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Abstract 

Chow, T., Distances forbidden by two-colorings of Q3 and A,, Discrete Mathematics 115 (1993) 

95-102. 

For X = Q3 or A, (where A, is the set of points in Q” whose coordinates have odd denominators), we 

characterize all sets of distances D c R + with the following property: there exists some two-coloring 

of X such that, for all d ED, no two points in X that arc a distance d apart are the same color. We also 

find all numbers do E R + such that all sets of distances D c iw+ with this property retain the property 
under multiplication or division by do. 

1. Introduction 

A set of distances D c [w + is said to be forbidden by a two-coloring of X c [w” if, for 

every x, y E X such that II x-y 11 ED, the two points x and y have different colors. When 

X is an additive subgroup of [w”, we define an odd D-cycle in XC [w” to be a set of 

points {xi, . . . , x,)cXsuchthatxl+ ..’ +~,=O,llx~)I~Dfori=l,...,n,andnisodd. 

(It will sometimes be convenient to refer to such a cycle as x1 + . . . +x, rather than as 

{x 1. . . . ,x,}.) In a recent paper [2], Reid et al. proved the following two results. 

Proposition 1. A set of distances D c IF! ’ is forbidden by no two-coloring of Q2 @there 
are dI, d2 ED such that each of d, and d, occurs as a distance between some two points of 

Q2 and there exist a, b E Z + such that dI Id2 = fi and a + b is odd. 

Proposition 2. If D c R + is a set of distances and ifd, E 02 + occurs as a distance between 
some two points in Q2, then there is an odd D-cycle in Q2 ifSthere is an odd (d,,. D)-cycle 
in Q2, where d,,.D=(dOd(dED}. 
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In their paper, Reid et al. ask if the analogues of these two propositions are true for 

A, and Q3, where 

An={(Mh.., a,/b,) 1 ai, biE Z and each bi is odd}. 

Stated in its original form the question is easy - the answer is in general no, since there 

is no odd { l}-cycle in Q3 or A, (see Cl]), but (l,O, 1) + (- 1, 1,0) + (0, - 1, - 1) is an odd 

(*}-cycle in Q3 and in A, f or n > 3. However, the question can be generalized to the 

following two problems, which we shall solve in this paper. 

(1) Characterize the sets of distances that are forbidden by some two-coloring of Q3 

(and similarly for A,); 

(2) For both Q3 and A,, characterize the numbers d E R+ for which there is an odd 

D-cycle iff there is an odd (d . D)-cycle. 

2. Distances forbidden by some two-colorings of Q3 and A,, 

Definition. Let Xc UP. We say that d E Iw+ is X-attainable if there exist x, YE X such 

that 11x--y/l =d. 

Remark. If n E Zf and & is Q3-attainable, then & is h3-attainable. (This follows 

from the well-known fact that an integer can be written as the sum of three integer 

squares iff it is not of the form 4”(8r+ 7), where m and Y are nonnegative integers [3]. 

For if n =(al/b)’ +(a2/b)’ +(a3/b)‘, then nb2 is not of the form 4”(8r+ 7), and 

therefore neither is n, since b2, being the square of an integer, is of the form 4”(8r + l).) 

Definition. If Xc Q” and d E Rf is X-attainable, then d can be written in the form 

J2kplq with p and q odd positive integers and k an integer that is uniquely 

determined by d. We say that k is the two-index of d. 

Remark. The two-index of an &attainable distance is nonnegative. 

Our main result is the following. 

Theoreml. LetDc[W’,letXE(~3,Al,A2,A3,... } and let D’ be the set of distances in 

D that are X-attainable. IfD isforbidden by some two-coloring ofX, then every element 

of D’ has the same two-index k. Moreover, 

(a) $X=Q3, then k is even; 
(b) if X=A, and n>4, then k=O; 
(c) if X = A, or A,, then k is even and nonnegative; and 
(d) ifX=A,, then ka0. 

Conversely, these necessary conditions on D’ are sujticient to ensure that D is forbidden 
by some two-coloring of X. 
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Remark. For n > 3, the only distances that are forbidden by two-colorings of KY’ are 

those that are not Q”-attainable. (For it is easy to construct an odd { l)-cycle, and by 

using a matrix similar to the one given below in Case 2 of the proof of Theorem 1, we 

can obtain an odd {d)-cycle for any Q”-attainable distance d.) Thus 

Theorem 1 completely solves the problem of distances forbidden by two-colorings of 

Q” and A, for all n. 

We need a few results from [l, 21. The first proposition below is a special case of the 

well-known result that a graph is bipartite if and only if it does not contain an odd 

cycle. 

Proposition 3. Let X c R” and D c R +. Then D is forbidden by no two-coloring of X iff 

there is an odd D-cycle in X. 

Proposition 4 (Johnson). There exist two-colorings of Q3 and A, that simultaneously 

forbid all distances of the form Jp/4 with p and q odd positive integers. 

Proposition 5 (Reid et al.). Let d = & with p even and q odd. If d is A,,-attainable, 
then no two coloring of A,, forbids { 1, d}. 

To prove Theorem 1 we also need the following lemmas. 

Lemma 1. If n=2 mod4, then there is an odd {&}-cycle in Z3. 

Proof. Suppose n=2 mod4. Then n is not of the form 4”(8r +7), so we can write 

n = a2 + b2 + c2 for some a, b,c E Z. Since n = 2 mod 4, exactly two of a, b and c are odd; 

without loss of generality we can assume that a and b are odd and c is even. If 

a-b+c=O. then 

(a, -b,c)+(c,a, -b)+(-b,c,a)=(a-b+c,a-b+c,a-b+c)=(O,O,O) 

is an odd (&}-cycle in Z3 and we are done. Otherwise, write a+ b+~=2~‘p, and 

a-b+~=2~‘p, with p1 and p2 odd. Since n=a2 +b2 +c2 is even, a+b+c and 

a - b + c are even, and since b is odd, exactly one of a + b + c and a -b + c is congruent 

to 2 mod4, so that k, #k,; without loss of generality we can assume kI > k2. Then 

- p2 CC, a, 4 - p2 (b, c, 4 
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and since 

2k’-kzpl+2k1-k2p~+2k’-k2pl+pZ+~2+p2=3(2k’-k2p1+pz) 

is odd, this gives us an odd {&}-cycle in Z3. 0 

Lemma 2. Let n,, n2 and k be positive integers with nI and n2 odd. If ,/& and fi are 

Z3-attainable, then there is an odd {,,&, 2kfi}-cycle in E3. 

Proof. Assume that fi and ,f n2 are B3-attainable. Write ItI =a: + b: +c: and 
n,=a$+b$+c$ with aI,b,,c,,az,b2,c2~h. Let p1 =a1 +b, +cl and let 
p2 = a2 + b2 + c2. Since n1 and n2 are odd, p1 and p2 are odd. Now a simple calculation 
(cf. Lemma 1) shows that 

p1(2ka2,2kb2,2kcz)+p1(2kc2,2ka2,2kb2)+p1(2kb2,2kc2,2ka2) 

-2kp2(aI,bI,c~)-2kp~(cI,aI,bI)-2kp~(bl,c1,aI) 

= (0, 0, O), 

and since 

P~+P~+P~+~~P~+~~P~+~~P~=~(P~+~~P~) 

is odd, this gives us an odd (&2k J&}-cycle in h3. 0 

Lemma 3. Let X = Q3 or A,, for n 2 3, and let D c R + be a set of X-attainable distances. 
If D is forbidden by some two-coloring of X, then every d E D has even two-index. 

Proof. Assume that D is forbidden by some two-coloring of X. By Proposition 3, 

there are no odd D-cycles in X. Let d E D and write d =a with p and q odd 

positive integers. Suppose k is odd; write k = 2m + 1 so that d =2”‘a. By 

Lemma 1, there is an odd {&)-cycle in h3 c X. We may scale this cycle by a factor 
of 2”‘/q to obtain an odd (d}-cycle in X (since in the case X= A,, ma0 so that the 
denominator of 2”/q is odd). But this contradicts the non-existence of odd D-cycles in 
X, so k is even and the result follows. 0 

Now we are ready for the proof of our main result. 

Proof of Theorem 1. There are five cases, which we shall consider separately. 
Case 1: X=Q3. 
To show that the conditions are sufficient, we can (by Proposition 4) find a two- 

coloring of X that forbids all distances of the form & with p and q odd, and then we 
can scale this two-coloring by a factor of 2 ki2 to obtain a coloring that forbids D’ and 
hence D. To show necessity, assume that D is forbidden by some two-coloring of X. 
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Lemma 3 implies that every element of D’ has even two-index. It remains to show that 

any two elements dr, dz ED’ have the same two-index. Write dl =2klm, 

dz=2k2-\lP2/q2, where kl, pl, ql, kz, pz, q2cz and PI, ql, PZ, q2 are odd. Suppose 

kt #k,; without loss of generality we may assume that ki > k2. Since di and dz are 

X-attainable, Jzi and ,/x are Q3-attainable and therefore Z3-attainable. 

Hence we can apply Lemma 2 to find an odd {2k1-k* &ZZ JZZ1-cycle in 
Z3 c X; if we scale this cycle by a factor of 2k2/q,q2, we obtain an odd (d,, d2}-cycle in 
X. But Proposition 3 implies that there are no odd D’-cycles in X. This contradiction 
establishes that k, = k2 as required. 

Case 2: X = A,, with n 24. 
Sufficiency follows from Proposition 4. To show necessity, it is enough to show (in 

view of Lemma 3 and Proposition 3) that if do = 2k,,,$& for some odd positive integers 
p and q and some k> 1, then there is an odd {do}-cycle in A4 (since every higher A, 
contains an isomorph of A4). Given such a de, we can write pq = a2 + b2 + c2 + d2 for 
some a, b, c, d E Z (since every positive integer is the sum of four squares [3]). Now let 

c=((2,0,0,0),(1,1,1,1),(-1,1, -1,-1),(-l, -l,l, -1),(-l, -1, -1,l)). 

Then C is an odd (2}-cycle in Ad. Let T be the linear transformation given by the 
matrix 

It is easy to check that T(C) is an odd (2kfij- c c e, and since k 3 1, 2k- l/q has odd y 1 
denominator, so T(C) c Ah and we are done. 

Case 3: X=A,. 
To prove necessity, we can just take the argument given in Case 1 and replace 

X with A3 everywhere, provided we observe that in this case kz>O so that the 
denominator of 2k2/q,q2 is odd, and hence an odd D’-cycle in A3 remains in A3 upon 
multiplication by 2k2/q,q2. To prove sufficiency, suppose D satisfies the necessary 
conditions. Some two-coloring of Q3 forbids D, so a fortiori some two-coloring of A, 
forbids D. 

Case 4: X=A,. 
Sufficiency follows from Proposition 1: any set D satisfying the given conditions is 

forbidden by some two-coloring of Q2 (and thus of XcQ”). To show necessity, 
assume that D is forbidden by some two-coloring of AZ, so that by Proposition 3 there 
are no odd D’-cycles in AZ. We need only show that any two elements dI, d2 ED’ must 

have the same two-index. Write dI =Jm and d2 =,/m, with pl, ql, p2, 
q2 odd positive integers. Assume without loss of generality that kr > k2. The product 
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of a sum of two squares and a sum of two squares is a sum of two squares, so d1 dz is 
@-attainable and therefore so is 

Let a=2k1-kzpIp2qlq2; then a is the sum of two rational squares, and since k, >k,, 
a is an integer. Hence a is the sum of two integer squares. We see from the relation 

&lp2q1= dl Id2 that dl Id2 is A,-attainable, with nonzero two-index. Thus by 

Proposition 3 and Proposition 5, there is an odd (1, dI /d2}-cycle in A,. Let (x, y) E A2 

be a distance d2 from (0, 0). Transform the odd (1, d,/d,}-cycle with the matrix 

X -Y ( > Y x 

to obtain an odd {dI,d2)-cycle in A2. This contradicts the non-existence of odd 

D’-cycles in A2 and the result follows. 

Case 5: X=A1. 
Sufficiency follows from Proposition 1 as in Case 4. To show necessity, suppose that 

D is forbidden by some two-coloring of A,, so that by Proposition 3 there are no odd 

D’-cycles in AI. That the two-index of every element of D’ is even and nonnegative is 

clear; suppose PI/q1 and p2/q2 are elements of D’ where q1 and q2 are odd and pi/q1 
has a higher two-index than p2/q2. Then by Proposition 3 and Proposition 5, there is 

an odd (1, p2q1/p1q2)-cycle in A 1, which we can multiply by p1 /ql to give an odd 

{PJql, de )-We in AI, contradicting the non-existence of odd D’-cycles in AI. 
This completes the proof. 0 

3. Legal scalefactors 

Definition. Let X E { Q3, A,, A2, A,, . . . }. We say that d E Rf is a legal scalefactor for 

X if, for all D c R +, there is an odd D-cycle in X iff there is an odd (d . D)-cycle in X. 

Lemma 4. If d E F!+ is not X-attainable, then d is not a legal scalefactor. 

Proof. If there is no odd {2d)-cycle in X, then simply observe that there is an odd 

{1, 2}-cycle in X but there is no odd {d,2d}-cycle in X. Otherwise, 2d must be 

X-attainable, but d is not, so X must be A,, for some n 3 3, and moreover 2d must have 

two-index zero or one. (This follows because the A,-attainable numbers are precisely 

the numbers of the form h/q with q odd and p not of the form 4”(8r+7), and for 

n 24 the An-attainable numbers are precisely the numbers of the form A/q with 

q odd.) But there is an odd {2d}-cycle in X, so by Proposition 3 and Proposition 4 the 

two-index of 2d cannot be zero and must be one. Now observe that there is an odd 
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{$)-cycle in X but no odd (d$}-cycle in X ( since the two-index of da is zero), so 
d cannot be a legal scale factor. 0 

Theorem 2. If dE 5X+ is a legal scalefactorfor A,,, then d is A,-attainable with two-index 
zero. If n # 3, then the converse also holds. 

Proof. (3) By Lemma 4, d is A,,-attainable. Write d=$?& with p and q odd 
positive integers and kg0. Suppose k >O. Then by Proposition 3 and Proposition 5, 
there is an odd (1, d}-cycle in A,. Since l/d has negative two-index, it is not A,- 
attainable, so by Theorem 1 and Proposition 3 there is no odd (1, l/d}-cycle in A,. 
Hence d is not a legal scalefactor. 

(t) This follows from Theorem 1 and the fact that for n#3, the product of two 
A,,-attainable numbers is A,,-attainable. 0 

Theorem 3. Let d E R +. Then d is a legal scalefactor for Q3 ifwe can write d = r& with 
rEQ and n-1 mod8. 

Proof. We shall freely use the theorem about expressing integers as the sum of three 
squares that was mentioned earlier. 

(3) Assume that d is a legal scalefactor. Then by Lemma 4 there is a rational 

multiple d’ of d that can be written in the form d’ = & with n squarefree. Clearly d’ is 
a legal scalefactor for Q3; it remains to show that n s 1 mod 8. Theorem 1 implies that 
n must be odd. Since d’ is Q3-attainable, n $7 mod 8. Now suppose n E 3 mod 8. Then 

by Lemma 2, there is an odd { &, 2$}- c c e in Q3, but there is no odd (n, 2&}- y 1 

cycle in Q3 (since 5n = 7 mod 8 and thus 2,,& is not Q3-attainable), contradicting the 

fact that & is a legal scalefactor for Q 3. So n f 3 mod 8. Similarly, n + 5 mod 8, for 

then there would be an odd I&,2$}-cycle in Q3 but no odd {n, 2fi}-cycle 
in Q3. 

(-z) Since n= 1 mod 8, any do E R ’ is Q3-attainable iff dOd is; now apply 
Theorem 1. 0 

Theorem 4. Let dE R+. Then d is a legal scalefactor for A, iff we can write d= p&/q 

with p and q odd integers and n = 1 mod 8. 

Proof. If d is a legal scalefactor, then Lemma 4 and Theorem 2 together imply that we 

can write d=p&/q for some odd positive integers p, q and n; the remainder of the 
proof is the same as that of Theorem 3 except with A3 in place of Q3. 0 
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