreover, we
have the desired equality

(

n
ℓ0,ℓ1,ℓ2,...

)

=
(

n
µ0,µ1,µ2,...

)

.

Example. For n = 3, the correspondence is shown below.

ℓ0 = 3, j0 = 0 ↔ µ0 = 3

ℓ0 = 1, ℓ1 = 2, j0 = 0, j1 = 0 ↔ µ0 = 1, µ1 = 2, f(1) = 1

ℓ0 = 3, j0 = 1 ↔ µ0 = 0, µ1 = 3, f(1) = 1

ℓ0 = 3, j0 = 2 ↔ µ0 = 0, µ1 = 3, f(1) = 2
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