

Estimating Cache Hit Rates from the Miss Sequence

Timothy Y. Chow, Terence P. Kelly, Daniel M. Reeves
Enterprise Systems and Software Laboratory
HP Laboratories Palo Alto
HPL-2007-155
September 17, 2007*

cache, hit rate,
estimation, LRU
stack distance,
success function

This paper considers the problem of inferring cache hit rates from observations
of references that miss in the cache. In the Web context, this is the problem of
inferring a browser's cache hit rate by examining the requests that it issues to
origin servers. We show that a case of this problem can be solved.

* Internal Accession Date Only
 Approved for External Publication
© Copyright 2007 Hewlett-Packard Development Company, L.P.

Estimating Cache Hit Rates from the Miss Sequence

Timothy Y. Chow
tchow AT alum DOT mit DOT edu

Terence P. Kelly
kterence@hpl.hp.com

Daniel M. Reeves
dreeves@yahoo-inc.com

September 14, 2007

1 Introduction

This paper considers the problem of inferring cache hit rates from observations of references that
miss in the cache. In the Web context, this is the problem of inferring a browser’s cache hit rate by
examining the requests that it issues to origin servers. We show that a case of this problem can be
solved.

Specifically we consider a sequence of references to unit-sized objects generated by an LRU
(Least Recently Used) stack distance model and filtered by anLRU cache of known size. The LRU
stack distance model is well understood [8] and is reported to describe certain real-world reference
sequences fairly well, e.g., Web accesses [1] and memory references in programs [9]. The problem
of efficiently transforming a reference sequence into a corresponding LRU stack distance sequence
is an interesting problem in its own right and has attracted considerable attention [4–7, 10]. For
an extensive early survey of paging in storage hierarchies,see [3]. For analyses of cache removal
policies under the independent reference model, see [11,12].

2 Problem

We begin with a known universe ofS symbols{A,B,C, . . .} initially arranged in arbitrary order in
a stack. Stackpositions are numbered from top to bottom; we say that symbols occupy positions.
The upperK positions in the stack are called thecache; we consider only cases where 1≤ K < S.
Associated with each stack positioni is a probabilitypi such that∑S

i=1 pi = 1. We emphasize that
these probabilities are associated withstack positions, not with symbols.

The stack is repeatedly updated according to the following procedure: From time to time a stack
position is drawn independently from the distribution defined by probabilities pi. When a position
is chosen, the symbol occupying it is removed from the stack,causing all symbols above it to “fall
down” one position. The chosen symbol is replaced at the top of the stack, in position 1. If the chosen
position is strictly greater than the cache size, then the chosensymbol is visible to us; otherwise we
see nothing. The sequence of observed symbols is called themiss sequence.

Our problem is to estimateH ≡ ∑K
i=1 pi, thehit rate of the cache. We observe only the (infinite)

miss sequence; we have no information about the times at which references occur. The question is,
does enough information about cache hits somehow “leak out”through the miss sequence to permit
us to estimateH?

p = 01
p2

p2

B
C

A K = 2}
p = 3 1−

Figure 1: The case ofS = 3 andK = 2.

3 Calculation of Subword Frequencies

It is easy to show that the problem defined in Section 2 cannot be solved as stated. Consider
the case ofS = 2 and K = 1. Regardless of the cache hit rateH = p1, the miss sequence is
“ . . .ABABABAB” More generally, we can add arbitrary probability mass top1 while maintaining
the relative magnitudes ofp2 throughpS, and the miss sequence will be unchanged. So from now
on we setp1 = 0.

To avoid certain degenerate cases, we also assume thatpi 6= 0 for i > 1.
Perhaps the simplest statistics obtainable from the miss sequence aresubword frequencies, e.g.,

the frequency with which the three-letter string “ABA” appears in the miss sequence. So one strategy
for estimating the hit rate is to estimate the subword frequencies by empirical observation, express
the subword frequencies as functions of thepi, and then invert these functions to obtain estimates of
the pi, from which we can estimate the hit rate. We illustrate this process for the case ofS = 3 and
K = 2, with p1 = 0, shown in Figure 1.

After a symbol in the miss sequence is observed, the cache may“churn” for a while before the
next symbol in the miss sequence is generated. To analyze thechurn, first number theK! possible
orderings of the cache elements in some fixed manner, e.g., 1.AB, 2.BA. Then write down the
transition matrix T whose(i, j) entryTi, j is the probability that, given that the cache is currently in
theith ordering, a single stack update will result in thejth ordering. In our example,

T =

(
0 p2

p2 0

)

. (1)

The cache may churn for 0,1,2, . . . updates, so to obtain the probabilityT ∗
i, j that the cache will churn

from orderingi to orderingj, we need to compute

T ∗ = T 0 + T 1 + T 2 + T3 + · · · = (I−T)−1 =
1

1− p2
2

(
1 p2

p2 1

)

. (2)

Now we are ready to calculate the transition probabilities associated with the generation of each
symbol in the miss sequence. Number theS! possible stack states in some fixed manner; in our
running example, let us write 1.ABC, 2.ACB, 3.BAC, 4.BCA, 5.CAB, 6.CBA. LetMi, j denote the
probability that, given that the stack starts in statei, the stack will be in statej immediately after the
next miss. For example, let us calculateM1,6. We start with ABC, and we want the probability that
we get CBA immediately after the next miss. This is preciselythe probability that the cache churns
from AB to BA, and then C is picked and moved to the top. ThusM1,6 = T ∗

1,2p3 = p2/(1+ p2).
Similar calculations yield

M =
1

1+ p2











0 0 0 0 1 p2

0 0 1 p2 0 0
0 0 0 0 p2 1
1 p2 0 0 0 0
0 0 p2 1 0 0
p2 1 0 0 0 0











. (3)

2

The matrixM gives us the probabilities associated with generating eachsymbol in the miss
sequence, so to obtain subword frequencies forn-symbol subwords, we need to considernth powers
of M. More precisely, we can calculate the generating function for subword frequencies as follows.
Each nonzero entry ofM is associated with a certain missed symbol; for example,M1,6 is associated
with C. Form the matrix

M̂ =
1

1+ p2











0 0 0 0 C p2C
0 0 B p2B 0 0
0 0 0 0 p2C C
A p2A 0 0 0 0
0 0 p2B B 0 0

p2A A 0 0 0 0











. (4)

From Markov chain theory we know that in the long run, each stack state is equally probable, so let
x = (1/6,1/6,1/6,1/6,1/6,1/6), and lety be the all-1’s column vector. ThenxM̂ny is the generating
function for lengthn subword frequencies (where, when calculatingM̂n, we treat the symbolsA, B,
andC asnon-commuting variables; i.e., when we multiply them, we concatenate themas strings and
do not allow the ordering of the symbols to be disturbed). Forexample, whenn = 3,

xM̂3y = (p2(ABA + ACA + BAB + BCB +CAC+CBC)

+ ABC+ ACB + BAC+ BCA +CAB +CBA)/6(1+ p2). (5)

The frequency of a subword is just its coefficient in this expression. For example,Freq(ABA) =
p2/(6+6p2) andFreq(ABC) = 1/(6+6p2).

In this example we are lucky, and can solve forp2; namely,p2 = Freq(ABA)/Freq(ABC). How-
ever, in general, although we can calculate subword frequencies for any stack size and cache size
using the above procedure, the resulting subword frequencies are complicated functions of thepi,
and it is not clear whether one can solve for all thepi. Moreover, even if solving for thepi is possible
in principle, the matrices involved in our computation method grow like a factorial function, so this
does not yield a practical solution for estimating the hit rate.

4 Gaps and the Uniform Case

The results of the last section suggest that it might be promising to analyze the number of symbols
that we will observe (in the miss sequence) before we observethe symbol currently at the top of the
stack again. Call this random variableG, for “gap.” For example, in the caseS = 3 andK = 2 that
we analyzed in Section 3,

P[G = 1] = Freq(ABA)+ Freq(ACA)+ Freq(BAB)+Freq(BCB)

+ Freq(CAC)+ Freq(CBC)

=
p2

1+ p2
. (6)

Let us now analyzeG in the following slightly more general case, that we call theuniform case.
Assume thatpi = p is constant for 1< i ≤ K and thatp j = q is constant forK < j ≤ S, where
(K − 1)p + (S−K)q = 1; assume also thatp 6= 0 andq 6= 0. SinceS andK are assumed to be
known, andq can be computed ifp is known, there is just one unknown parameter to be estimated,
namelyp (or equivalentlyH = (K −1)p). This simplifies the problem significantly, although it is
still far from trivial.

3

For any fixed value ofK, the generating function

G(x) = ∑
n≥1

P[G = n]xn (7)

in the uniform case may be computed as follows. The miss sequence may be broken up into three
phases; the first phase lasts until just before the symbol currently at the top of the stack—call it Z—
falls out of the cache, the second (very brief) phase is the single step when Z falls out of the cache,
and the third phase lasts until Z is selected for the first timeafter falling out of the cache.

To analyze the first phase, we set up a Markov chain withK states, where theith state represents
Z being in positioni in the cache. The transition probabilities are straightforward to calculate; for
example, if Z is currently in position 4 (andK > 4), then the probability isp that Z moves to the top
of the stack, the probability is 2p that Z stays where it is, the probability is(K−4)p that Z advances
to position 5 but no missed symbol is generated, and the probability is 1−H that Z advances to
position 5 and some missed symbolis generated. Similar calculations yield the following transition
matrix, where the variablex is used to keep track of transitions that generate a missed symbol, and
where for compactness we introduce the notationmi(x) ≡ (K − i)p +(1−H)x.

M(x) =
















0 m1(x) 0 0 0 0 . . . 0
p 0 m2(x) 0 0 0 . . . 0
p 0 p m3(x) 0 0 . . . 0
p 0 0 2p m4(x) 0 . . . 0
p 0 0 0 3p m5(x) . . . 0
...

...
...

...
...

...
. . .

...
p 0 0 0 0 0 . . . mK−1(x)
p 0 0 0 0 0 . . . (K −2)p
















. (8)

The cache starts in state 1, and must advance to stateK just before Z falls out of the cache. This
can happen after 0,1,2, . . . stack updates. Therefore the multiplicative factor that the first phase
contributes toG(x) is the(1,K) entry of

M(x)0 + M(x)1 + M(x)2 + M(x)3 + · · · = (I−M(x))−1. (9)

(The series summation may be justified by, for example, noting thatM(x)n → 0 if |x| < 1.)
The second phase contributes a factor of(1−H)x to G(x).
During the third phase, each symbol outside the cache has an equal probability of being the next

missed symbol, and we are simply waiting until Z gets picked.This phase contributes a factor of

1
S−K

+
1

S−K

(
(S−K−1)x

S−K

)

+
1

S−K

(
(S−K−1)x

S−K

)2

+ · · ·

=
1

S−K− (S−K−1)x
(10)

to G(x). Putting all the factors together, we obtain the following theorem.

Theorem 1. In the uniform case, the generating function of equation (7) is given by

G(x) =
(I−M(x))−1

1,K(1−H)x

S−K− (S−K−1)x
. (11)

4

ForK = 2,3,4, G(x) works out to be, respectively,

x[p +(1− p)x]
[1+ p− px][S−2− (S−3)x]

x[p +(1−2p)x][2p +(1−2p)x]
[1+ p− (p +2p2)x− (p−2p2)x2][S−3− (S−4)x]

x[p +(1−3p)x][2p +(1−3p)x][3p+(1−3p)x]
[1− p2− (p +2p2+3p3)x− (p + p2−12p3)x2− (p−6p2+9p3)x3][S−4− (S−5)x]

By taking Taylor expansions of these expressions, we can compute an expression forP[G = n]
for any desiredn. This can be compared with the empirical value that is estimated from the miss
sequence, and then one can solve forp.

Unfortunately, in general we have no closed-form expression for (I −M(x))−1, and therefore
Theorem 1 is of limited use unlessK is very small.

However, we do have a formula for the coefficient ofx in G(x), i.e., forP[G = 1].

Theorem 2. In the uniform case,

P[G = 1] =
(K −1)! pK−1

(S−K)(1+ p)(1− p)(1−2p)(1−3p) · · ·(1− (K−3)p)
. (12)

This solves the uniform case in theory; we simply estimateP[G = 1] from the miss sequence
and then find the smallest positive value ofp satisfying equation (12). However, in generalP[G = 1]
will be very small, so estimating it will require a very long fragment of the miss sequence.

We conclude this paper with the proof of Theorem 2. The key step is the following lemma.

Lemma 1. The eigenvalues of the matrix

X =
















0 K −1 0 0 0 0 . . . 0
1 0 K −2 0 0 0 . . . 0
1 0 1 K −3 0 0 . . . 0
1 0 0 2 K −4 0 . . . 0
1 0 0 0 3 K −5 . . . 0
...

...
...

...
...

...
. . .

...
1 0 0 0 0 0 . . . 1
1 0 0 0 0 0 . . . K −2
















(13)

are −1,0,1,2,3, . . . ,K −4,K−3,K−1.

Proof of Lemma 1. For 1≤ n ≤ K −1, letvn be the row vector

vn =

(

0,0, . . . ,0
︸ ︷︷ ︸

K−n−1 zeroes

,

(
n
0

)

,−

(
n
1

)

,

(
n
2

)

,−

(
n
3

)

, . . . ,(−1)n
(

n
n

))

. (14)

We claim thatvnX = (K −n−2)vn, and hence thatK −n−2 is an eigenvalue ofX . To see this, let
us consider each entry ofvnX in turn. Unlessn = K −1, the first entry ofvnX is an alternating sum
of binomial coefficients that equals zero (confirming our claim); if n = K −1, then the first entry of

5

vnX is −1, again confirming our claim. The subsequent entries up to entry numberK − n− 1 are
easily seen to be zero. Fori = 0,1, . . . ,n, entry numberK −n + i of vnX equals

(−1)i
(

n
i

)

(K −n + i−2) + (−1)i−1
(

n
i−1

)

(n− i+1)

= (−1)i
(

n
i

)(

K −n + i−2−
i

n− i+1
(n− i+1)

)

= (−1)i
(

n
i

)

(K −n−2), (15)

completing the confirmation of the claim.
Sincen ranges from 1 toK −1, this shows that−1,0,1,2, . . . ,K −3 are eigenvalues ofX . It is

also easily seen that the all-1’s vector is an eigenvector ofX with eigenvalueK −1. This gives usK
distinct eigenvalues, and sinceX is aK ×K matrix, this list of eigenvalues is complete.

Proof of Theorem 2. By equation (7), we see thatP[G = 1] may be calculated by dividingG(x) by x
and then settingx = 0. By Theorem 1, this means we want to calculate

P[G = 1] =
(I −M(0))−1

1,K(1−H)

S−K
. (16)

Now M(0) is just the matrixX in Lemma 1 with every entry multiplied byp. Hence the eigenvalues
of M(0) are

−p,0, p,2p,3p, . . . ,(K −4)p,(K −3)p,(K−1)p, (17)

and therefore the eigenvalues ofI −M(0) are

1+ p,1,1− p,1−2p,1−3p, . . .,1− (K−4)p,1− (K−3)p,1− (K−1)p. (18)

To compute(I −M(0))−1
1,K , we take(−1)K−1 times the determinant of the submatrix obtained by

deleting the first column and last row ofI −M(0) (conveniently, this submatrix is lower triangular
with diagonal entries−p,−2p, . . . ,−(K−1)p), and then divide by the determinant ofI−M(0) (i.e.,
the product of the eigenvalues ofI−M(0)). We obtain

(I −M(0))−1
1,K =

(−1)K−1 · (−1)K−1(K −1)! pK−1

(1+ p)(1− p)(1−2p) · · ·(1− (K−4)p)(1− (K−3)p)(1− (K−1)p)
.

By equation (16) we need to multiply this expression by 1−H = 1− (K −1)p and then divide by
S−K; this yields the theorem.

5 History & Future Work

Brian Noble inspired this problem with a question during thesecond author’s dissertation proposal
in November 2000. This paper reached roughly its present form in May 2005. Recently we have
become optimistic that further progress is possible, and wewelcome collaboration on this problem.

6

References

[1] Virgı́lio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira. Characterizing
reference locality in the WWW. InProceedings of the Fourth International Conference on
Parallel and Distributed Information Systems (PDIS96), December 1996. Reference [2] is
longer and older.

[2] Virgı́lio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira. Characterizing
reference locality in the WWW. Technical Report TR-96-11, Boston University Computer
Science Department, 1996.http://www.cs.bu.edu/techreports/.

[3] Oleg Ivanovich Aven, Edward Grady Coffman, and Yakov Afroimovich Kogan. Stohastic
Analysis of Computer Storage. D. Reidel Publishing Company (member of Kluwer Academic
Publishers Group), 1987. ISBN 90-277-2515-2.

[4] B. T. Bennett and V. J. Kruskal. LRU stack processing.IBM Journal of Research and Devel-
opment, 19(4):353–357, July 1975.

[5] Terence Kelly and Daniel Reeves. Optimal Web cache sizing: Scalable methods for exact
solutions. Computer Communications, 24:163–173, February 2001.http://ai.eecs.
umich.edu/∼tpkelly/papers/.

[6] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for storage
hierarchies.IBM Systems Journal, 9(2):78–117, 1970.

[7] Frank Olken. Efficient methods for calculating the success function of fixed space replacement
policies. Technical Report LBL-12370, Electrical Engineering and Computer Science Depart-
ment, University of California, Berkeley; and Computer Science and Mathematics Department,
Lawrence Berkeley Lab, May 1981. This is the author’s Berkeley Masters thesis.

[8] B. Ramakrishna Rau. Properties and applications of the least-recently-used stack model. Tech-
nical Report CSL-TR-77-139, Digital Systems Laboratory, Department of Electrical Engineer-
ing and Computer Science, Stanford University, May 1977.

[9] Jeffrey R. Spirn. Distance string models for program behavior. Computer, 9(11):14–20,
November 1976.

[10] James Gordon Thompson. Efficient analysis of caching systems. Technical Report UCB/CSD
87/374, Computer Science Division (EECS), University of California at Berkeley, October
1987. This is the author’s Ph.D. dissertation.

[11] J. van den Berg and D. Toswley. Properties of the miss ratio for a 2-level storage model
with LRU or FIFO replacement strategy and independent references.IEEE Transactions on
Computers, 42(4):508–512, April 1993.

[12] Sarut Vanichpun and Armand M. Makowski. The output of a cache under the independent
reference model: where did the locality of reference go?ACM SIGMETRICS Performance
Evaluation Review, 32(1), June 2004.

7

