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1 Introduction

This paper considers the problem of inferring cache hitsr&tem observations of references that
miss in the cache. In the Web context, this is the problemfefiimg a browser’s cache hit rate by
examining the requests that it issues to origin servers. Wiy shat a case of this problem can be
solved.

Specifically we consider a sequence of references to urétdsbbjects generated by an LRU
(Least Recently Used) stack distance model and filtered yRhhcache of known size. The LRU
stack distance model is well understood [8] and is repodatescribe certain real-world reference
sequences fairly well, e.g., Web accesses [1] and memagyeretes in programs [9]. The problem
of efficiently transforming a reference sequence into aesponding LRU stack distance sequence
is an interesting problem in its own right and has attractasizlerable attention [4—7,10]. For
an extensive early survey of paging in storage hierarckies,[3]. For analyses of cache removal
policies under the independent reference model, see [1.1,12

2 Problem

We begin with a known universe &symbols{A B,C,...} initially arranged in arbitrary order in
astack. Stackpositions are numbered from top to bottom; we say that symbols occupiipos.
The uppelK positions in the stack are called tbache; we consider only cases where<IK < S,
Associated with each stack positiors a probabilityp; such thatziS:1 pi = 1. We emphasize that
these probabilities are associated vetick positions, not with symbols.

The stack is repeatedly updated according to the followneggdure: From time to time a stack
position is drawn independently from the distribution defined by @tabties p;. When a position
is chosen, the symbol occupying it is removed from the staglsing all symbols above it to “fall
down” one position. The chosen symbol is replaced at thefttpeastack, in position 1. If the chosen
position is strictly greater than the cache size, then the cheg®hol is visible to us; otherwise we
see nothing. The sequence of observed symbols is calleditheeguence.

Our problem is to estimatid = ZiK:1 pi, thehit rate of the cache. We observe only the (infinite)
miss sequence; we have no information about the times atwbferences occur. The question is,
does enough information about cache hits somehow “leaktbratigh the miss sequence to permit
us to estimatél?
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Figure 1: The case &= 3 andK = 2.

3 Calculation of Subword Frequencies

It is easy to show that the problem defined in Section 2 canadcddived as stated. Consider
the case ofS= 2 andK = 1. Regardless of the cache hit rdte= p;, the miss sequence is
“...ABABABAB....” More generally, we can add arbitrary probability maspiavhile maintaining

the relative magnitudes qd, throughps, and the miss sequence will be unchanged. So from now
on we sefp; =0.

To avoid certain degenerate cases, we also assump; ti#d fori > 1.

Perhaps the simplest statistics obtainable from the mcasesee arsubword frequencies, e.g.,
the frequency with which the three-letter string “ABA” afgpe in the miss sequence. So one strategy
for estimating the hit rate is to estimate the subword fregies by empirical observation, express
the subword frequencies as functions of gheand then invert these functions to obtain estimates of
the p;, from which we can estimate the hit rate. We illustrate thigcpss for the case &= 3 and
K = 2, with p; = 0, shown in Figure 1.

After a symbol in the miss sequence is observed, the cach&chayn” for a while before the
next symbol in the miss sequence is generated. To analyzshthra, first number th&! possible
orderings of the cache elements in some fixed manner, eAR, 2.BA. Then write down the
transition matrix T whose(i, j) entryT; ; is the probability that, given that the cache is currently in
theith ordering, a single stack update will result in tftle ordering. In our example,

0 p
T:(p2 02). (1)

The cache may churnfor 0,2, ... updates, so to obtain the probabilfy; that the cache will churn
from orderingi to orderingj, we need to compute

«_ 10, Tl , T2, 13 -1 1 1 p
T =T04T 4T+ T3 4+ =(1-T) —1_p%<p2 1). )
Now we are ready to calculate the transition probabilitesoaiated with the generation of each
symbol in the miss sequence. Number Bgossible stack states in some fixed manner; in our
running example, let us write 1.ABC, 2.ACB, 3.BAC, 4.BCAC3B, 6.CBA. LetM; ; denote the
probability that, given that the stack starts in sfathe stack will be in stat¢ immediately after the
next miss. For example, let us calculddgs. We start with ABC, and we want the probability that
we get CBA immediately after the next miss. This is precislbéy/probability that the cache churns
from AB to BA, and then C is picked and moved to the top. TMig = T;,p3 = p2/(1+ p2).
Similar calculations yield '

O 0 0 0 1 p
0O 0 1 pp 0 O
1 0O 0 0 0 p 1 3)
1+ p2 1 pp 0 0 O O
0O 0 p 1 0 O
prp 1 0 0 O O



The matrixM gives us the probabilities associated with generating sgatibol in the miss
sequence, so to obtain subword frequenciesfeymbol subwords, we need to considdr powers
of M. More precisely, we can calculate the generating funciiorsfibword frequencies as follows.
Each nonzero entry dfl is associated with a certain missed symbol; for exaniye; is associated
with C. Form the matrix

0 0 0 0 C pC
0 0 B pB 0 0O
.1 0 0 0 0 pC C
M=Trm| A mA 0 0o 0o o | ()
0 0 pB B 0 0O
mA A 0O O 0 O

From Markov chain theory we know that in the long run, eachksttate is equally probable, so let
x=(1/6,1/6,1/6,1/6,1/6,1/6),and lety be the all-1’s column vector. Thedi"yis the generating
function for lengthn subword frequencies (where, when calculafiiy we treat the symbols, B,
andC asnon-commuting variables; i.e., when we multiply them, we concatenate theistrings and
do not allow the ordering of the symbols to be disturbed).dx@mple, whem = 3,

xM3y = (p2(ABA-+ACA+ BAB -+ BCB + CAC+ CBC)
+ ABC 4 ACB + BAC + BCA+CAB+ CBA) /6(1+ py). (5)

The frequency of a subword is just its coefficient in this egsion. For examplé;req(ABA) =
p2/(6+6p2) andFreq(ABC) = 1/(6+6py).

In this example we are lucky, and can solve fior namely,p, = Freq(ABA) /Freq(ABC). How-
ever, in general, although we can calculate subword fregjasrior any stack size and cache size
using the above procedure, the resulting subword freqasrazie complicated functions of tipg
and itis not clear whether one can solve for all gheMoreover, even if solving for thp; is possible
in principle, the matrices involved in our computation neetlgrow like a factorial function, so this
does not yield a practical solution for estimating the hiéra

4 Gapsand the Uniform Case

The results of the last section suggest that it might be @imgito analyze the number of symbols
that we will observe (in the miss sequence) before we obskevsymbol currently at the top of the
stack again. Call this random varialile for “gap.” For example, in the casg= 3 andK = 2 that
we analyzed in Section 3,

P[G=1] = Freq(ABA)+ Freg(ACA)+ Freq(BAB) + Freq(BCB)
+ Freq(CAC) + Freg(CBC)
P2

- 1+pe ©

Let us now analyzé& in the following slightly more general case, that we call tm&form case.
Assume thafp; = p is constant for < i < K and thatp; = q is constant folK < j < 'S, where
(K—=1)p+ (S—K)g=1; assume also that # 0 andq # 0. SinceSandK are assumed to be
known, andg can be computed i is known, there is just one unknown parameter to be estimated
namelyp (or equivalentlyH = (K — 1)p). This simplifies the problem significantly, although it is
still far from trivial.



For any fixed value oK, the generating function

G(x)= Y P[G=nX" )

n>1

in the uniform case may be computed as follows. The miss segumay be broken up into three
phases; the first phase lasts until just before the symbodiatly at the top of the stack—call it Z—
falls out of the cache, the second (very brief) phase is thgleistep when Z falls out of the cache,
and the third phase lasts until Z is selected for the first @fiter falling out of the cache.

To analyze the first phase, we set up a Markov chain Wittates, where thi¢gh state represents
Z being in position in the cache. The transition probabilities are straightéord to calculate; for
example, if Z is currently in position 4 (ar€l > 4), then the probability ip that Z moves to the top
of the stack, the probability isfthat Z stays where it is, the probability (K — 4) p that Z advances
to position 5 but no missed symbol is generated, and the pilityds 1 —H that Z advances to
position 5 and some missed symi®yenerated. Similar calculations yield the following tridins
matrix, where the variableis used to keep track of transitions that generate a missatiay and
where for compactness we introduce the notatipix) = (K —i)p+ (1 —H)x.

0 m(x) O 0 0 0 0
p 0 mXx 0 0 0 0
p 0 p m(x) O 0 0
p 0 0 2p my(x) 0 0
MX)=| p o0 0 0 P msx) 0 8)
p 0 0 0 0 0 Mg _1(X)
p 0 0 0 0 0 (K—2)p

The cache starts in state 1, and must advance to Ktaist before Z falls out of the cache. This
can happen after,Q,2,... stack updates. Therefore the multiplicative factor that first phase
contributes td5(x) is the(1,K) entry of

M(X)° +M(X)L+M(X)2+M(x)3+ - = (I = M(x)) L. )

(The series summation may be justified by, for example, gdtiatM (x)" — 0 if |x| < 1.)

The second phase contributes a factoflof H)x to G(x).

During the third phase, each symbol outside the cache haguat grobability of being the next
missed symbol, and we are simply waiting until Z gets pickgus phase contributes a factor of

1 1 ((S—K—l)x) 1 <(S—K—1)x>2+

S-K s k\ s-k )T sk\ sk
1
- S—K—(S—-K-1)x (10)
to G(x). Putting all the factors together, we obtain the followihgdrem.
Theorem 1. Inthe uniform case, the generating function of equation (7) is given by
I —M(X))7E(1—H)x
(I =M(x)1 (1 —H) 1)

M= sk—(e—k=1x"



ForK = 2,3,4, G(x) works out to be, respectively,

Xp+(1-pX
1+ p— pX[S—2— (S—23)X
Xp+(1-2p)x|[2p+ (1-2p)X
[1+p—(p+2p?)x— (p—2p?)x?|[S—3— (S—4)X
Xp+(1-3p)x/[2p+ (1 -3p)X[3p+ (1 -3p)X]
[1-p?— (p+2p?+3p3)x— (p+ p?— 12p3)x2 — (p— 6p? + 9p*)x3|[S— 4 — (S-H)X]

By taking Taylor expansions of these expressions, we carpateran expression fd?[G = n]
for any desirech. This can be compared with the empirical value that is es@échfrom the miss
sequence, and then one can solvedor

Unfortunately, in general we have no closed-form expres&io (I — M(x))~1, and therefore
Theorem 1 is of limited use unleksis very small.

However, we do have a formula for the coefficienkaf G(x), i.e., forP[G = 1].

Theorem 2. Inthe uniformcase,

(K-1)!p<t
(S=K)(1+p)(1-p)(1-2p)(1-3p)---(1—-(K-3)p)’

This solves the uniform case in theory; we simply estin®g@ = 1] from the miss sequence
and then find the smallest positive valuepatisfying equation (12). However, in genelPéG = 1]
will be very small, so estimating it will require a very longafment of the miss sequence.

We conclude this paper with the proof of Theorem 2. The key ist¢he following lemma.

PG=1] = (12)

Lemma 1. The eigenvalues of the matrix

0 K-1 0 0 0 0 0
1 0 K-2 0 0 0 0
1 0 1 K-3 0 0 0
1 0 0 2 K-4 0 0

X=11 o0 0 0 3 K-5 0 (13)
1 0 0 0 0 o ... 1
1 0 0 0 0 0 .. K=2

are—1,0,1,23,... K—4,K—-3 K—-1.

Proof of Lemma 1. For 1< n< K — 1, letv, be the row vector

(200 (- Q- Qc) oo

K—n—1zeroes

We claim thatv,X = (K — n—2)v;,, and hence tha —n— 2 is an eigenvalue of. To see this, let
us consider each entry gfX in turn. Unlessh = K — 1, the first entry ol X is an alternating sum
of binomial coefficients that equals zero (confirming ouiralaif n = K — 1, then the first entry of



vpX is —1, again confirming our claim. The subsequent entries up tiy emimberK —n— 1 are
easily seen to be zero. Foe0,1,...,n, entry numbeK — n-+i of v,X equals

(~1) (T) (K-nti-2) + (—1)i1<i i‘l) (n—i+1)

(—1)i(?) (K—n+i—2—n_ii+1(n—i+1)>

1) k-n-2. (15)

completing the confirmation of the claim.

Sincen ranges from 1 t& — 1, this shows that-1,0,1,2,... K — 3 are eigenvalues of. It is
also easily seen that the all-1's vector is an eigenvect¥rwith eigenvalue — 1. This gives uK
distinct eigenvalues, and sineis aK x K matrix, this list of eigenvalues is complete. O

Proof of Theorem 2. By equation (7), we see thBf{G = 1] may be calculated by dividinG(x) by x
and then setting = 0. By Theorem 1, this means we want to calculate

- 11—
PlG=1= M((;)zlﬁ(l " (16)

Now M(0) is just the matrixXX in Lemma 1 with every entry multiplied bg. Hence the eigenvalues
of M(0) are
-p,0,p,2p,3p,...,(K—4)p,(K=3)p,(K—1)p, a7)

and therefore the eigenvalueslof M(0) are
1+ palvl_ p11_2p11_3p7"'a1_(K_4)p11_(K_s)pal_(K_l)p' (18)

To compute(l — M(O))iﬁ, we take(—1)X~! times the determinant of the submatrix obtained by
deleting the first column and last row bf- M(0) (conveniently, this submatrix is lower triangular
with diagonal entries-p, —2p, ..., — (K — 1) p), and then divide by the determinantlef M(0) (i.e.,

the product of the eigenvaluesiof M(0)). We obtain

(~ DR (R - ) pK?
PP 2p) (1 (K- 2)p)(1- (K- 3)p)(L— (K- 1)p)

By equation (16) we need to multiply this expression by H = 1— (K — 1)p and then divide by
S—K; this yields the theorem. O

(I =M(0) 1k =

5 History & Future Work

Brian Noble inspired this problem with a question during sieeond author’s dissertation proposal
in November 2000. This paper reached roughly its present forMay 2005. Recently we have
become optimistic that further progress is possible, andreleome collaboration on this problem.
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