Chess Tableaux and Chess Problems

Timothy Y. Chow*
20 October 2004
MIT Combinatorics Seminar
(joint work with Ken Fan and Henrik Eriksson)

* Currently working at MIT Lincoln Laboratory

Chess Tableaux

- A chess tableau is a standard Young tableau in which the parity of the (i, j) entry equals the parity of $i+j+1$

1	2	3	6	7	10	15
4	5	8	9	16		
11	12	13	14			

- First defined by Jonas Sjöstrand in the study of the sign imbalance of certain posets
- Problem: Find Chess(λ), the number of chess tableaux of shape λ

Chess Tableaux with 2 Rows

- Entry $2 i+1$ must appear immediately to the right of entry $2 i$

- Finding Chess (a, b) reduces to enumerating standard Young tableaux with two rows
- Chess $(2 n+1,2 n+1)$ is the nth Catalan number

Chess Tableaux with 3 Rows

- No obvious pattern and no known formula in general for Chess(a, b, c)
- BUT: Sloane recognizes Chess(n, n, n) for $n>1$ as the number of Baxter permutations of $\boldsymbol{n - 1}$

$$
\operatorname{Chess}(n, n, n)=\frac{2}{(n-1) n^{2}} \sum_{k=0}^{n-2}\binom{n}{k}\binom{n}{k+1}\binom{n}{k+2}
$$

- Sloane also reveals that $\operatorname{Chess}(n, n, n)$ is the number of $3 \times(n-1)$ nonconsecutive tableaux [Dulucq and Guibert]

Nonconsecutive Tableaux

- A nonconsecutive tableau is a standard Young tableau in which i and $i+1$ never appear in the same row

1	3	5	7	12	15
2	6	9	11	13	
4	8	10	14		

- $\mathrm{NCon}_{i}(a, b, c)=$ no. of nonconsecutive tableaux of shape a, b, c whose highest entry is in row i
- Theorem: For all a, b, and c, $\mathrm{NCon}_{1}(a, b, c)=$ Chess $(a+b-c, a-b+c, 1-a+b+c)$

Corollaries

- $\operatorname{NCon}(a, b, c)=\operatorname{Chess}(a+b-c, a-b+c, 1-a+b+c)+$ Chess(1+a+b-c, 1+a-b+c, $-a+b+c)$
Proof: By nonconsecutivity,

$$
\mathrm{NCon}_{1}(a+1, b, c)=\mathrm{NCon}_{2}(a, b, c)+\mathrm{NCon}_{3}(a, b, c)
$$

And it is obvious that
$\mathrm{NCon}(a, b, c)=\mathrm{NCon}_{1}(a, b, c)+\mathrm{NCon}_{2}(a, b, c)+\mathrm{NCon}_{3}(a, b, c)$
So NCon $(a, b, c)=\operatorname{NCon}_{1}(a, b, c)+\operatorname{NCon}_{1}(a+1, b, c)$.
Now apply the theorem.

- $\operatorname{NCon(n-1,~} n-1, n-1)=\operatorname{Chess}(n, n, n)$

Proof: The previous corollary implies
NCon($n-1, n-1, n-1$) $=$ Chess($n-1, n-1, n$) + Chess $(n, n, n-1)$
But Chess($n-1, n-1, n$) $=0$ and Chess($n, n, n-1$) $=\operatorname{Chess}(n, n, n)$

The Bijection (Part 1)

- Start with a chess tableau T
- Assume that T is balanced, i.e., the lengths of rows 2 and 3 have opposite parity
$-a-b+c$ and 1-a+b+c have opposite parity
- Decompose T as follows:
- Step through the entries until you get an entry in row 2
- Then keep stepping through until you get a total of two more entries in rows 2 and 3 collectively
- Repeat until the chess tableau is exhausted

The Bijection (Part 2)

- Create a nonconsecutive tableau T^{*} section by section
- Roughly speaking, in each section, the elements in row 1 of T go into rows 1 and 2 of T^{*} (alternating between the rows because of nonconsecutivity) with variations depending on the positions of the two elements x and y of T in rows 2 and 3
- Four cases:

1) x and y both in row 2

$$
x-1 \rightarrow \text { row } 3 ; x \rightarrow \text { row } 1 ; x+1 \text { to } y-1 \rightarrow \text { rows } 1 \text { and } 2
$$

2) x in row $2, y$ in row 3

$$
x-1 \rightarrow \text { row } 3 ; x \rightarrow \text { row } 2 ; x+1 \text { to } y-1 \rightarrow \text { rows } 1 \text { and } 2
$$

3) x in row $3, y$ in row 2
$x-1 \rightarrow$ row $2 ; x \rightarrow$ row $3 ; x+1 \rightarrow$ row $1 ; x+1$ to $y-1 \rightarrow$ rows 1 and 2
4) x and y both in row 3
move x-2 to row 2 or $3 ; x-1 \rightarrow$ row 2 or $3 ; x \rightarrow$ row $1 ; x+1$ to $y-1 \rightarrow$ rows 1 and 2

$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	10	
$\mathbf{2}$	$\mathbf{6}$	9			
	$\mathbf{4}$	8			

1	2	3	6	7	10	15
4	5	8	9	16		
11	12		14			

$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$
$\mathbf{2}$	$\mathbf{6}$	$\mathbf{9}$	
4	8		

$\mathbf{1}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{7}$	12
$\mathbf{2}$	$\mathbf{6}$	$\mathbf{9}$	11	
$\mathbf{4}$	$\mathbf{8}$	10		

1	2	3	6	7	10	15
4	5	8	9	16		
11	12	13	14			

1	3	5	7	12	15
2	6	9	11	13	
4	8	10	14		

Corollary of Bijective Proof

- In the formula for Chess(n, n, n), what does k mean?

$$
\operatorname{Chess}(n, n, n)=\frac{2}{(n-1) n^{2}} \sum_{k=0}^{n-2}\binom{n}{k}\binom{n}{k+1}\binom{n}{k+2}
$$

- Dulucq and Guibert have an interpretation for nonconsecutive tableaux; bijecting, we find:
- k is the number of sections falling into the first two of the four possible cases (both in row 2, or split with the larger entry in row 3)
- Open: Find a bijection to $3 \times k$ semistandard Young tableaux with entries between 1 and $\boldsymbol{n}-\boldsymbol{k}+1$

An Algebraic Approach

- Recall that before the hook length formula was the determinantal formula $n!\operatorname{det}\left[1 /\left(\lambda_{i}+j-i\right)!\right]$
- Relax the column constraint on Young tableaux
- Reinterpet as lattice paths or "rat races"
- Intone "Lindström-Gessel-Viennot" and presto!
- A similar technique can be applied to enumerate chess tableaux with r rows
- One obtains a rational generating function in r variables
- The diagonal is P-recursive [Lipshitz]
- In principle the recurrence can be extracted using the WZ methodology, but even for $r=3$ the computation is too large to perform naïvely

Generating Function for 3 Rows

$$
\begin{aligned}
& F(x, y, z)=N / D \\
& N=8 x^{2} y^{4} z^{5}-8 x^{2} y^{3} z^{6}+8 y^{4} z^{7}-8 y^{3} z^{8}+4 x^{3} y^{3} z^{4}-4 x^{3} y^{2} z^{5}+8 x^{2} y^{3} z^{5}+4 x^{2} y^{2} z^{6}+4 x^{2} z^{8}- \\
& 4 x y^{4} z^{5}+4 x y^{3} z^{6}-12 x y^{2} z^{7}-4 x z^{9}-4 y^{4} z^{6}+8 y^{3} z^{7}-4 y^{2} z^{8}+2 x^{3} y^{5} z+2 x^{3} y^{3} z^{3}+4 x^{3} y^{2} z^{4} \\
& -2 x^{2} y^{6} z+2 x^{2} y^{5} z^{2}-10 x^{2} y^{4} z^{3}+8 x^{2} y^{3} z^{4}-6 x^{2} y^{2} z^{5}+2 x^{2} y z^{6}-2 x^{2} z^{7}+4 x y^{5} z^{3}+4 x y^{4} z^{4} \\
& +6 x y^{3} z^{5}+12 x y^{2} z^{6}+2 x y z^{7}+4 x z^{8}-2 y^{6} z^{3}-18 y^{4} z^{5}+12 y^{3} z^{6}-6 y^{2} z^{7}-2 z^{9}-2 x^{3} y^{5}+ \\
& 2 x^{3} y^{4} z-5 x^{3} y^{3} z^{2}+5 x^{3} y^{2} z^{3}-x^{3} y z^{4}+x^{3} z^{5}+2 x^{2} y^{6}-2 x^{2} y^{5} z+5 x^{2} y^{4} z^{2}-8 x^{2} y^{3} z^{3}- \\
& 2 x^{2} y^{2} z^{4}-2 x^{2} y z^{5}-9 x^{2} z^{6}-2 x y^{5} z^{2}+4 x y^{4} z^{3}-9 x y^{3} z^{4}+21 x y^{2} z^{5}-x y z^{6}+11 x z^{7}+2 y^{6} z^{2} \\
& +11 y^{4} z^{4}-12 y^{3} z^{5}+14 y^{2} z^{6}+z^{8}-2 x^{3} y^{4}-3 x^{3} y^{3} z-5 x^{3} y^{2} z^{2}-x^{3} y z^{3}-x^{3} z^{4}+4 x^{2} y^{4} z- \\
& 3 x^{2} y^{3} z^{2}+9 x^{2} y^{2} z^{3}-3 x^{2} y z^{4}+5 x^{2} z^{5}-3 x y^{5} z-4 x y^{4} z^{2}-11 x y^{3} z^{3}-21 x y^{2} z^{4}-6 x y z^{5}- \\
& 11 x z^{6}+2 y^{6} z-y^{5} z^{2}+14 y^{4} z^{3}-5 y^{3} z^{4}+15 y^{2} z^{5}+7 z^{7}+3 x^{3} y^{3}-3 x^{3} y^{2} z+2 x^{3} y z^{2}-2 x^{3} z^{3} \\
& -5 x^{2} y^{4}+3 x^{2} y^{3} z-6 x^{2} y^{2} z^{2}+3 x^{2} y z^{3}+5 x^{2} z^{4}+2 x y^{5}-2 x y^{4} z+8 x y^{3} z^{2}-12 x y^{2} z^{3}+3 x y z^{4} \\
& -11 x z^{5}-2 y^{6}+y^{5} z-12 y^{4} z^{2}+5 y^{3} z^{3}-20 y^{2} z^{4}-4 z^{6}+3 x^{3} y^{2}+x^{3} y z+2 x^{3} z^{2}-3 x^{2} y^{2} z+ \\
& x^{2} y z^{2}-4 x^{2} z^{3}+2 x y^{4}+5 x y^{3} z+12 x y^{2} z^{2}+6 x y z^{3}+11 x z^{4}-4 y^{4} z+y^{3} z^{2}-12 y^{2} z^{3}-9 z^{5}- \\
& x^{3} y+x^{3} z+4 x^{2} y^{2}-x^{2} y z+x^{2} z^{2}-3 x y^{3}+3 x y^{2} z-3 x y z^{2}+5 x z^{3}+5 y^{4}-y^{3} z+14 y^{2} z^{2}+ \\
& 6 z^{4}-x^{3}+x^{2} z-3 x y^{2}-2 x y z-5 x z^{2}+3 y^{2} z+5 z^{3}-x^{2}+x y-x z-4 y^{2}-4 z^{2}+x-z+1 \\
& D=\left(2 x y z+x^{2}+y^{2}+z^{2}-1\right)\left(y^{2}+z^{2}-1\right)^{2}\left(x^{2}+z^{2}-1\right)(1-z)
\end{aligned}
$$

- Coefficient of $x^{a} y^{b} z^{c}$ is Chess(a, b, c) provided $a \geq b \geq c>0$; otherwise the coefficient is "junk"

Queue Problems in Chess

Serieshelpmate in 14: How many solutions?
(E. Bonsdorff and K. Väisänen)

- "Serieshelpmate in 14" means Black makes 14 consecutive moves while White does nothing, and then White makes a single move to checkmate Black
- Black and White cooperate to checkmate Black
- None of the 14 moves except the last may cause either player to be in check
- This is a queue problem because it turns out that there is a fixed set of moves that Black must make; only the order of the moves varies

Solution to Bonsdorff-Väisänen

Serieshelpmate in 14: How many solutions?

Promote to bishops

Solutions are in bijection with linear extensions of this poset, i.e., 2×7 standard Young tableaux ANSWER: $\mathrm{C}_{7}=429$

From Serieshelpmates to Helpmates

- Until recently all queue problems were serieshelpmates (or serieshelpstalemates)
- What if we want helpmates (or helpstalemates), in which Black and White alternate moves?
- We are led to consider posets whose elements are colored either black or white, and to enumerate their alternating linear extensions, i.e., linear extensions in which black and white elements alternate
- For example, chess tableaux!

Helpstalemate in 4.5: Two Solutions

Helpmate in 3.5: Two Solutions

N. Elkies

Open Problems

- The Charney-Davis statistic $C D(\lambda)=\Sigma_{T}(-1)^{d(T)}$
- Sum is over all standard Young tableaux T of shape λ
$-d(T)=\#\{i: i+1$ is in a lower-numbered row $\}$
- Studied by Reiner, Stanton, and Welker
- Equals Chess(λ) for $2 \times n$ and $3 \times n$ rectangles (up to sign), but not for $4 \times n$ rectangles or most other shapes
- No combinatorial proof for the $3 \times n$ "Baxter" case
- Enumerate chess tableaux with more than 3 rows
- Chess $(2 n+1,2 n+1)=\operatorname{hypergeom}(-n,-(n-1) ; 2 ; 1)$
- Chess(n, n, n) = hypergeom(-n, $-(n-1),-(n-2) ; 2,3 ;-1)$
- But the obvious conjecture fails for 4 and 5 rows
- Currently, no candidate formulas even for rectangles

Open Problems (cont'd)

- If we compute $\Sigma_{\lambda \vdash n} \operatorname{Chess}(\lambda)^{2}$ then we get:
$-1,2,2,2^{2}, 2^{3}, 2^{4}, 2^{4.3}, 2^{5.5}, 2^{6.7}, 2^{11}, 2^{8.5^{2}}, 2^{9.61}, 2^{10.3 .41}$, $2^{11.5} \cdot 59,2^{11.1523}, 2^{13.23 .83}, 2^{13.11411}, 2^{15.103 .163}, \ldots$
- Why such high powers of 2?
- Feigin and Loktev (math.QA/0212001) define "Weyl modules" for $\mathbf{s l}_{2}$ that conjecturally have dimensions equal to the number of Baxter permutations
- Is there a connection to chess tableaux?
- Find new classes of bicolored posets with an interesting number of alternating linear extensions and compose corresponding queue problems

