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Abstract—An unbiased m-sparsification of a vector p ∈ Rn

is a random vector Q ∈ Rn with mean p that has at most
m < n nonzero coordinates. Unbiased sparsification compresses the
original vector without introducing bias; it arises in various contexts,
such as in federated learning and sampling sparse probability
distributions. Ideally, unbiased sparsification should also minimize
the expected value of a divergence function Div(Q, p) that measures
how far away Q is from the original p. If Q is optimal in this
sense, then we call it efficient. Our main results describe efficient
unbiased sparsifications for divergences that are either permutation-
invariant or additively separable. Surprisingly, the characterization
for permutation-invariant divergences is robust to the choice of
divergence function, in the sense that our class of optimal Q for
squared Euclidean distance coincides with our class of optimal Q
for Kullback–Leibler divergence, or indeed any of a wide variety of
divergences.

Index Terms—federated learning, sparsification, unbiased estima-
tor, optimization

I. INTRODUCTION

Suppose we have a vector p ∈ Rn, and (possibly because of
memory or bandwidth limitations) we want to approximate it with
a vector Q ∈ Rn with at most m nonzero entries, where m < n.
The construction of Q is allowed to be randomized, and we want
Q to be the “best possible approximation” of p. “Best possible
approximation” will be defined precisely later, but at minimum,
we want the expected value of Q to equal p. Depending on our
application, we may also desire the stronger property that the sum
of the entries of Q should always equal the sum of the entries
of p. How should we construct Q?

We call this task efficient unbiased sparsification (EUS)—
sparsification, because the number of nonzero entries is reduced
from n to m; unbiased, because the expected value of Q equals p;
and efficient, in the statistical sense of diverging from p as little
as possible. The problem of efficient unbiased sparsification, or
something very close to it, arises in several different contexts.

1) In the context of sampling sparse probability distributions,
we have a discrete probability distribution p on n outcomes,
and we seek to randomly construct a sparse probability
distribution Q that has at most m nonzero probabilities. We
would like this construction to be unbiased, in the sense that
the average over the potential sparse probability distributions
should be the original distribution p, and for it to minimize
the expected statistical divergence between Q and p. One
natural choice of a divergence in this case would be the
standard Kullback–Leibler (KL) divergence.

2) In distributed statistical estimation [1], [2], [3], [4], statistical
samples are distributed across a number of client nodes that
must send bandwidth-limited messages to a central server.
The central server then performs statistical analyses using the
compressed versions of the samples. By sparsifying poten-
tially high-dimensional samples, they can be communicated
more efficiently to the central server. The constraint that

the sparsification be unbiased preserves statistical properties
such as the mean, while the efficiency of the sparsification
ensures that the compressed versions of the samples are not
too far from the original ones.

3) In the related field of federated learning [5], [6], client nodes
are trying to jointly train a machine learning model. In order
to facilitate the distributed training, minibatch gradients or
model updates need to be communicated between nodes so
that they can be aggregated into a combined model. For
large machine learning models, however, a single gradient
vector can be billions of parameters long, and sparsification
strategies can be deployed in order to reduce the associated
communication cost [7]. Notably, related works [8], [9], [10]
describe optimization objectives and their associated optimal
strategies that are similar to a special case of the present
work. They consider a “soft” sparsification constraint, where
the expected number of nonzero components can be at
most m, instead of the “hard” constraint that we use, and
they consider only the squared Euclidean distance as their
divergence.
In a slightly different optimization problem that occurs in
federated learning, n refers to the number of client nodes
instead of the dimension of the updates, and bandwidth
limitations force us to restrict the number m of clients
allowed to communicate in each round. Some clients have
more important updates, so the question arises of how to
pick clients in a way that respects their importance, while
minimizing the statistical distortion that restriction inevitably
causes. This problem also leads to a similar optimization
problem and is considered in [11].

4) In sampling with specified marginals [12], the goal is to
randomly choose a subset of m items from a population of
n > m items, in such a way that the inclusion probability of
item i (1 ≤ i ≤ n)—i.e., the probability that item i belongs
to the chosen m-element subset—is proportional to some
specified positive number pi. It turns out that for some sets
of numbers pi, it is impossible to achieve this goal exactly,
but we would still like to come as close as possible.

In this paper, we solve the EUS problem by setting up the
associated optimization problems, explicitly giving algorithms
that produce optimal random vectors Q, and, in some cases, by
describing the distributions of all random vectors Q that opti-
mize the objectives. We consider both permutation-invariant and
additively separable divergences, which we will define shortly.
Surprisingly, the characterization for permutation-invariant diver-
gences is robust to the choice of divergence function, in the sense
that our class of optimal Q for (say) squared Euclidean distance
coincides with our class of optimal Q for (say) Kullback–Leibler
divergence, or indeed any of a wide variety of divergences.

The space of unbiased m-sparsifications of a given p ∈ Rn may
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be thought of as an infinite-dimensional “simplex” [13, Section
III.8], which is a convex space in the sense that any mixture of
two unbiased m-sparsifications is an unbiased m-sparsification.
Expectation is linear, so we are minimizing a linear function
over a convex space. That might sound promising, but infinite-
dimensional objects are not so easy to work with. Indeed, it is not
even obvious that any EUS exists. We proceed by reducing to a
finite-dimensional, but not necessarily convex, problem. We then
develop novel techniques for proving that our algorithms describe
global minima for the finite-dimensional reductions.

A. Sampling with Specified Marginals

As preparation for describing our algorithm, we first look more
closely at the problem of sampling with specified marginals.
Assume first that

∑
i pi = m, and that pi ≤ 1 for all i. Then there

are many methods of randomly sampling an m-element subset T
of {1, 2, . . . , n} in such a way that the inclusion probability of
item i is equal to (and not just proportional to) pi. One method is
to partition a line segment of length m into n subintervals such
that the length of subinterval i is pi, and then choose x ∈ [0, 1)
uniformly at random, and finally let i ∈ T if and only if x+j lies
in subinterval i for some integer j. We leave it to the reader to
check that this method does indeed work. Tillé [12] gives many
other methods, including one that maximizes entropy.

Now, let us re-examine the assumptions that
∑

i pi = m and
pi ≤ 1 for all i. Given a probability distribution on m-element
subsets, let si denote the inclusion probability of item i. Recall
that in our original problem the marginal inclusion probabilities
si were only required to be proportional to pi, and not necessarily
equal to pi. By linearity of expectation, the sum of the si
equals the expected total number of elements chosen—which
in this case is precisely m. It follows that for there to exist
a probability distribution on m-element subsets that achieves
inclusion probabilities proportional to the given numbers pi, a
necessary condition is that if the pi are rescaled so that they sum
to m, then each rescaled pi must be equal to si, and in particular
must be at most 1. In other words, if for any i,

pi >
1

m

n∑
j=1

pj , (1)

then it is impossible to sample with the specified marginals. What
is one supposed to do in this case?

Of course, one option is to simply issue an error message
and give up. However, Tillé [12, Section 2.10] offers a different
approach. If the largest pi is “too big”—meaning that it satisfies
(1)—then item i is automatically granted membership in our
chosen set of m items. We are thus reduced to choosing m − 1
items from the remaining set of n − 1 candidates. Again, if
the largest remaining pi is “too big” then it is automatically
included. This process is iterated until we reach a set of pi for
which sampling with the specified marginals becomes possible.
Motivated by Tillé’s procedure, we make the following definition.

Definition I.1. Given a sequence of positive real numbers ar-
ranged (without loss of generality) in weakly decreasing order
p1 ≥ p2 ≥ · · · ≥ pn, and a positive integer m < n, we say that
index i is m-heavy if

n∑
j=i+1

pj ≤ (m− i)pi. (2)

If i is not m-heavy then we say it is m-light.

Adding pi to both sides of (2) shows that if i is m-heavy, then
n∑

j=i

pj ≤ (m− i)pi + pi = (m− (i− 1))pi ≤ (m− (i− 1))pi−1;

i.e., i−1 is also m-heavy. So there is some threshold h up to which
all the i are m-heavy and beyond which all the i are m-light. In
practice, the fastest way to locate this threshold is probably by
binary search.

As an alternative formulation of the same concept, consider the
constant of proportionality r = m−h∑

i>h pi
such that si = rpi for

light i. By the above definition i is heavy if and only if rpi ≥ 1.
So for any i we will have si = min(rpi, 1). But we must also
satisfy

∑
i si = m. It is clear that

M(r) :=

n∑
i=1

min(rpi, 1)

is a piecewise-linear, continuous, increasing function of r with
M(0) = 0 and M(r) = n iff r ≥ 1/min(pi), so there is a
unique r such that M(r) = m < n. Then the heavy indices are
precisely {i : pi ≥ 1/r}.

B. Efficient Unbiased Sparsification

In order to state our main results, we must first give more
precise definitions of unbiased sparsification and divergences.

Definition I.2. Write I(v) = {i | vi ̸= 0} for the set of indices
of nonzero coordinates of v ∈ Rn, which we sometimes refer to
as the survivor set of v. If p = (p1, . . . , pn) ∈ Rn and m is a
positive integer such that |I(p)| > m, then a random vector Q =
(Q1, . . . , Qn) ∈ Rn is an unbiased (random) m-sparsification
of p if
a) |I(Q)| ≤ m (i.e., Q is m-sparse) and
b) E[Q] = p (i.e., Q is an unbiased estimate of p).

In some cases we may want Q to satisfy additional properties.
For instance, if p lies in the probability simplex (pi > 0 and∑

i pi = 1) then it is natural to require the same of Q. In
this paper we consider only two cases: either p and Q are both
constrained to lie in the simplex or they are both unconstrained in
Rn (except for the above sparsity and unbiasedness constraints).

When we say that an unbiased m-sparsification Q of p is
efficient, we mean that it minimizes E[Div(Q, p)] among all
unbiased m-sparsifications of p, where Div is a given divergence
function. But what exactly is a divergence function? There are
many different notions of divergence in the literature [14]; while
we are not able to handle every such notion, our results cover
two wide classes of functions.

Definition I.3. Let X be a convex subset of Rn and let Div :
X × X → R be a function. For fixed p, we write D for the
function D(q) := Div(q, p).

1) Div is convex if for every fixed p, D is a convex function of
q. We say Div is strictly convex if D is twice differentiable1

and its Hessian matrix is positive definite everywhere.

1“Twice differentiable” means that the second-order Fréchet derivative exists
everywhere [15, Chapter VIII, Section 12]. In the literature, F is not always
assumed to be twice differentiable, but then strange things can occur [16] that
we prefer to ignore in this paper. We should also emphasize that when we say
that Div is “strictly convex”, we require only that D is strictly convex for each
fixed p, and not that Div is a strictly convex function jointly in q and p.
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Fig. 1: Illustrations of US-PI over the probability simplex when
n = 3 and m = 2.

2) Div is additively separable if for every fixed p there are
functions f1, . . . , fn (possibly depending on p) such that

D(q) =

n∑
i=1

fi(qi). (3)

3) Div is permutation-invariant if for every fixed p there is a
function F : X → R and α ∈ Rn (both possibly depending
on p) such that

Div(q, p) = F (q) + α · (q − p) (4)

and F is permutation-invariant in q; i.e., F (q) = F (σ(q))
where σ(q) := (qσ(1), . . . , qσ(n)) is any vector obtained
from q via a permutation σ of the coordinates.

Examples of divergences that are strictly convex, additively
separable, and permutation-invariant include squared Euclidean
distance

Div(q, p) = ∥q − p∥2 =
∑
i

(qi − pi)
2,

and the Kullback–Leibler divergence

Div(q, p) = DKL(q ∥ p) =
∑
i

qi log(qi/pi).

More generally, a Bregman divergence [14] by definition has the
form

Div(q, p) = F (q)− F (p)− (∇F (p)) · (q − p) (5)

for some strictly convex function F called the Bregman generator.
If F is additively separable (respectively, permutation-invariant
in q) then the Bregman divergence is additively separable (re-
spectively, permutation-invariant).

Similarly, any f -divergence

Div(q, p) =
∑
i

qif(pi/qi)

(for convex f ) is additively separable, but f -divergences are
not typically permutation-invariant. Note that our definition of
permutation-invariant may be somewhat counterintuitive; for in-
stance, the (un-squared) Euclidean distance Div(q, p) = ∥q − p∥
is not permutation-invariant by our definition (nor is it additively
separable).

In order to ensure that E[Div(Q, p)] makes sense for sparse
Q, we require that Div be defined (and finite) on the (closed)
orthant containing p. Our results still apply in many cases when
the derivatives of the divergence are infinite on the boundary (as
in the case of Kullback–Leibler divergence).

Our first main result, given in section II, is that for convex,
permutation-invariant divergences, efficient m-sparsifications of
p over the probability simplex are given by the following simple
algorithm.

Algorithm. Unbiased Sparsification for Permutation-
Invariant Divergences (US-PI).
Without loss of generality, reorder the coordinates of
p ∈ Rn

>0 so that p1 ≥ · · · ≥ pn > 0. Let H = {1, 2, . . . , h}
be the m-heavy indices and let

l :=
1

m− h

n∑
j=h+1

pj .

Sample m − h of the indices {h + 1, h + 2, . . . , n} with
specified marginals proportional to pi (h + 1 ≤ i ≤ n),
and call the sample set I . Return the vector Q ∈ Rn whose
coordinates are given by

Qi =


pi, if i ≤ h;
l, if i ∈ I;
0, otherwise.

Figure 1 illustrates the possible 2-sparsifications of p ∈ R3
>0

that may result from US-PI. In (a), p has no heavy indices and
so US-PI yields three possible values for the sparsifications of
p: (1/2, 1/2, 0), (1/2, 0, 1/2), and (0, 1/2, 1/2). In (b), the first
index of p is heavy, and so the algorithm yields only two possible
values for the sparsifications of p: (p1, 1−p1, 0) and (p1, 0, 1−p1).

This characterization has two remarkable features: first, the ef-
ficient sparsifications are independent of the divergence that is be-
ing optimized, beyond its convexity and permutation-invariance;
second, we find that the same random variable Q minimizes
the expected divergence even if we drop the simplex constraint∑

i Qi = 1. (Indeed, we conjecture that dropping the constraint
Qi ≥ 0 also does not change the optimal Q.)

Our second main result, given in section III, is a similar
characterization of the efficient sparsifications of p ∈ Rn in the
case where the divergence is convex and additively separable (but
not necessarily permutation-invariant). In this case the efficient
sparsifications do depend on the choice of divergence, and they
do not typically satisfy

∑
i Qi =

∑
i pi. On the other hand, for

additively separable divergences we can show that the efficient
sparsifications of p necessarily take on values in the same orthant
as p.

II. PERMUTATION-INVARIANT DIVERGENCES

Our first step is to use convexity to reduce the problem to
concentrated distributions, meaning they are supported on a finite
(and bounded) number of values. This allows us to give a finite-
dimensional parametrization of the problem.

Unfortunately, this parametrization is no longer convex as
stated. We nevertheless show that critical points of the Lagrangian
must correspond to efficient sparsifications.

Finally, we show that if Div is permutation-invariant then the
solutions corresponding to the random variable given by US-PI
are indeed critical points, yielding our desired result.



A. Facet Concentration

Here we fix p ∈ Rn
>0 and assume that Div(q, p) = D(q) is

convex. We also assume (without loss of generality) that
∑

i pi =
1, and we are interested in unbiased sparsifications Q of p which
also take values in the simplex ∆ = {x ∈ Rn | xi ≥ 0,

∑
i xi =

1}.
Throughout, the symbols I and J will represent subsets of

{1, 2, . . . , n} of cardinality m. For each I , let

∆I = {x ∈ Rn
≥0 | I(x) = I}

= {x ∈ Rn
≥0 | xi > 0 for i ∈ I, xi = 0 for i /∈ I}

be the (open) facet of ∆ consisting of the points whose nonzero
coordinates are those with indices in I . We note that the ∆I

are pairwise-disjoint convex bodies. An unbiased sparsification2

on ∆ is a random variable Q taking values in ∪I∆I such that
E[Q] = p.

Lemma 1 (Facet concentration). Assume that Div is convex, and
let Q be an m-sparsification of p ∈ Rn

>0. For each I with Pr(Q ∈
∆I) > 0, write qI := E[Q|Q ∈ ∆I ]. Then the sparsification Q′

such that Pr(Q′ ∈ ∆I) = Pr(Q ∈ ∆I) and Pr(Q′ = qI |Q′ ∈
∆I) = 1 satisfies E[Div(Q′, p)] ≤ E[Div(Q, p)].

We call such a Q (facet-)concentrated.

Proof. See Appendix A-A.

We can parametrize the concentrated sparsifications in terms
of the facet probabilities

xI = Pr(Q ∈ ∆I) xI ∈ R≥0

along with the support points

yI = E[Q | Q ∈ ∆I ] yI ∈ ∆I .

So now we have a finite-dimensional problem:

Problem. Sparse Concentrated Distribution Optimization
(SCDO).
For strictly convex D : Rn

≥0 → R,

minimize f(xI , y
I) := E[D(Q)] =

∑
I

xID(yI) subject to

xI ≥ 0

S(xI , y
I) :=

∑
I

xI = 1

Gi(xI , y
I) :=

∑
I

xIy
I
i = pi for all i

yIi = 0 for all i /∈ I

and yIi ≥ 0 for all I, i.

We write Q ∼ C(xI , y
I) to denote that the random variable Q

has the concentrated distribution corresponding to (xI , y
I)I , i.e.,

Q takes on value yI ∈ ∆I with probability xI . Note that there
may be many choices of (xI , y

I)I corresponding to the same
random variable Q; in particular, if xI = 0 then the choice of yI

has no effect on the resulting distribution.

2Note that here our Q is implicitly constrained to have exactly m nonzero
coordinates, whereas earlier we allowed at most m nonzero coordinates. This
assumption serves to prevent the argument from becoming needlessly complicated.
It can be shown that it is never optimal to use fewer than m nonzero coordinates.

B. Optimality of Critical Points

As written, the objective function of SCDO is convex, but its
constraints are not. Therefore we cannot use techniques from
convex optimization straight out of the box. Fortunately, in our
case we find that a critical point of the Lagrangian still suffices
to give a global optimum.

Lemma 2. Suppose that D is smooth and that Q is a concentrated
unbiased sparsification of p. Suppose that for all (xI , y

I)I with
Q ∼ C(xI , y

I) (i.e., where Q is yI ∈ ∆I with probability xI )
there exist ν, λi ∈ R, and µI ∈ R≥0 such that

∇f(xI , y
I) = ν∇S(xI , y

I)+

n∑
i=1

λi∇Gi(xI , y
I)+

∑
I:xI=0

µI∇xI .

Then Q is an efficient unbiased sparsification of p.

Proof. See Appendix A-B.

C. Solving SCDO for Permutation-Invariant Divergences

Note that all of our results up to this point have only relied on
the convexity of D(q) = Div(q, p). We now assume that Div is
also permutation-invariant, so that D(q) = F (q)+α·(q−p), where
α ∈ Rn and F (q) = F (σ(q)) is invariant under permutations σ of
the coordinates of q. First note that for any unbiased sparsification
Q of p,

E[D(Q)] = E[F (Q)] + α · (E[Q]− p) = E[F (Q)],

so it is equivalent to minimize E[F (Q)].
Without loss of generality assume that p1 ≥ p2 ≥ · · · ≥ pn >

0. We define a family of “preservative” unbiased sparsifications.
Later we will show that preservative unbiased sparsifications are
efficient.

Definition II.1. Let H = {1, 2, . . . , h} be the set of m-heavy
indices, as defined in Definition I.1. Let ℓ = 1

m−h

∑
i>h pi, and

recall that ph > ℓ ≥ ph+1 and h < m. Denote

ỹIi :=


pi i ∈ I ∩H

ℓ i ∈ I \H
0 i /∈ I.

We say a concentrated unbiased m-sparsification Q of p is
preservative if Q ∼ C(x̃I , ỹ

I) for some x̃I with x̃I = 0 for all
I ̸⊃ H .

Note that the x̃I in a preservative unbiased m-sparsification
of p must satisfy the unbiasedness constraints

∑
I⊃H x̃I ỹ

I = p.
Plugging in the definition of ỹI , we find that the unbiasedness
constraints are equivalent to constraints on the marginal inclusion
probabilities:

si :=
∑
I∋i

x̃I =

{
1 i ∈ H
pi

ℓ i /∈ H.

In other words, the preservative Q are precisely those which
are produced by US-PI: the random variable I = I(Q) always
contains all of the heavy indices and contains each light index i
with probability proportional to pi.

Theorem 1. If Div is convex and permutation-invariant, then
the preservative unbiased m-sparsifications Q of p ∈ Rn

>0 are
efficient sparsifications.

Proof. See Appendix A-C and Appendix A-D.



III. ADDITIVELY SEPARABLE DIVERGENCES

Now we turn to the case where D(Q) =
∑

i fi(Qi) is strictly
convex and additively separable, but not necessarily permutation-
invariant. We also remove the constraint that p and Q should
lie in the probability simplex (although we still write p ∈ Rn

>0

without loss of generality.) Our proof takes a similar route to
the the permutation-invariant case. We begin by strengthening
Lemma 1 to coordinate concentration, meaning that if Q is an
EUS (with no constraint on the sum of the coordinates of Q)
then for each coordinate i there is only one possible nonzero
value that Qi can take. While Lemma 1 already allowed us to
reduce our problem to a finite (but exponentially large) number
of dimensions, coordinate concentration reduces it further to
a convex3 optimization problem in n variables—the inclusion
probabilities si.

This allows us to solve this convex optimization problem via
a straightforward application of Lagrange multipliers and the
Karush–Kuhn–Tucker (KKT) conditions [17, Section 5.5.3]. The
details of coordinate concentration and the remainder of the
additively separable case are deferred to Appendix B.

We can characterize the efficient sparsifications of p with
respect to a separable divergence Div(q, p) =

∑
i fi(qi) as

follows:

Algorithm. Unbiased Sparsification for Additively Separable
Divergences (US-AS).
Given Div(q, p) = D(q) =

∑
i fi(qi) strictly convex, define

gi(x) = xf ′
i(x) − fi(x) + fi(0). Let λ > 0 be the unique

value such that ∑
i

min
(
1, pi

g−1
i (λ)

)
= m.

Declare index i to be heavy if gi(pi) ≥ λ (and light
otherwise), and let h < m be the number of heavy indices.
Sample m − h of the light indices with specified marginals
si := pi/g

−1
i (λ) < 1, and call the sample set I . Return the

vector Q ∈ Rn whose coordinates are given by

Qi =


pi, if i is heavy;
g−1
i (λ), if i ∈ I;
0, otherwise.

Theorem 2. Let Div be a strictly convex, additively separable
divergence defined on Rn. Then the efficient (with respect to
Div) unbiased m-sparsifications of p ∈ Rn

>0 are precisely those
produced by US-AS.

In general the sparsifications produced by this procedure do
not satisfy the stronger constraint

∑
i Qi =

∑
i pi, but it is not

hard to verify that if D is also permutation-invariant then this
procedure aligns with US-PI and the resulting random variable
does satisfy that constraint.

Note also that this result shows that (for additively separable
divergences) an efficient sparsification of p ∈ Rn

>0 must neces-
sarily be nonnegative, whereas the proof of Theorem 1 required
this constraint to be enforced artificially.

3In fact, the function we find ourselves needing to optimize has the form of an
f -divergence [14].

IV. GENERALIZATIONS

A. Weaker Notion of Sparsification

If we relax our definition of an m-sparsification from requiring
|I(Q)| ≤ m to merely E[|I(Q)|] ≤ m (as in [11], [8], [9], [10])
then we find that the efficient sparsifications are still characterized
by the same marginal inclusion probabilities si, albeit with more
leeway in the survivor sampling procedure.

B. Non-Positive Targets

What if our target vector p is allowed to have negative (or
complex, or other vector-valued) entries? For this question to
make sense we must assume that Div is defined on the cone
generated by the coordinates of p. For instance, for p ∈ Rn×k it
is perfectly sensible to ask (as in the second federated learning
example in section I) for the random variable Q in Rn×k with
at most m < n nonzero rows which minimizes the expected
squared Euclidean distance between p and Q. We can always
flip the signs on the p-inputs of Div(q, p) to treat p as being in
Rn

≥0 and use the modified divergence in the optimization problem
above. Flipping signs on the inputs preserves additive separability,
so if Div is additively separable then US-AS still applies. But
flipping signs may destroy permutation-invariance, so even if Div
is permutation-invariant US-PI may not apply. If we are lucky and
the sign-flipped divergence is still permutation-invariant (as in the
example of suared Euclidean distance) then US-PI does apply—
but note that the resulting sparsification only preserves the sum
of the absolute values

∑
i|Qi| =

∑
i|pi|.

C. Nonzero Default Value

The federated learning literature is also interested in the case
where the “default” value of Qi may be some nonzero value
z = (z1, . . . , zn) (typically the same for all i); that is, where
I(Q) := {i : Qi ̸= zi}. In this case we can just replace Q,
p, and Div with Q̃ = Q − z, p̃ = p − z, and D̃iv(q̃, p̃) =
Div(q̃+z, p̃+z) = Div(q, p). Again, this transformation preserves
additive separability but may destroy permutation-invariance and
positivity of p. If one is going to allow a constant nonzero default
value z = (z0, . . . , z0) then it is also interesting to optimize the
expected divergence over the choice of z0 (for given, fixed p).

D. Open Questions

We noted above that in the non-permutation-invariant case
imposing the additional constraint

∑
i Qi =

∑
i pi will change

the optimal solution. What is the new optimum?
We also noted that the proof in section II only shows that

the output of US-PI is efficient for permutation-invariant di-
vergences among nonnegative sparsifications, whereas the proof
in section III shows that the same output is efficient among
all sparsifications as long as the divergence is also additively
separable. We conjecture that the additional condition of additive
separability is not actually necessary here.

Finally, we are also interested in knowing the answer for
divergences which are neither permutation-invariant nor additively
separable, for instance, the squared Mahalanobis distance given
by F (x) = xTAx for a positive definite matrix A.
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APPENDIX A
PROOFS

A. Proof of Lemma 1

Suppose Q ∈ ∆ is an unbiased sparsification of p. Let π denote
the concentration map; i.e. π(Q) is the random variable such
that π(Q) = E[Q | Q ∈ ∆I ] = qI ∈ ∆I with probability
Pr(Q ∈ ∆I). Then clearly E(π(Q)) = E(Q) = p so, π(Q)
is also an unbiased sparsification of p. By Jensen’s inequality,
E[D(π(Q))] ≤ E[D(Q)] as desired.

B. Proof of Lemma 2

By way of contradiction, suppose Q ∼ C(αI , u
I) is a con-

centrated unbiased sparsification of p which satisfies the premise
of the theorem but fails to be efficient. That means, using
Lemma 1, there is some other concentrated unbiased sparsification
Q′ ∼ C(βI , v

I) where E[D(Q′)] < E[D(Q)].
Since we need only find one contradictory (αI , u

I), we choose
to take uI = vI whenever αI = 0 or βI = 0. That is, for any
facet ∆I where Q has probability αI = 0 of appearing, we set
the corresponding point uI (which value Q never actually takes)
equal to the point vI which Q′ may (or may never) take in ∆I ,
and vice versa. (If both αI = βI = 0, pick uI = vI ∈ ∆I

arbitrarily.)
For 0 ≤ t ≤ 1, let Qt be the random variable corresponding to

the convex mixture of distributions of Q and Q′, where for any
measurable set A ⊂ ∪I∆I we have

Pr(Qt ∈ A) = (1− t) Pr(Q ∈ A) + tPr(Q′ ∈ A).

Thus Q0 = Q and Q1 = Q′. Note that since Q and Q′ are both
unbiased sparsifications of p, it is clear that Qt is also an unbiased
sparsification of p. When 0 < t < 1, the random variable Qt is
not necessarily concentrated, as it can take on up to two different
values in ∆I rather than just one. Let g(t) := E[D(Qt)], and
note that

g(t) = (1− t)E[D(Q)] + tE[D(Q′)]

is an affine function of t. In particular, g′(0) = E[D(Q′)] −
E[D(Q)] < 0.

Let π(Qt) denote the concentration of Qt as above, and let
h(t) := E[D(π(Qt))]. We have h(t) ≤ g(t) for all t by convexity
of D. Also note that h(0) = g(0) and h(1) = g(1), since both Q
and Q′ are already concentrated.

Now we show that h : [0, 1] → R is a smooth function.
Since Qt takes value uI with probability (1− t)αI and vI with
probability tβI , we can calculate that π(Qt) ∼ C(xI(t), y

I(t)),
where

xI(t) := (1− t)αI + tβI ,

yI(t) :=

{
(1−t)αIu

I+tβIv
I

(1−t)αI+tβI
if αI , βI > 0

vI = uI if αI = 0 or βI = 0.

It is clear that xI(t) and yI(t) are smooth in t for any given
I . We have

h(t) = E[D(π(Qt))] =
∑

I:αI+βI>0

xI(t)D(yI(t)).

Since D is smooth and the maps t 7→ xI(t) and t 7→ yI(t) are
smooth, we know that h is smooth.

Now,

h′(0) = lim
t→0+

h(t)− h(0)

t

= lim
t→0+

h(t)− g(0)

t
(since h(0) = g(0))

≤ lim
t→0+

g(t)− g(0)

t
(since h(t) ≤ g(t) and t > 0)

= g′(0)

= E[D(Q′)]−E[D(Q)]

< 0.

Since γ(t) := (xI(t), y
I(t))I is smooth, we can apply the chain

rule:

h′(0) = (f ◦ γ)′(0)
= (∇f)(γ(0)) · γ′(0)

= (∇f)((αI , u
I)I) · γ′(0)

=

(
ν∇S +

n∑
i=1

λi∇Gi +
∑

I:αI=0

µI∇xI

)
· γ′(0).

But γ(t) satisfies all the constraints, and hence γ′(0) is perpendic-
ular to the gradients∇S and∇Gj . Furthermore, we also have that
γ′(0) is nonnegative on all the xI components for which αI = 0,
due to the inequality constraints xI ≥ 0. Since every such µI ≥ 0,
we conclude that (µI∇xI) · γ′(0) ≥ 0. Hence h′(0) ≥ 0, but this
contradicts h′(0) < E[D(Q′)]−E[D(Q)] < 0.

C. Proof of Theorem 1

For now, assume that F is smooth. Following Lemma 2, for
every (xI , y

I)I corresponding to a preservative sparsification Q,
we will find multipliers ν, λi ∈ R and µI ∈ R≥0 such that

∇f(xI , y
I) = ν∇S(xI , y

I)+

n∑
i=1

λi∇Gi(xI , y
I)+

∑
I:xI=0

µI∇xI ,

where

f(xI , y
I) =

∑
I

xIF (yI),

S(xI , y
I) =

∑
I

xI ,

and Gi(xI , y
I) =

∑
I∋i

xIy
I
i

as in SCDO. Note that if Q ∼ C(xI , yI) is preservative then
yI = ỹI whenever xI > 0. It is straightforward to compute the
various gradients:

f(xI , y
I) S(xI , y

I) Gj(xI , y
I) xJ

∂
∂xI

F (yI) 1 yIj δJ=I
∂

∂yI
i

xI
∂F
∂qi

(yI) 0 xIδj=i 0

Let I0 = {1, 2, . . . ,m} ⊃ H , so that

ỹI0 = (

h︷ ︸︸ ︷
p1, p2, . . . , ph,

m−h︷ ︸︸ ︷
ℓ, ℓ, . . . , ℓ,

n−m︷ ︸︸ ︷
0, 0, . . . , 0).

Note that ph ≥ ℓ. Because F is permutation-invariant, we have
∂F
∂qi

(ỹI0) = ∂F
∂qj

(ỹI0) whenever ỹI0i = ỹI0j . Therefore we can write

∇F (ỹI0) = (

h︷ ︸︸ ︷
a1, a2 . . . , ah,

m−h︷ ︸︸ ︷
b, b, . . . , b,

n−m︷ ︸︸ ︷
c, c, . . . , c).



Now we determine the λj . A brief look at the gradient table
shows that we must have

λj =
∂F
∂qj

(ỹI) if j ∈ I and xI > 0.

In particular, as I varies over those m-element sets containing j
where xI > 0, we need ∂F

∂qj
(ỹI) to be constant. Indeed, for any

I with xI > 0,

∂F
∂qj

(ỹI) =


aj j ∈ H ⊂ I

b j ∈ I \H
0 j /∈ I

does not depend on I ∋ j. Hence we have

λ = (

h︷ ︸︸ ︷
a1, a2, . . . , ah,

n−h︷ ︸︸ ︷
b, b, . . . , b).

With this λ we have matched ∇f on the ∂
∂yI

i
components, but

we have not yet matched ∇f on the ∂
∂xI

components. For that,
we will need to use a multiple ν of ∇S as well as nonnegative
multiples µI of the ∇xI wherever xI = 0.

We want to show that if (xI , y
I)I is preservative then there

exist ν and µI ≥ 0 (with µI = 0 whenever xI > 0) such that:

F (yI) = ν + λ · yI + µI .

If xI > 0 then µI = 0 and preservativity requires that I ⊃
H and yI = ỹI . Permutation-invariance tells us that F (ỹI) =
F (ỹI0) and it is easy to see that λ · ỹI = λ · ỹI0 , so the constraints
for xI > 0 are satisfied by setting

ν = F (ỹI)− λ · ỹI = F (ỹI0)− λ · ỹI0 .

If xI = 0 then yI ∈ ∆I is unconstrained by preservativity, and
in order to have µI ≥ 0 we must show that

F (yI)− λ · yI ≥ ν = F (ỹI0)− λ · ỹI0 . (6)

If I ⊇ H , then λ · yI = ∇F (ỹI) · yI (because λ and ∇F (ỹI)
agree wherever yI is nonzero), so (6) holds by convexity of F :

F (yI) ≥ F (ỹI) +∇F (ỹI) · (yI − ỹI)

= F (ỹI) + λ · (yI − ỹI)

=⇒ F (yI)− λ · yI ≥ F (ỹI)− λ · ỹI = ν.

It remains to show (6) for I ̸⊃ H . First note that F is Schur
convex since it is symmetric and convex. Hence, ∂F

∂qi
(y) ≥ ∂F

∂qj
(y)

whenever yi ≥ yj . Since the components of ỹI0 are decreasing,
we know that the components of ∇F (ỹI0) are decreasing:

a1 ≥ · · · ≥ ah ≥ b ≥ c.

In particular, λ is decreasing.
Let σ be a permutation such that σ(yI) is decreasing. Then

σ(yI) ∈ ∆I0 . Furthermore, since λ is decreasing and yI ≥ 0, σ
is the permutation which maximizes the inner product λ · σ(yI).
Thus we have:

F (yI)− λ · yI = F (σ(yI))− λ · yI (F is perm.-inv.)

≥ F (σ(yI))− λ · σ(yI) (λ is decreasing)

≥ F (ỹI0)− λ · ỹI0 = ν (σ(y) ∈ ∆I0 ).

We have met the premise of Lemma 2 and therefore shown
that any preservative Q is efficient.

D. Removing the Smoothness Condition

Now we turn the general case, where F is convex and
permutation-invariant but not necessarily smooth. We note that
any optimal Q has the same total sum as p, hence we may restrict
the domain of F to the simplex A = {x ∈ Rn

≥0 |
∑n

i=1 xi ≤∑n
i=1 pi}.
We first show that F can be approximated by a smooth F̃ on the

domain A, where F̃ is also convex and permutation-invariant. The
main idea is to shrink the domain A a little to A′, to give “wiggle-
room”, and then convolve F with smooth density function θ with
small support, yielding a smooth approximation G to F which
is defined on A′. The smooth approximation G remains convex
because it is a mixture of translates of F which are all convex
themselves. This portion of our argument is taken from §2 of
[18]. We then choose an affine contraction R : A → A′ which
only moves points a slight distance. We define H(x) = G ◦
R, which is smooth and convex, and approximately equal to F .
However, H is not permutation-invariant, so we define F̃ (x) =
1
n!

∑
σ∈Sn

H(σ(x)) to be the average of H over all permutations.
The permutation-invariant F̃ is convex, and is even closer to F
than was H , since F is permutation-invariant.

For δ > 0 let Bδ(0) = {y ∈ Rn | ∥y∥2 < δ} be the ball of
radius δ centered at 0. Let Aδ = {x ∈ A | x+ y ∈ A for all y ∈
Bδ(0)}. Note that Aδ is convex. Let δ0 be small enough so that
|F (x1)−F (x2)| < ϵ/2 whenever x1, x2 ∈ A and |x1−x2| < δ0.
Let a ∈ A be the mean of A. Consider the affine contraction
Rt(x) = a + t(x − a) where 0 < t < 1. There exists some t
such that ∥Rt(x)− x∥ < δ0 for all x ∈ A. In particular, we have
|F (Rt(x))−F (x)| < ϵ/2 for all x ∈ A. Furthermore, there exists
δ1 > 0 such that the image of Rt is contained in Aδ1 .

Suppose that Aδ is nonempty (this is true if δ is sufficiently
small). Let θ be a smooth density function supported in Bδ(0).
For x ∈ Aδ , define Gδ(x) =

∫
y∈Bδ(0)

F (x − y)θ(y)dy. Then
Gδ is both convex and smooth. Furthermore, Gδ(x) − F (x) =(∫

y∈Bδ(0)
F (x− y)θ(y)dy

)
− F (x) =

∫
y∈Bδ(0)

(F (x − y) −
F (x))θ(y)dy. In particular, we have that |Gδ(x)− F (x)| < ϵ/2
for all x ∈ Aδ for δ ≤ δ0.

Now take δ = min(δ0, δ1). Suppose x ∈ A. We know that
Rt(x) ∈ Aδ1 ⊂ Aδ . Hence Rt(x) lies in the domain of Gδ .
We know that |Gδ(Rt(x)) − F (Rt(x))| < ϵ/2. Furthermore,
|F (Rt(x))−F (x)| < ϵ/2, and so |Gδ(Rt(x))−F (x)| < ϵ. Now
H := Gδ ◦ Rt is convex, smooth, and |H(x) − F (x)| < ϵ for
all x ∈ A. Finally we define F̃ (x) = 1

n!

∑
σ∈Sn

H(σ(x). Then
F̃ is convex, smooth, and permutation-invariant. Furthermore,
|F̃ (x)− F (x)| = 1

n!

∣∣∑
σ∈Sn

H(σ(x))− F (σ(x))
∣∣ < ϵ.

There is a sequence F̃k : A → R such that each F̃k is
smooth, convex, and permutation-invariant, where F̃k(x)→ F (x)
as k → ∞. Suppose that Q′ is any unbiased sparsification. Let
Q be preservative; i.e. any Q as defined by US-PI. Then Q is
simultaneously optimal for all the F̃k. The domain A is compact
and so E[F̃k(Q

′)] → E[F (Q′)] and E[F̃k(Q)] → E[F (Q)] as
k → ∞. Since E[F̃k(Q

′)] ≥ E[F̃k(Q)] for all k, we have
E[F (Q′)] ≥ E[F (Q)]. Hence Q is optimal for F .

APPENDIX B
ADDITIVELY SEPARABLE DIVERGENCES

A. Coordinate Concentration

Lemma 3 (Coordinate concentration). Assume that Div is strictly
convex and additively separable. Let Q be an efficient unbiased



m-sparsification of p ∈ Rn
>0. Then for all i, there exists qi > 0

such that Pr(Qi = qi | Qi ̸= 0) = 1. That is, any efficient
unbiased m-sparsification of p is concentrated on a unique
nonzero value in each coordinate.

Proof. Consider any unbiased m-sparsification Q of p. For any i,
if Pr(Qi ̸= 0) = 0 then pi = E[Qi] = 0, whereas we are
assuming that pi > 0. So it is legitimate to condition on Qi ̸= 0,
since this is an event with positive probability, and hence we can
define qi := E[Qi | Qi ̸= 0]. Note that pi = E[Qi] = qi Pr[Qi ̸=
0], so in particular pi > 0 implies qi > 0.

Fix any index i, and let Q′ be the random variable obtained
as follows: first sample q̂ ← Q; if q̂i = 0 return q̂; otherwise
replace the i-th coordinate of q̂ with qi and return the result. For
simplicity of notation, in what follows, we assume without loss
of generality that i = 1.

It is easy to check that E[Q′] = E[Q] and |I(Q′)| = |I(q̂)| =
m, so Q′ is also an unbiased m-sparsification of p. (But note
that

∑
j Q

′
j is in general not equal to

∑
j Qj , so even if Q takes

values in the probability simplex, Q′ usually does not).
By hypothesis, Div is additively separable. Because Div is

strictly convex, the functions fi in Equation (3) are strictly
convex. By linearity of expectation,

E[D(Q′) | Q1 ̸= 0]

= E[D(q1, Q2, Q3, . . . , Qn) | Q1 ̸= 0]

= E[f1(q1) + f2(Q2) + f3(Q3) + · · ·+ fn(Qn)) | Q1 ̸= 0]

= E[f1(q1) | Q1 ̸= 0] +E[f2(Q2) | Q1 ̸= 0]

+ · · ·+E[fn(Qn) | Q1 ̸= 0]

= f1(E[Q1 | Q1 ̸= 0]) +E[f2(Q2) | Q1 ̸= 0]

+ · · ·+E[fn(Qn) | Q1 ̸= 0].

Similarly,

E[D(Q) | Q1 ̸= 0] =E[f1(Q1) | Q1 ̸= 0]

+E[f2(Q2) | Q1 ̸= 0]

+ · · ·+E[fn(Qn) | Q1 ̸= 0].

Since f1 is convex, Jensen’s inequality [19, Theorem 4.2.1]
implies that

f1(E[Q1 | Q1 ̸= 0]) ≤ E[f1(Q1) | Q1 ̸= 0]. (7)

Comparing the expressions for E[D(Q′) | Q1 ̸= 0] and E[D(Q) |
Q1 ̸= 0], we see that (7) is equivalent to

E[D(Q′) | Q1 ̸= 0] ≤ E[D(Q) | Q1 ̸= 0]. (8)

Now

E[D(Q′)] =Pr(Q′
1 = 0)E[D(Q′) | Q′

1 = 0]

+ Pr(Q′
1 ̸= 0)E[D(Q′) | Q′

1 ̸= 0]

=Pr(Q1 = 0)E[D(Q) | Q1 = 0]

+ Pr(Q1 ̸= 0)E[D(Q′) | Q1 ̸= 0],

while

E[D(Q)] =Pr(Q1 = 0)E[D(Q) | Q1 = 0]

+ Pr(Q1 ̸= 0)E[D(Q) | Q1 ̸= 0].

Therefore, (8) implies that

E[D(Q′)] ≤ E[D(Q)]. (9)

But Q is efficient, so (9) must in fact be an equality. This forces
(8) to be an equality, which in turn forces (7) to be an equality.
But since f1 is strictly convex, Jensen’s inequality [19, Theorem
4.2.1] is an equality only if the random variable (Q1 | Q1 ̸= 0)
is concentrated on its mean value.

Coordinate concentration allows us to further reduce the task of
finding efficient unbiased m-sparsifications to an n-dimensional
problem, as follows. Let qi be as in the statement of Lemma 3,
and define si := Pr(Qi ̸= 0). Then the quantity we seek to
minimize is

E[D(Q)] =

n∑
i=1

(
Pr(Qi = 0) · fi(0)

+ Pr(Qi ̸= 0) ·E[fi(Qi) | Qi ̸= 0]
)

=

n∑
i=1

(
(1− si)fi(0) + sifi(qi)

)
.

It follows directly from the definitions of si and qi that siqi =
E[Qi]; on the other hand, unbiasedness means that E[Qi] = pi. In
the proof of Lemma 3, we noted that si > 0, so we may replace
qi with pi/si. That is, we seek to minimize

n∑
i=1

(
(1− si)fi(0) + sifi(pi/si)

)
.

If we replace each function fi(x) with a constant shift fi(x)− ci
(where ci can depend on p but not on x), then the value of the
divergence just changes by a constant, which does not affect
the optimization problem we are trying to solve. So by setting
ci := fi(0), we may assume without loss of generality that
fi(0) = 0 for all i. Hence we are reduced to finding unbiased
m-sparsifications Q that minimize

n∑
i=1

sifi(pi/si).

Now, the sum of the si is the expected number of nonzero entries
of Q, which by definition is at most m. Therefore, we are led to
consider the following optimization problem.

Problem. Inclusion Probability Optimization (IPO).
For strictly convex fi with fi(0) = 0,

minimize
n∑

i=1

sifi

(
pi
si

)
subject to

n∑
i=1

si ≤ m

and 0 < si ≤ 1 for all i.

In Appendix B-B, we solve IPO. We show in particular
that the optimal solution satisfies

∑
i si = m. We claim that

we thereby characterize all efficient unbiased m-sparsifications.
Why? Well, we have just argued that given any efficient unbiased
m-sparsification Q, the quantities si := Pr(Qi ̸= 0) must
yield an optimal solution to IPO. Conversely, given any optimal
solution {si} to IPO, we saw in subsection I-A that the conditions∑

i si = m and 0 < si ≤ 1 imply that it is possible to sample
with the specified marginals {si}. Each way of sampling with



the specified marginals completely specifies a unique unbiased
m-sparsification of p, which is guaranteed to be efficient since
the {si} constitute an optimal solution to IPO.

B. Solving IPO

As usual, we regard p ∈ Rn
>0 as fixed. Let

F (s) :=

n∑
i=1

sifi

(
pi
si

)
be the function we are seeking to minimize. We show that F is
strictly convex4. By direct computation,

∂F (s)

∂si
= fi

(
pi
si

)
−
(
pi
si

)
f ′
i

(
pi
si

)
. (10)

Then
∂2F (s)

∂s2i
= − pi

s2i
f ′
i

(
pi
si

)
+

pi
s2i

f ′
i

(
pi
si

)
+

(
p2i
s2i

)
f ′′
i

(
pi
si

)
=

(
p2i
s2i

)
f ′′
i

(
pi
si

)
> 0,

where the final inequality follows because fi is strictly convex
and si > 0. So the Hessian is a diagonal matrix with strictly
positive entries on the diagonal, and F is (strictly) convex.

Motivated by Equation 10, define gi(x) := xf ′
i(x)− fi(x), so

that ∂F
∂si

(s) = −gi(pi/si). A similar calculation to the one above
shows that gi is a strictly increasing function of x > 0. Moreover,
gi(0) = 0 because fi(0) = 0, so gi(x) > 0 for all x > 0.

The constraint that si > 0 is slightly awkward to deal with. Our
approach is to pick some small ϵ > 0 and replace the constraint
si > 0 with si ≥ ϵ. We then show that for all sufficiently small ϵ,
all optimal solutions are independent of ϵ and do not lie on si = ϵ.
Any feasible solution with si > 0 will be feasible for some ϵ > 0,
and hence its objective value cannot exceed the optimal value.

Following the standard recipe for convex optimization [17,
Chapter 5], we define the Lagrangian

L(s, µ, ν, λ) =F (s) +

n∑
i=1

µi(si − 1) +

n∑
i=1

νi(ϵ− si)

+ λ

(
−m+

n∑
i=1

si

)
,

where µi, νi, and λ are Lagrange multipliers. Let e⃗i denote the
i-th unit vector, and let 1⃗ :=

∑
i e⃗i. Then

∇L = (∇F )(s) +

n∑
i=1

µie⃗i −
n∑

i=1

νie⃗i + λ1⃗.

At an optimal point, the KKT conditions are (in addition to the
condition that an optimal point be feasible)

−gi
(
pi
si

)
+ µi − νi + λ = 0

µi, νi, λ ≥ 0

µi(si − 1) = 0

νi(ϵ− si) = 0

λ

(
−m+

n∑
i=1

si

)
= 0

4In fact, F is an f -divergence [14], and it is a standard fact that the (strict)
convexity of f implies the (strict) convexity of F , but we give a proof anyway
since it is short.

Given a proposed solution s, let H := {i : si = 1} (the heavy
indices), let E := {i : si = ϵ} (the epsilon indices), and let L
denote the remaining (light) indices. We first claim that L ̸= ∅.
Suppose to the contrary that L = ∅. Now m < n and

∑
i si ≤ m,

so H cannot comprise all the indices, and the remaining indices
must be in E. But for all sufficiently small positive ϵ,

∑
i si

cannot be exactly equal to an integer m, so λ is forced to be
zero. For any i ∈ E, we must have µi = 0, so gi(pi/ϵ)+ νi = 0,
which implies that

g

(
pi
ϵ

)
= −νi ≤ 0. (11)

But as we observed earlier, gi(pi/ϵ) > 0 since pi > 0. This
contradiction shows that L ̸= ∅.

For i ∈ L, µi = νi = 0, so

−gi
(
pi
si

)
+ λ = 0.

Two inferences are immediate. First, λ = gi(pi/si) > 0, and
hence

n∑
i=1

si = m.

It follows that there cannot be any ϵ contribution to
∑

i si, so
E = ∅. Second, gi(pi/si) = λ is constant across all i ∈ L. By
definition of L, we must have 1 > si = pi/g

−1
i (λ) for all i ∈ L.

Conversely, for i ∈ H we must have

gi(pi/si)− λ = µi ≥ 0

so 1 = si ≤ pi/g
−1
i (λ) (since gi is increasing). That is, for all i,

we have si = min(1, pi/g
−1
i (λ)).

The final constraint which we must satisfy (since λ > 0) is

m =
∑
i

si =
∑
i

min(1, pi/g
−1
i (λ)). (12)

The right hand side is a continuous, decreasing function of λ with
range (0, n]. Furthermore, it is strictly decreasing except where
it is equal to n > m. Therefore there is a unique λ > 0 solving
Equation 12 (which can easily be found by, say, binary search),
which yields our desired optimum.
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