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Chess Tableaux

« A chess tableau is a standard Young tableau in
which the parity of the (1, ] ) entry equals the
parityof i+ +1

213 |6 |7 1015
4 /5 8|9 |16
111213 |14

 First defined by Jonas SjOstrand in the study of
the sign imbalance of certain posets

* Problem: Find Chess(4), the number of chess
tableaux of shape 4



Chess Tableaux with 2 Rows

Entry 21 + 1 must appear immediately to the
right of entry 2i

112 3|6 7|8 9
4 5 (10 11

Finding Chess(a, b) reduces to enumerating
standard Young tableaux with two rows

Chess(2n + 1, 2n + 1) is the nth Catalan number



Chess Tableaux with 3 Rows

« NoO obvious pattern and no known formula in
general for Chess(a, b, c)

« BUT: Sloane recognizes Chess(n,n,n)forn>1
as the number of Baxter permutations of n -1

2 n—2 N N n
chessm .M =) kz(;(kj(k +1j(k +2j

 Sloane also reveals that Chess(n, n, n) is the
number of 3 x (n — 1) nonconsecutive tableaux

[Dulucg and Guibert]




Nonconsecutive Tableaux

« A nonconsecutive tableau is a standard Young
tableau in which i and | + 1 never appear in the
same row

1 13|57 (12|15
21619 11|13
4 |8 1014

 NCon;(a, b, c) = no. of nonconsecutive tableaux
of shape a, b, c whose highest entry is in row |

« Theorem: For all a, b, and c,
NCon,(a, b, c) = Chess(a+b—c, a—b+c, 1-a+b+c)



Corollaries

« NCon(a, b, c) =Chess(a+b—c, a-b+c, 1-atb+c) +
Chess(l1+a+b-c, 1+a—b+c, —a+b+c)
Proof: By nonconsecutivity,
NCon,(a+1,b,c) = NCon,(a,b,c) + NCon,(a,b,c)
And it is obvious that
NCon(a,b,c) = NCon,(a,b,c) + NCon,(a,b,c) + NCon,(a,b,c)
So NCon(a,b,c) = NCon,(a,b,c) + NCon,(a+1,b,c).
Now apply the theorem.

e NCon(n-1, n—-1, n—-1) = Chess(n, n, n)
Proof: The previous corollary implies
NCon(n-1,n—-1,n-1) = Chess(n-1,n-1,n) + Chess(n,n,n-1)
But Chess(n-1,n-1,n) = 0 and Chess(n,n,n-1) = Chess(n,n,n)



The Bijection (Part 1)

Start with a chess tableau T

Assume that T Is balanced, i.e., the lengths of
rows 2 and 3 have opposite parity

— a—-b+c and 1l-a+b+c have opposite parity
Decompose T as follows:

— Step through the entries until you get an entry in row 2

— Then keep stepping through until you get a total of two
more entries in rows 2 and 3 collectively

— Repeat until the chess tableau is exhausted

12 3‘.6 7‘10}£
A E: ‘9__16'

11 12 /13|14




The Bijection (Part 2)

 Create anonconsecutive tableau T* section by section

— Roughly speaking, in each section, the elementsinrow 1 of T
go into rows 1 and 2 of T* (alternating between the rows
because of nonconsecutivity) with variations depending on
the positions of the two elements x and y of T in rows 2 and 3

 Four cases:
1) x and y both in row 2
X—=1—>row 3; X > row 1; x+1toy—-1 > rows 1 and 2
2) Xinrow 2,yinrow 3
X—=1—>row 3; X > row 2; x+1toy-1 > rows 1 and 2
3) xinrow 3,y inrow 2
X—1—>row 2; x > row 3; x+1 »>row 1; x+t1toy-1 > rows 1 and 2

4) x and y both in row 3

move x—2to row 2or 3; x-1 —>row 2o0r 3; Xx »>row 1; x+tltoy-1 -
rows 1 and 2
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Corollary of Bijective Proof

 Inthe formula for Chess(n, n, n), what does k mean?

2 n-2/n N n
Chess(n,n.n) = (n—1)n? kzé(kjik +1j£k + Zj

 Dulucq and Guibert have an interpretation for
nonconsecutive tableaux; bijecting, we find:

— Kk is the number of sections falling into the first two of the
four possible cases (both in row 2, or split with the larger
entry in row 3)

 Open: Find a bijection to 3 x k semistandard Young
tableaux with entries between 1and n—-k + 1



An Algebraic Approach

 Recall that before the hook length formula was
the determinantal formula n! det[1/(4 + ) —1)!]
— Relax the column constraint on Young tableaux
— Reinterpet as lattice paths or “rat races”
— Intone “Lindstrom-Gessel-Viennot” and presto!

A similar technique can be applied to enumerate
chess tableaux with r rows
— One obtains a rational generating function in r variables
— The diagonal is P-recursive [Lipshitz]

— In principle the recurrence can be extracted using the
WZ methodology, but even for r = 3 the computation is
too large to perform naively



Generating Function for 3 Rows

F(X,Y,z)=N/D

N =8x2y4z5—-8x2y3z¢+8y4z7—-8y3z8+4x3y3z4—-4x3y 225+ 8x2y3z°+4x2y22°%+ 4x 228 -

D

AXy 425+ 4xy 326 — 12xy 2z 7 —4xz°% -4y 426+ 8y 327 — 4y 278 + 2x 3y 5z + 2x3y 3z3 + 4x 3y 2z 4
—2X 2y 6z + 2x 2y 522 - 10x2y 423+ 8x2y3z4—6X2y 225+ 2x2yz6—2Xx2z7 + 4xy>5z3 + 4xy 4z *
+ 6xy3z°%+ 12xy 226+ 2xXyz " + 4xz8 — 2y 6723 - 18y 425+ 12y 326 -6y 227 — 229 - 2x3y > +
2X 3y 4z —5x3y 322+ 5x3y 273 —x3yz4+ X325+ 2x?2y 6 —2x2y5z + 5x2y4z2 - 8x2y3z3—

2X 2y 274 —2X2yz5—9x 226 - 2xy 522 + 4xy 423 - 9Oxy 3z4 + 21xy 2z°> —xyz® + 11xz " + 2y 672
+11y4z4—-12y3z°5+ 14y 226+ 2728 — 2x3y 4 —3x3y3z —5x3y 222 - x3yz3-x3z4+4x2y4z —
3X2y3z2+9x2y2z3 -3x2yz4+5x225—-3xy®z—4xy 422 —11xy3z3—21xy?2z4 - 6Xyz> —
11xz6+ 2y bz —y5z22+ 14y 423 -5y3z4+ 15y 275+ 727+ 3x3y 3 —3x3y 2z + 2x3yz2 — 2x 323
—5X2y 4+ 3x2y3z —-6X2y2z2+ 3x2yz3+5x2z24+ 2xy°>—2xy 4z + 8xy3z2—12xy2z3 + 3xyz*
—11xz%—-2y%+y52 —12y4z2+5y3z3—-20y2z4—-4z5+ 3x3 2+ x3z+2x322-3x?%y?%z +
X2yz2—4x 223+ 2xy 4+ 5xy3z + 12xy 222 + 6xyz3+ 11xz4 -4y 4z +y322 - 12y 2723 —-925—
X3y +X3Z+4Xx2y2—X2yz +X222—-3xy3+3xy?2z—3xyz2+5xz3+5by+—-ysz+14y?z?+
624 —X3+X2Z2—-3xy2—2xXyz—5xz22+3y?z2+52% —x2+xy—-xz—4y?—-4z2+x—-z+1

(2xyz+x2+y2+22-1)(y?2+2z2-1)x?+2z2-1)(1-2)

Coefficient of x2ybz¢ is Chess(a, b, ¢) provided a>b >c > 0;
otherwise the coefficient is “junk”



Queue Problems in Chess

Serieshelpmate in 14:

How many solutions?
(E. Bonsdorff and K. Vaisanen)
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“Serieshelpmate in 14”
means Black makes 14
consecutive moves while
White does nothing, and then
White makes a single move
to checkmate Black

Black and White cooperate to
checkmate Black

None of the 14 moves except
the last may cause either
player to be in check

« Thisis aqueue problem

because it turns out that
there is a fixed set of moves
that Black must make; only
the order of the moves varies



Solution to Bonsdorff-Vaisanen

Serieshelpmate in 14:

How many solutions?

B,a’

P,ad
P.,a5

Solutions are in bijection with
linear extensions of this poset,
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l.e., 2x7 standard Young tableaux

Promote to bishops

=429

ANSWER: C,



From Serieshelpmates to Helpmates

o Until recently all queue problems were
serieshelpmates (or serieshelpstalemates)

 What if we want helpmates (or helpstalemates),
In which Black and White alternate moves?

« We are led to consider posets whose elements
are colored either black or white, and to
enumerate their alternating linear extensions,
1.e., linear extensions in which black and white
elements alternate

— For example, chess tableaux!



Helpstalemate in 4.5: Two Solutions
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Helpmate in 3.5: Two Solutions

N. Elkies
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Open Problems

« The Charney-Davis statistic CD(4) = 2 (-1)d(™
— Sum is over all standard Young tableaux T of shape A
—d(M=#{i1:1+1lisinalower-numbered row }

— Studied by Reiner, Stanton, and Welker

— Equals Chess(A4) for 2xn and 3xn rectangles (up to sign),
but not for 4xn rectangles or most other shapes

— No combinatorial proof for the 3xn “Baxter” case

e Enumerate chess tableaux with more than 3 rows
— Chess(2n + 1, 2n + 1) = hypergeom(-n, —(n — 1); 2; 1)
— Chess(n, n, n) = hypergeom(-n, —(n — 1), —(n — 2); 2, 3; -1)
— But the obvious conjecture fails for 4 and 5 rows
« Currently, no candidate formulas even for rectangles



Open Problems (cont’d)

« If we compute X, . Chess(4)? then we get:

— 1, 2, 2, 22, 28, 24 243, 255, 26.7, 211 28.52 29.61, 210.3.41,
211.5.59, 211.1523, 213.23.83, 213.11411, 215.103-163, ...

— Why such high powers of 2?

 Feigin and Loktev (math.QA/0212001) define “Wey!|
modules” for sl, that conjecturally have dimensions
equal to the number of Baxter permutations
— Is there a connection to chess tableaux?

 Find new classes of bicolored posets with an
Interesting number of alternating linear extensions
and compose corresponding queue problems
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