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Abstract 

In (West, Discrete Math. 157 (1996) 363-374) it was shown using transfer matrices that the 
number [Sn(123; 3214)1 of permutations avoiding the pattems 123 and 3214 is the Fibonacci 
number F2, (as are also IS,(213; 1234)1 and 1S~(213;4123)1 ). We now find the transfer matrix 
for IS , (123;r , r -  1 . . . . .  2,1,r + 1)1, IS,(213;1,2 . . . . .  r , r +  1)1, and ISn(213;r + 1,1,2 . . . . .  r)l, 
determine its characteristic polynomial in terms of the Chebyshev polynomials, and go on to 
determine the generating function as a quotient of modified Chebyshev polynomials. This leads 
to an asymptotic result for each r which collapses to the exact results 2 n when r = 2 and F2, 
when r = 3 and to the Catalan number c, as r ~ e~. We observe that our generating function 
also enumerates certain lattice paths, plane trees, and directed animals, giving hope that these 
areas of combinatorics can be applied to enumerating permutations with excluded subsequences. 
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1. Introduction 

Let Sn denote the symmetric group on n letters. There is a large literature on enu- 

merating permutations with excluded subsequences, which are defined as follows. 

Definition 1.1. Let z E Sk. A permutation rc E Sn is z-avoidin9 if  there is no sequence 

fi, i2 . . . . .  ik of integers such that 

1 <~ iz(1)<i~(2)<"" <it(k) ~< tt and ~ ( i l ) < z c ( i 2 ) < . . .  <rt(ik). 

The subsequence {rc(i~(j))}k=l is said to have type ~. We write S~(z) for the set of  

z-avoiding permutations of length n. 
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For example, the permutation zc = 3461752 is not 3421-avoiding because we can take 

il -- 7, i2 -- 6, i3 --- 3, and/4 = 5. Informally, the subsequence of zr consisting of the 3rd, 

5th, 6th, and 7th numbers - -  namely, 6752 - -  has the same 'shape' as 3421. 
One tool in this subject is the concept of  a generating tree [1,2,4]. 

Definition 1.2. A generating tree is a rooted labelled tree with the property that if  v 1 

and v2 are any two nodes with the same label and t ~ is any label, then vl and v2 have 

exactly the same number of children with the label [. To specify a generating tree it 

therefore suffices to specify 
(1) the label of  the root, and 

(2) a set of  succession rules explaining how to derive from the label of  a parent the 

labels of  all of  its children. 

Example 1.3 (The complete binary tree). 

Root: (2), 

Rule: (2) ~ (2)(2). 

Our notation for the succession rule simply means that any node with the label 2 
has two children, each of which also has the label 2. We are generally interested in 
X,, the number of  nodes on level n of  the tree, and sometimes in (label)n, the number 
of  nodes on level n labelled (label). In this example, 2~n = ( 2 ) , = 2  n-l ,  if the root is 

considered to be level 1. 

Example 1.4 (The Fibonacci tree). 

Root: (1), 

Rules: (1) ---+ (2) (2) --~ (1)(2). 

We could alternatively use (non-breeding pair) for (1) and (breeding pair) for (2), 
but the numeric labels provide a convenient record of the number of  children of  each 

node. 

In this case, Xn = ( 2 ) n + l  and 

( (1)n  ) n - I  
(1.1) 

Here Fn is the nth Fibonacci number. The 2 × 2 matrix in this equation is called the 
transfer matrix, and (~) is the vector representing the labels present on the root level. 
It should be clear how the transfer matrix is derived from the succession rules. 

For a longer discussion with more examples, see [5]. 
The connection between z-avoiding permutations and generating trees comes from 

an idea in [1]. Given z, define a rooted tree as follows. The nodes on level n are 

precisely the elements of  Sn(z). The parent of  a permutation 7c = pl,  p2 . . . . .  Pn is the 
unique permutation Pl , . . . ,  Pj-1, pj+~ . . . . .  p,  such that pj =n.  We call the resulting 
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tree T(z). We abbreviate Sn(zl)N S,(~2) by S,(zl;r2) and its corresponding tree by 

T(~l; z2). 
Now to make T(z) a o e n e r a t i n 9  tree, we must assign labels to the nodes. In general 

this can be done in many different ways, but rather than giving a universal construction 

here, we shall describe the labelling rules case by case during our analysis in the next 
section. 

It is worth making one general comment about the construction of the tree. Al- 

though the tree has been defined by explaining how to find the parent of a given 
child, in practice we proceed by finding all the children of a given parent. Thus in- 
stead of d e l e t i n 9  the largest element, n, from wherever it happens to be, we con- 
struct the tree from the root down by i n s e r t i n g  n in every position where it does 
not create a z-subsequence. We emphasize that the element being inserted is al- 

ways the l a r g e s t  element of  the resulting child permutation and we rely on this fact 
heavily. 

Our main result enumerates classes of permutations avoiding certain pairs z~ and z2 
of permutations, where z~ has length three and z2 has arbitrary length. In Section 2, 
we use combinatorial arguments to describe the structure of the generating tree for 
each class. In Section 3, we use algebraic techniques to extract information from the 
resulting transfer matrices. In Section 4, we place our new results in the context of 
previous work. Finally, in Section 5, we sketch some connections with lattice paths, 
plane trees, and directed animals. We feel that these connections deserve further ex- 
ploration and may give new insight into enumerating permutations with excluded sub- 
sequences. 

2. Combinatorics 

We first study Sn(123) and S~(213), reproducing results from [4]. 

Definition 2.1. The i.i.s, of a permutation is its initial increasing subsequence: take 
numbers from the beginning of the permutation until a descent is encountered. The 
i .d.s, of permutation is its initial decreasing subsequence. 

Consider a permutation zt E Sn_1(123), zt = pl . . . . .  Pn-1. Its potential children in the 
generating tree T(123) are 

zrJ = p l ,  p2  . . . .  , p j - l , n ,  p j  . . . . .  P n - l ,  

as j ranges from 1 to n. Clearly, ~zJ ~S~(123) exactly when there exist 1 ~< il <ie < j  
such that pi,  < p i : ,  for if this happens then Pil ,  Pi2, n is a forbidden subsequence of 
type 123. Conversely, ztJ E S~(123) iff p l  . . . . .  P j - l  is a decreasing subsequence. The 
permutation rc therefore has exactly k children in T(123) if its longest i.d.s, has length 
k - 1. Now looking at its children, 7r I has an i.d.s, of  length k while ltJ (2 ~< j <~ k) 
has an i.d.s, of  length j - 1. What this says, in summary, about the succession rules 
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for T(123) is 

Rule: (k)---~(k + 1 ) ( 2 ) - . . ( k ) .  

The transfer matrix is therefore the infinite matrix A ~  in the equation 

(3).  1 1 i 

(4).  = 1 1 • ( 5 ) . . .  o. 1. (2.1) 

We refrain from an algebraic attack on this matrix as it is well known that in this 
instance X, = (2),+1 = c, = (2~)/(n + 1), the nth Catalan number. 

Tuming to S,(213), we see a permutation will now have exactly k children in the 

tree T(213) if  its longest i.i.s, has length k - 1 .  These children, re1 . . . . .  rc k, will therefore 
have i.i.s.'s o f  lengths 1,2 . . . . .  k respectively, so again 

Rule: (k)  ~ ( 2 ) - - .  (k)(k + 1 ) (2.2) 

and we obtain the same transfer matrix. 

Our new results will be to modify these arguments to treat 

T(123; r  . . . . .  1 , r + l ) ,  T ( 2 1 3 ; r + l , 1  . . . . .  r )  and T ( 2 1 3 ; 1 , . . . , r , r + l ) .  

This was performed for r = 3 in [5]. 
In the first example, T(123; r . . . . .  1,r  + 1), the first restriction, ~ = 123, constrains 

(as above) the insertion o f  a new element, n, to occur within, or immediately after, 

the i.d.s, o f  the permutation re E S,_ i. The second restriction, fl = r, . . . .  1, r + 1, then 
assures that a new largest element cannot be placed as far as r positions into this i.d.s., 

otherwise pl,  p2, . . . ,  pr, n would be of  type ft. It follows that if  the i.d.s, has length 
k ~> r, the number of  children will be r rather than k + 1, and their labels will be 
( r ) ( 2 ) ( 3 ) . . .  (r),  arguing from the length of  the resulting i.d.s.'s. 

Actually, the very last step in this argument relies on verifying that a permutation 

in S,(ct; fl) having an i.d.s, o f  length exactly r -  1 also behaves itself, namely it has 
r children labelled ( r ) , (2 )  . . . . .  (r). This is easy enough; we can then summarize the 
succession rules as 

Rule: ( k ) - ~ ( 2 ) . . . ( k ) ( k + l )  ( i f k < r ) ,  
Rule: ( r ) - ~  ( 2 ) . . .  (r)(r). 

(2.3) 
The first rule applies if  the i.d.s, has length k - 1 < r -  1, and the second rule if  the 
i.d.s, has length r -  1 or greater. 

This gives a finite transfer matrix of  dimension r -  1 (labels smaller than 2 or greater 
than r never arising) of  the form 
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1 

1 

0 

Ar = : 

0 

0 

0 

1 1 . . .  1 1 1 

1 1 . . .  1 1 1 

1 1 - . .  1 1 1 

0 0 . . .  1 1 1 

0 0 . - .  1 1 1 

0 0 -.-  0 1 2 

(2.4) 

i.i.s, children 

short k -  1 ~ 1,2 . . . . .  k k --~ 2,3 . . . . .  k , k +  1 

critical r - 1 ~ 1,2 . . . . .  r r --~ 2, 3 . . . . .  r, r 

long k - 1  --+ 1,2 . . . . .  r r ~ 2,3 . . . . .  r,r 

The succession rules, and hence the transfer matrix, are thus identical to the previous 

example. 

Parenthetically, we should remark that in this case k - 1 > r -  1 means k -  1 = r, 

since r is the maximum length permitted for an i.i.s, b y / L  This type o f  restriction was 

not true for the i.d.s, in the previous example; nevertheless the succession rules are 

identical. 

In our third example, ~ = 213, 13 = r + 1, 1 . . . . .  r. Again ~ restricts our attention to 

the i.i.s., of  length k -  1. N o w / / m e a n s  that a new largest element can only be inserted 

either immediately after the i.i.s., or in the last (rightmost) r -  1 positions o f  the i.i.s., 

a total o f  r possible insertions. However, in this instance it is not obvious (or true) that 

all r o f  these possibilities are valid; there might be an increasing sequence o f  length r 

lurking in the permutation somewhere beyond the i.i.s. What makes this example more 

delicate than the preceding two is that in those instances both ~ and/~ ended with their 

respective largest elements, so that we only needed to look to the left of  our insertion 

point to be sure o f  avoiding new forbidden patterns. Now we must look to the right 
as well as to the left. 

The general situation is of  a permutation n c S~_ l, with i.i.s, o f  length k - 1, and 

where there are l legitimate places to insert a new largest element. These will give rise 
to the permutations 7~ k-I+l ,  7~k--I+2,..., 7~ k. We know the active insertion points form 

(2.5) 

which can be regarded as a truncated form of  Ao~. 

The other two cases will proceed analogously. First we consider ~ = 2 1 3 ,  

/~= 1,2 . . . . .  r,r  + 1. Let rcESn-l(~;/~),  and look at the potential children o f  r~ in 

T(~;/~). The restriction ~ guarantees that the insertion point for n is in or immediately 

after the i.i.s. We again distinguish three cases depending on whether the length k - 1 

o f  this i.i.s, is less than, equal to, or greater than, r - 1. 

First, if  k -  1 < r -  1, all k potential children are /~-free, and they have i.i.s.'s o f  

lengths 1,2 . . . . .  k. Second, if k - 1 = r - 1, all k potential children are/~-free, and their 

i.i.s.'s have lengths 1,2,3 . . . . .  r. Third, if k -  1 > r -  1, only the first r o f  the k potential 

children are /%free, with i.i.s.'s o f  lengths 1,2 . . . . .  r. Since we have just shown that 

the number o f  children can be deduced directly from k - 1, we can read off 
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such a consecutive run because if  a site is excluded by pattern fl, so will all sites to 
its left be excluded. Now select one of  these sites, k - l + 1 ~< j ~< k, insert n to form 

a new permutation p, and consider which sites in p now admit an insertion of  element 
(n + 1). I f  l < r ,  the legitimate children of  p will be pk- /+ l  . . . . .  pj+l _ p k - t  being 

excluded because it contains essentially the same subsequence which excludes nk-t ,  and 
p j+2 being excluded because p J, p / -  1, n + 1 would be of  type c~. Thus as j ranges from 

k -  l +  1 to k the number of  children of  p ranges from ( k -  l + 1 + 1 ) -  ( k -  l +  1 ) + 1 = 2 

to (k + 1) - (k - l + 1) + 1 = l + 1. This gives us the succession rule 

Rule: ( l )  -~ ( 2 ) . . .  ( l ) ( l  + 1). 

It is clearly not possible to have l > r  as then the leftmost o f  these insertion points 

would necessarily create a forbidden ft. We are left with l = r and the insertion points 
k -  r + I . . . . .  k. This proceeds exactly as l < r  except that now p = zr k has only l 

children rather than l + 1, the reason being that pk- t+ l  is excluded by reason of  

causing a forbidden ft. We therefore exceptionally have 

Rule: ( r )  ~ ( 2 ) . . - ( r ) ( r ) .  

Hence the transfer matrix is again identical to the two preceding examples. 
In the following section we will therefore be analyzing only the single matrix 

equation 

[ ( i +  1).] . . - 1  x (2.6) ~ - . z l  r e I . 

3. Algebra 

For each r, we are interested primarily in a generating function for 2;n, the cardinality 

of  Sn(~; fl). Conveniently, 2;, = (2),+1, since each permutation begets exactly one child 
with the label (2). It is also immediate from (2.6) that (2)n+l =(A~)1,1, the upper-left 

entry in the nth power of  the transfer matrix At. 
It is well known (see [3] Theorem 4.7.2) that this generating function is 

~..a t r J~'~tAn~l" 1 xn  - det(I  - x A r  "1, 1) 
f r (X)= (3.1) 

n~>0 d e t ( I - x A r )  ' 

where ( B : j , i )  denotes the matrix obtained by removing the j th  row and ith column 

of  B. 
In our case, A~ is a matrix of  dimension (r  - 1 x r - 1 ) and (I  - xAr : 1, 1) is just 

[ - -  X A r -  1. Therefore if  we let 

Prn()0 = det(Am+l - -  ~ ] J r n + l  ) 

be the characteristic polynomial o f  Am+l, then our generating function becomes 

det(I  - xAr_z ) ( r - - 2 × r - - 2 )  ( - - x ) r - 2 p r _ 2 ( I / X )  
det(I  - xA~)(~_, ×r- l )  -- ( - x )  ~ - lp~- l (1 /x )"  (3.2) 
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To determine the pro(2), we expand down the first column. This gives us p ro(2)=  

(1 --  2 ) p r o - l ( 2 )  --  q m - l ( 2 ) ,  w h e r e  

1 1 . . -  

1 1 - 2  . - .  
, . , 

qm(2) = det 

1 1 

1 1 

1 1 

1 - 2  1 

1 2 - 2  (m×m) 

(3.3) 

Expanding this new determinant similarly gives u s  q m ( ) . ) = P m - l ( 2 ) -  qm-- l ( ) . ) .  We 

may eliminate the q ' s  to obtain the recurrence 

Pm+ "~Pm-1 "4- 2pro-2 =0.  

This suggests that pro(2) is related to Chebyshev polynomials; indeed, it is straightfor- 

ward to use this recurrence and the well-known recurrence 

Um+2(y)=2yUm+l(y)- Urn(y) ( m > 2 )  (3.4) 

for the Chebyshev polynomials to show by induction that 

pm( 2 )= (-- l )m 2(m--2)/2 Um+2 (--~ ) , (3.5) 

where Um is the Chebyshev polynomial o f  the second kind. 

We can state our conclusion as follows. 

Theorem 3.1. We have 

S,, = ISn(123;r,r - 1 . . . . .  2, 1,r + 1)1 

= [Sn(213; 1,2 . . . . .  r,r + 1)l 

= 1S~(213;r + 1,1,2 . . . . .  r )  L, 

and the generating function for this sequence is 

pr--2(1/X) 
fr(X) = Z Z , x " -  , >1 o Xpr-l(1/x)' (3.6) 

where 

pr( 2 ) = ( -1 ) r  2(r- 2 )/2 Ur + 2 ( - ' ~  ) . 

4. Conte x t  

The present result is an extension of  previously known results for r = 2 and 3. In 
[2] it is shown that 1Sn(123; 213)] = ]S.(213; 312)[ = 2 n - l ,  the generating function being 
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(1 - x)/(1 - 2x) = 1 + x  + 2X 2 -~- 4X 3 q-- '"  ". This has the expected denominator; in this 
instance it is not clear what numerator to expect from our result, the determinant in 
question being void. 

In [5] we find ]S,(123; 3214)[---ISn(213; 1234)1 = ]Sn(213;4123)1 =F2,, the alternat- 
ing Fibonacci numbers. Our present result gives the generating function 

( - x ) ( 2  - 1 / x )  1 - 2x  - - l + x + 2 x  2+5x 3 + 1 3 x  4 + . - .  . (4.1) 
x2(1 - 3Ix + 1Ix 2) -- 1 - 3 x + x  2 

This result was obtained in [5] with an identical combinatorial approach and the succes- 
sion rules (2) ~ (2)(3) and (3) ~ (2)(3)(3) were presented there, together with other 
closed-form enumerations for [Sn(a;/~)l where a c $3,/~ E $4. The present paper marks 
the first time to our knowledge that such an explicit result has been obtained for any 
IS,(~;/~)l in which one of the restrictions has indeterminate length. 

It is well known that the order of  growth of the generating function f r (2)  is given 
by the largest zero of pm(2) = p r - l (2 )  (that is, the largest eigenvalue of the transfer 
matrix). Thus when r - -2 ,  the largest zero of 2 -  2 is 2; when r = 3, the largest zero 
of 1 - 32 + 22 is (3 + x/5)/2 =((1 + v/-5)/2) 2. 

Since we have 

pm(2):(--1)m~(m--2)/2Um+2(--~), 

2 will be a non-zero root of p r _ l ( 2 ) = 0  exactly when y =  v~/2  is a non-zero root of 
Ur+l(y) =0.  The zeroes of  the Chebyshev polynomial Ur+t(y) are 

cos r - ~  'c°s ~ . . . . .  c o s \  r + 2  J '  

so the roots of p r - l (2 )  are 

4cos 2 ~ . . . . .  4cos 2 \  r + 2  J "  

The largest of  these is 4 cosZ(rc/(r -k- 2)). 
We thus obtain the asymptotics for each of the three cases enumerated in 

Theorem 3.l. 

C o r o l l a r y  4.1. Z. ~ (4cos 2 (7~z)) n 

Recalling that l i m r ~  Ar=Ao~ or noting that an infinitely long restriction is no 
restriction at all, we see that in the limit as r ~ c~z, 

IS,( 123)] ~ (4 cos2(0))" = 4". 

This makes sense as we know that IS,(123)1 = c ,  ~ 4". 
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5. Connections 

Ratios of  successive Chebyshev polynomials occur in various areas of enumerative 
combinatorics, and this suggests that the numbers Sn might count other natural com- 
binatorial objects. This is indeed the case, as we now indicate briefly. Optimistically, 
these connections could shed new light on the enumeration of permutations with ex- 

cluded subsequences. 
The first example is a set of  lattice paths. Consider lattice paths from (0,0) to 

(2n,0) that never dip below the x-axis, with each step in the path either parallel to 
the vector (1, 1) and called a northeast (NE) step or else parallel to (1 , -1 )  and called 

a southeast (SE) step. Each path contains the same number n of each type of step, 
and is considered to be of length n. It is well known that the set of all such paths is 
enumerated by the Catalan numbers. 

To show that these lattice paths are generated by the succession rule (2.2), give each 
path the label k, where k is one greater than its longest terminal sequence of SE steps. 
The k children of this path can be formed by inserting an NE step into each of the 
final k + 1 possible positions, and then appending a SE step at the very end. Clearly 
the labels of  the n resulting paths are then, in order, k + 1,k, k -  1 . . . . .  2. Also it is 
clear that the parent is recoverable from the child by deleting the last NE and the last 
SE steps, so that each path of length n ÷ 1 is generated exactly once. 

To obtain the modified succession rules (2.3), we simply insist that the inserted NE 
occurs in one of the final r possible insertion points. The resulting class, which is 
enumerated by (3.6), is the subclass of all lattice paths from (0,0) to (2n,0) which 
never rise above the line y = r. 

The second example is a set of plane trees. A plane tree is recursively defined as a 
root together with an ordered list of plane trees. The last tree in an ordered list is the 
right-hand subtree, and its root is called the rightmost child. We can form the right- 

hand edge of a plane tree by recursively taking the root together with the right-hand 
edge of its right-hand subtree. 

Label a plane tree with k, the number of nodes in its right-hand edge. To form 
children, take some node in the right-hand edge and add a new rightmost child to it. 
This can be done in k ways, one for each of the nodes in the right-hand edge. The 
labels of these children are, starting at the root, 2, 3 . . . . .  k ÷ 1. To recover a parent 
from a child, simply delete the last node in the right-hand edge. 

To obtain (2.3), add nodes only to the first r nodes in the right-hand edge. The 
resulting class, enumerated by (3.6), is the class of all plane trees of depth at most r. 

We remark that at a talk given by the second author at the British Combinatorial 
Conference, Robin Chapman drew our attention to problem 10570 in the American 
Mathematical Monthly problems section, January 1997. This deals with plane trees 
of bounded depth, and (independently from our work, of course) Chapman found that 
quotients of Chebyshev polynomials arose in his solution. 

The third example is convex directed animals, enumerated by perimeter. These are 
subsets of the plane, bounded above and below by lattice paths, where each boundary 
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begins at (0,0) and is constructed of steps in the directions (0, 1) and (1,0). The animal 

can thus be thought of as made up of squares, with each square identified with the 
lattice point at its lower left comer. 

If each boundary consists of n steps, the semiperimeter is n. If an animal has k -  1 
squares in its rightmost column, let its label be k. To form the k children, either add 
a square to the top of the rightmost column (creating a child with label k + 1), or add 
a new rightmost column containing 1,2 . . . . .  k -  1 squares and flush at the top with the 
old rightmost column (creating a child with label 2,3 . . . . .  k). It is simple to recover 
a parent from a child, after checking whether the two rightmost columns are flush at 
the top. 

If we want the restricted rules (2.3), then there should never be more than r children. 
So we always add a new column when an old column reaches height r. Therefore, the 
set of convex directed animals of bounded column height r is enumerated by (3.6). 
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