Important note (3/22/97). This is a paper that I wrote in 1993 that is unpublishable
in its current form and will probably never be published in any form. Nevertheless, it
has been cited by other people (R. P. Stanley, Research problem 251: Spanning trees of
Aztec diamonds, Discrete Math. 157 (1996), 383-385; and C. Athanasiadis’s Ph.D. thesis,
M.I.T., 1996) so I am making it available to those who are interested.

Why is the paper unpublishable? After I wrote the paper, it was pointed out to me
that an alternating strip and its conjugate are just the two connected components of the
tensor product of a path and a bipartite graph. The ordinary spectrum of a graph behaves
well under tensor product—the eigenvalues of the tensor product are just the pairwise
products of the eigenvalues of the factor graphs—and from this it is not difficult to derive
Theorem 1. (Chebyshev polynomials arise from computing the spectrum of a path.)

Conjecture 2 is now a theorem, proved first by Donald Knuth (“Aztec diamonds,
checkerboard graphs, and spanning trees,” to appear in J. Alg. Combin.). In that paper
Knuth also computes the spectra of the even and odd Aztec diamonds, thereby proving
Conjecture 1.

This should explain why the paper is unpublishable. However, there are a few things
in it that are still interesting. The “standard” approach to proving Theorem 1 is algebraic;
in contrast, the proof here is combinatorial: a fact about eigenvalues is proved by counting
walks. The Ph.D. thesis of Christos Athanasiadis (M.I.T., 1996) gives some more examples
of this paradigm.

Incidentally, once it is observed that G}, and G2 are the two connected components
of a tensor product, it is practically trivial to establish a bijection between closed walks on
Gl and G2%. For every closed walk in a tensor product graph “factors” into a “product”
of closed walks in its factor graphs. In a bipartite graph, the closed walks alternate
between “black” and “white” vertices. There is a bijection between closed walks that
start on black vertices and closed walks that start on white vertices. This bijection gives
rise to the desired bijection between closed walks on G} and G2. This idea extends
easily to Godsil and McKay’s “partitioned tensor products,” giving easy combinatorial
proofs of most of the results in their paper “Products of graphs and their spectra” (in
Combinatorial Mathematics IV, eds. L. R. A. Casse and W. D. Wallis, Lecture Notes in
Mathematics #560, Springer, Berlin, 1976, pp. 61-72). I haven’t bothered publishing this
either because Brendan McKay told me that people aren’t much interested in partitioned
tensor products, but then again Donald Knuth seems to have gotten interested in them
recently. . .

Finally, although there now exist three different proofs of Stanley’s “factor-of-4” con-
jecture, the proof of Theorem 2 below is still rather interesting. It is a fairly straightforward
transfer-matrix argument, but with a slight twist that may prove helpful in other contexts.
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Abstract. The graph whose vertices are the squares of a (2n + 1) x (2n + 1) chessboard
and whose edges connect precisely those pairs of squares that are diagonally adjacent has
two connected components. The component that includes the central square is called
the odd Aztec diamond of order n (or OD,,) and the other component is called the even
Aztec diamond of order n (or AD,,). We prove a conjecture of Stanley that the spectra
of OD,, and AD,, are identical up to the multiplicity of zero; in fact we compute the
spectra explicitly. We also give a partial result towards another conjecture of Stanley:
that AD,, has four times as many spanning trees as OD,,. Our results generalize readily
to any periodic strip—i.e., a one-way infinite strip such that some finite translation is an
isomorphism into itself.

1. Introduction

The graph whose vertices are the squares of a (2n+1) x (2n+1) chessboard and whose edges
connect precisely those pairs of squares that are diagonally adjacent has two connected
components. The component that includes the central square is the odd Aztec diamond of
order n (denoted by OD,,) and the other component is the even Aztec diamond of order n
(denoted by AD,,). Aztec diamonds were first introduced in [3], where it is shown that the
number of perfect matchings of the even Aztec diamond of order n is 27(**t1)/2, (Warning:
our notation differs slightly from that of [3]; if we connect orthogonally adjacent squares
of their Aztec diamond of order n then the resulting graph is isomorphic to what we have
called the even Aztec diamond of order n.) This remarkable result suggests that it might
be fruitful to investigate other invariants of Aztec diamonds. The starting point for this
paper is the following pair of conjectures by Stanley. (Recall that the complezity x(G) of
a graph G is the number of spanning trees of G.)

Conjecture 1. For every n, the spectra of OD,, and AD,, are identical except for the
multiplicity of zero.

Conjecture 2. For every n, k(AD,)/k(OD,,) = 4.

In this paper we prove a generalization of Conjecture 1 and compute the spectra of the
Aztec diamonds explicitly. We also give a partial result in the direction of Conjecture 2,
although Conjecture 2 itself remains open.



2. Periodic strips
The proofs of our main results apply not only to Aztec diamonds but also to a slightly
more general class of graphs which we shall now describe precisely. If G is a graph and §
is a subset of the vertices of G, we write G(S) for the subgraph of G induced by S.
Now for our main definition.
Definition. A periodic strip is an infinite undirected graph G together with
a. an ordered partition (S) of its vertices into finite nonempty sets (the blocks of G),
b. an integer p (the period of G), and
c. a sequence of bijections (¢x : Sk — Sk+p)
such that
1. every edge connects a vertex in Sy with a vertex in Sy for some £; and
2. for every k, the map
0k D Pr+1 Sk O Sk+1 = Sktp D Sktp+1
induces an isomorphism from G(S; @ Si+1) onto G(Sk+p ® Sk+p+1)-

(By abuse of notation we sometimes write ¢ @ @g11 for the graph map as well as for the
set map.) See Figure 1(a) for an example.

Given such a periodic strip G, we define

Gn & G(SoUSL U U Spm)

for all n > 0. The complexity sequence of G is the sequence of numbers

H(Gl), I’{,(Gz), H(Gg), e
For 1 < k < p—1 we define the kth conjugate G* to be the periodic strip obtained from G
by deleting the first ¥ — 1 blocks (so that the blocks of G* are Sy, Sk+1, etc.). Note that
G!=G.

In the special case of p = 2 we say that G is an alternating strip if it possesses the
following additional property: for every k > 0 the map

0k ® Igt1 : G(Sk @ Sk41) = G(Skr2 ® Sk+1)
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(where Ijq is the identity map on Sgi1) is a graph isomorphism. Intuitively, G flips
back and forth between some bipartite graph and its mirror image. See Figure 1(b) for an
example.

[Include Figure 1 here]

We can now state our main theorems.

Theorem 1. If G is an alternating strip then for all n the spectra of G. and G2 are
identical except possibly for the multiplicity of zero.

Theorem 2. If G is a periodic strip then the complexity sequence of G satisfies a linear
recurrence with constant coefficients. Moreover, the complexity sequence of any conjugate
of G satisfies exactly the same recurrence.

We remark that Theorem 1 can be interpreted as saying that the conjugates of alter-
nating strips are “almost isospectral.” Many classes of isospectral graphs are known (see
for example section 6.1 of [2]), but Theorem 1 appears to be new.

To see the relation between the above theorems and the Aztec diamond conjectures,
consider the chessboard of width 2n 4+ 1 and infinite length with the diagonal adjacency
relation mentioned in the introduction. If O and A are the two connected components,
then it is easy to see that O™ and A(") are alternating strips and in fact are (isomorphic

to) conjugates of each other. Moreover, O,(ln) = OD,, and A%") = AD,,. Thus Theorem 1
implies Conjecture 1.

As for Conjecture 2, the first thing that our results suggest is that we should generalize
and conjecture that n(Agn)) / ff(OZ(n)) = 4 for all i, not just for ¢ = n. For Theorem 2 implies
that to check this generalized conjecture for any fixed n, we need only verify it for finitely
many ¢, and then the recurrence will take care of the rest. By direct computation we have
verified that this generalized conjecture is valid for n < 3, but of course this does not
resolve Conjecture 2.

3. Spectra

We shall give two proofs of Theorem 1. The first proof has the advantage of being more
combinatorial and the second proof has the advantage of showing how to compute the
spectrum explicitly. For our first proof we need just one preliminary result, which we shall
now state.

Given a finite graph H, let Ay be its adjacency matrix, let ¢ (A) = det(I—AAg), and
let ¢z (s) be the number of closed walks of length s in H. (For our purposes, cyclic shifts of
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closed walks are thought of as being distinct.) The following proposition is Corollary 4.7.3
in [4].

Proposition 1. For any finite graph H,

S en(s)re = - 2N

s>1

Now for our first proof.

First proof of Theorem 1. We shall denote the blocks and bijections of G by Sk and ¢y
respectively, with k£ > 0. Fix any integer n > 0. We claim that it suffices to prove that

cai (2m) = cgz (2m) (3.1)

for all integers m > 0. To see this, note first that since GL and G2 are bipartite, there
are no closed walks of odd length in either graph. Thus if we can prove (3.1) it will follow

from Proposition 1 that
)\qlc,:}l (A) )\QIG% (A)

a1 () aaz (A)
It is easy to see that this implies that
qaG1 () = rqG2 (A)

for some constant r (for example, by cancelling the X’s and integrating both sides with
respect to A). But setting A = 0 in the definition of ¢z (A) shows that ¢z (0) = 1 for any
graph H, so r = 1. Since for any graph H the roots of ¢ () are just the reciprocals of the
nonzero eigenvalues of H with the correct multiplicities, it follows at once that the spectra
of GL and G2 are identical except possibly for the multiplicity of zero, as desired.

To prove (3.1), fix any integer m > 0. We now describe a bijection 8 between the set
of closed walks of length 2m in G and the set of closed walks of length 2m in G2. Let

W = (ug, u1,. .., U2m—1)

be a closed walk of length 2m in G, where the u; are the vertices traversed. (We under-
stand the subscripts to be labelled modulo 2m, i.e., ua,, = ug, etc.) Let k; be the block
number of u;, so that u; € Sg,. Set

ﬂ(W) = (’U(), V1y-.-, U2m—1)

where the v; are defined by

g, if ki =kip1+1;
Ve = Pk; (’U/Z), if kz = ki—i—l — 1.
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(By property 1 of periodic strips the two cases in this definition exhaust the possibilities.)

First let us verify that (W) is indeed a closed walk in G2. Clearly vs,, = vg s0 we
just need to show that v;_; and v; are adjacent for ¢ € {1,2,...,2m}. Consider first the
case where k;_1 = k; + 1, so that v;_1 = u;_1. If v; = u; then v;_; and v; are adjacent
because u;_1 and wu; are. Otherwise v; = @y, (u;). Since G is an alternating strip,

Ok; O Ik;_, = pr; © I, 41

is an isomorphism, and since it maps u; to v; and u;_1 to v;_1, v;_1 and v; must be
adjacent, as required. Similar reasoning applies to the other case, where k;_1 = k; — 1.

To see that (W) lies entirely within G2, simply note that the block number of v; is
kiv1+ 1.

To see that 3 is bijective, we actually need only show that ( is injective, i.e., that the
number of closed walks in G does not exceed the number of closed walks in G2, because
if we can show this then we can use the same argument with G2 in place of G and since
G3 = @, this proves the inequality in the other direction.

To recover W from (W), observe as before that k; is one less than the block number
of v;_1, so that the k; are easily recovered. Now wu; is either v; or the inverse image of v;
under some @g, and the choice between these options depends only on the block sequence,
so the u; are also easily recovered. [

For our second proof a few more preliminaries are necessary. We fix the following
notation for the remainder of this section. For n > 1, let A,, be the following n x n matrix

2 10 0 0 0\
1210 00
01 2 1 0 0

A =|0 0 1 2 0 0
0000 - 2 1
\0 0 0 0 ... 1 2/

and let P, be the graph with adjacency matrix A,,.

The next definition is so natural that it is probably not new, but for lack of a good
reference we include full details here.

Definition. Given a connected bipartite graph H and one of its parts V, the walk
graph W[H,V] is the multidigraph on the vertex set V such that the number of edges
from u to v is the number of walks of length two from u to v in H.

6



Lemma 1. Let H be a connected bipartite graph and let V' be one of its parts. Then the
spectrum of W[H, V] is nonnegative and the nonzero spectrum of H is given by the multiset
{xv/w} where w runs through the nonzero spectrum of W[H, V].

Proof. Recall that for our purposes, cyclic shifts of closed walks are considered to be
distinct. It follows that the number of closed walks of length 2m in H is twice the number
of closed walks of length m in W[H, V]. Now the number of closed walks of length m is just
the sum of the mth powers of the eigenvalues (see for example the proof of Corollary 4.7.3
in [4]), so if we denote the nonzero eigenvalues of H by A; and the nonzero eigenvalues
of W[H, V] by u; we have

S =2y (3.2)

7

for all m > 0. It is well-known (see for example Theorem 3.3 of [2]) that if A is an eigenvalue
of a bipartite graph then so is —\, and moreover the multiplicity is the same. Therefore if
we take only the positive A; in (3.2) we obtain

D™= u

Now it is again well-known (and easy to prove, e.g., by using Vandermonde determinants)
that if the sum of the mth powers of two multisets of nonzero complex numbers is the
same for all m then the multisets must be equal. Therefore the multiset of the nonzero p;
coincides with the multiset of the squares of the positive A; and the result follows. [

In particular we remark that if (V3,V3) is the bipartition of H, then W[H, V;| and
W[H, V5] have the same nonzero spectrum even if V3 and V5 are not the same size.

We are now ready to give our second proof.

Second proof of Theorem 1. Again we denote the blocks of G by Sy with £ > 0.
Observe that G is bipartite; let V,! be the part containing S;. Similarly let V2 be the
part of G2 containing S,. By Lemma 1 it suffices to show that the spectra of W[GL, V1]
and W[G?2, V2] are equal except possibly for the multiplicity of zero.

The key observation is that

W[G71w an] = Pn X W[G(Sl U Sz), Sl] and

WI[G}, V7] 2 Py x W[G(S1 U S2), S,
where x denotes graph product (i.e., the adjacency matrix of the product is the tensor
product of the adjacency matrices of the multiplicands). To see this, take any two vertices

w and v in V1. If v and v lie in the same Sk, then every walk of length two from u to v
must proceed via either Sx_1 or Sk41, and moreover since G is an alternating strip there

7



is a natural bijection between the walks that proceed via Sx_; and the walks that proceed
via Si41. Because G is a periodic strip we see that there is also a natural bijection between
the walks that proceed via Sk41 and the edges of W[G(S1U S2), S1]- The other possibility
is that w is in Si and v is in S92 for some k; in this case every walk of length two must
pass through Siyi. Again because G is an alternating strip, such walks are in bijection
with the edges of W[G(S1U S2), S1]. It is now easy to see from the definition of a product
graph that W[G., V1] and W[G2, V] factor as claimed. See Figure 2 for an illustration.

n’'n

[Include Figure 2 here]

Now the eigenvalues of a product graph are given by {A;u;} as A; and p; run inde-
pendently through the spectra of the multiplicands. (See Theorem 2.23 of [2].) By the
remark immediately following Lemma 1 we are done. []

Our second proof suggests how to compute the spectrum of the Aztec diamonds ex-
plicitly. As a preliminary step we compute the spectrum of A,. It turns out that the
characteristic polynomial of A,, is essentially a Chebyshev polynomial. This should not be
too surprising since the characteristic polynomial of a path is known to be a Chebyshev
polynomial (see section 2.6 of [2]). The precise statement appears in the following lemma.
(Note: our notation for Chebyshev polynomials follows that of [1].)

Lemma 2. Forn > 1, let p,(t) = det(tI — A,). Then

tpn (t2) = Sont1(t), (3.3)

where S, is a Chebyshev polynomial of the first kind, and hence the eigenvalues of A,, are

Proof. From (3.3) one can deduce the eigenvalues of A,, immediately because the roots

of S,, are
{2cos K ‘1<k<n}.
n—+1 -

(See 22.3.16 and 22.5.13 of [1].) To establish (3.3), set pp = 1. By expanding along the
first row we obtain the recurrence

Pu(t) = (t — 2)pn—1(t) — pn—2(t)
for n > 2. From this we easily obtain the generating function
t

th”(t2)zn = 3 2
— 1+(2-t2)z+2




On the other hand 22.9.10 of [1] states that

S Un(t) 2 !

= —_ 2
>0 1—-2tz+ 2

where U, (t) = S, (2t) is a Chebyshev polynomial of the second kind. By changing z to —z
and subtracting, and also changing ¢ to ¢/2, we obtain

tz
1+ (2—12)22 4+ 24

D Sona(t) 27 =Y Unna(8/2) 2774 =

n>0 n>0

Now divide both sides by z, replace z? by z, and compare with the generating function
of tp, (t2). [

Theorem 3. The nonzero spectrum of OD,, and of AD,, is the multiset

k l
+4 cos T CcoS T
2n + 2 2n + 2

1§k§n,1§l§n}.

The multiplicity of zero is 2n + 1 for OD,, and 2n for AD,,.

Proof. The claim about the multiplicity of zero follows simply by counting the number
of vertices of the Aztec diamonds and subtracting the 2n? nonzero eigenvalues, so we need
only consider the nonzero spectrum. By Theorem 1 it suffices to consider OD,,. Using
the same kind of reasoning as in the second proof of Theorem 1, we see that W [OD,,, V1]
(where V.! is the smaller part of the bipartition) is isomorphic to P, x P,. (Figure 2 may
be helpful again here.) By Lemma 2 it follows that the spectrum of P, x P, is

k l
{16cos22 I2c0322 12 1§k§n,1§l§n}.
n n

The theorem now follows by Lemma 1. [

4. Complexity

The complexity of a periodic strip seems much less tractable than its spectrum. It is
not well-behaved under taking walk graphs or graph products, so the techniques of our
second proof of Theorem 1 do not seem to apply. The comparison of various algebraic
invariants of OD,, and AD,, that are related to the complexity—e.g., the Tutte polynomial,
the reliability polynomial, the spanning forests, or the characteristic polynomial of the
Laplacian matrix—reveals no obvious generalization of Conjecture 2 to these contexts.
Part of the reason for these difficulties seems to be the “global” nature of a spanning tree.
As we shall see from our proof of Theorem 2, which we now present, the partial results we
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have exploit the fact that for periodic strips the enumeration of spanning trees can in a
sense be “localized.”

Proof of Theorem 2. We say that a subgraph F' of G,, is a grounded forest of G,, if F
is acyclic and if every vertex of G, is connected to at least one vertex of S,, by a path
(possibly of zero length) in F. Given a grounded forest F', we can define an equivalence
relation on the vertices of Sy, by writing u ~ v if v and v are connected by a path in F}
the resulting partition of Sp, is called the type of F'. Note that spanning trees are just
grounded forests whose type is the trivial partition.

If T is a spanning tree of G,,+1 then we claim that the portion Fr of T that lies in G,
is a grounded forest of GG,,. Clearly F7 is acyclic, so suppose that some vertex v of G, is
not connected to any vertex of S,, by a path in Fr. Since the edges of G only connect
vertices in adjacent blocks, it follows that there does not exist a path from u to any vertex
of Sy, even if we are allowed to use all the edges of T'—but this contradicts the fact that
T spans G, +1. Hence Fr is indeed a grounded forest as claimed.

Next let o be any partition of S, 1),- If F'is a grounded forest of Gy,, then we claim
that the set of subsets of edges of

G(Spn U Spn1 U---USpi1)n)

that extend F' to a grounded forest of G, 1 of type o depends only on the type of F,
i.e., if we take a set of edges that extends F' to a grounded forest of G, 1 of type o, then
replacing F' by any other grounded forest of G, of the same type will again produce a
grounded forest of G,+1 of type o. The proof of this is clear.

Let m be the number of partitions of Sy, and list the partitions of Sy in some arbitrary
order. This induces an ordering of the partitions of S, for all n by means of the periodic
strip bijections. Let r;(n) be the number of grounded forests of G, whose type is the
1th partition of Sp,, under this ordering. We can express the conclusion of the previous
paragraph by saying that there exist constants c;; such that

ki(n+1) = cr11k1(n) + craka(n) + -+ - + c1mbkm(n)

ko(n + 1) = co1k1(n) + caaka(n) + -+ - + Cambm(n)

Em(n+1) = cpik1(n) + cmaka(n) + - + Cmmbm (n)
for all n > 0. (The ¢;; are independent of n because they depend only on
G(Spn U Spn+1 u---u S(p—l—l)n)a

and since G is a periodic strip these induced subgraphs are isomorphic for all n.) By
multiplying everything by z"*! and summing over all n > 0, we see that for every i the
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generating function of ;(n) is a rational function with denominator det(d;; — xc;;). Thus
the k;(n) satisfy a linear recurrence with constant coefficients, as required.

To see that all conjugates satisfy the same linear recurrence, observe that the argument
we gave to derive the matrix (c¢;;) can be modified to yield a transition matrix M; (not
necessarily square) between Sy, and Sy, 1 (instead of between Sy, and Sy 1),). Similarly
we can obtain transition matrices M, between Sp,yr—1 and Sp,yr. The matrix (c;;) is
then the product of p consecutive M’s. Now observe that the matrix (c;;) for a conjugate
of G is just a product of the same p matrices but cyclically permuted. Such a cyclic
permutation is just a similarity transformation, and thus it does not change the spectrum
of (c;;). Since the linear recurrence depends only on the coefficients of det(d;; — xc;j),
which in turn depends only on the spectrum of (c;;), the theorem is proved. [

5. Future work

The most obvious next task is to prove Conjecture 2. We remark that it might be possible
to generalize Conjecture 2 to alternating strips. There are three essentially distinct alter-
nating strips that are generated by (3, 3)-bipartite graphs, and in each case the complexity
ratio is 3/4. It would be interesting to compute further examples to see if a simple ratio
is always obtained and, if so, to formulate and prove an appropriate conjecture.

In some ways the most satisfactory resolution of Conjecture 2 would be a bijective
proof. As we have already remarked, examination of connected subgraphs and of spanning
forests of the Aztec diamonds did not reveal any simple pattern. Thus it seems that
both acyclicity and connectedness are crucial features of Conjecture 2. Observe that OD,,
and AD,, are “almost” planar duals of each other. It is well-known that planar duals have
equal complexity, and moreover there is a simple bijection between the spanning trees:
given a spanning tree, take all the edges in the dual that are not crossed. In this bijection,
the roles of acyclicity and connectedness are interchanged as one passes to the dual. This
suggests that these ideas might lead to the desired bijective proof of Conjecture 2.

Notice that the method used to prove Theorem 2 can be adapted to obtain recurrences
for many other invariants of periodic strips, such as the reliability polynomial or the gen-
erating function for spanning forests. Perhaps this can be used to help resolve conjectures
about these polynomials in the case of periodic strips.

Some of the ideas in this paper continue to be valid even if property 1 of periodic
strips is weakened slightly to allow edges between vertices in the same block. This allows
chessboards to be incorporated into our framework. Computation of the linear recurrence
satisfied by the complexity sequence of chessboards has revealed the following striking
observation.

Conjecture 3. The coefficients of the linear recurrence satisfied by the complezity se-
quence of chessboard strips are palindromic.
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In fact, it appears that palindromic coefficients are rather common. About half of the
periodic strips of period one generated by (3, 3)-bipartite graphs give rise to palindromic
coefficients. In many of these cases the coefficients are also unimodal and alternate in
sign. However, it is not clear from our data what the right generalization of Conjecture 3
is. For example, the linear recurrence of the Aztec diamonds does not have palindromic
coefficients.
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(a)

(b)

Figure 1. Examples of (a) a periodic strip and (b) an alternating strip.
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Figure 2. Example of (a) part of an alternating strip and (b) the factorization of its walk graph.

14



