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Abstract. A setS of positive integers igvoidableif there exists a partition of the positive integers into two
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1. Introduction

Many well-known problems in number theory involve studying theSssetnumbers that can
be represented as sums of elements of anothéx sBpositive integers. In some casésis
sparse and we want to know3fhevertheless contains a lot of integers—eSgnay contain
all integers (as in Waring's problem) or all even integers (as in Goldbach’s conjecture). In
other casesA is dense and we want to know$fnevertheless avoids a lot of integers—e.g.,
S may avoid long arithmetic progressions or have low natural density (see, for instance,
[10] and the references therein).

The problem that we study in this paper is a relatively little-known variation on the latter
theme. A seSS c N is said to beavoidableif there exists a partition df into two disjoint
setsA and B such that no two distinct elements Afsum to an element d& and no two
distinct elements oB sum to an element d. We say that the partitiopA, B} avoids S
or that S is avoided by{A, B}. If the pair of setsA and B is unique, therS is said to
be uniquely avoidableWe are interested in the question of which sets are avoidable (or
uniquely avoidable).

The theory of avoidable sets has existed for twenty years, yet surprisingly little is known.
Only a few special sets of integers have been shown to be avoidable. For example, the
following theorem of Evans [4] is typical.

Theorem 1. Let S= {s,} be a set of positive integers such thats s, (s, ) = 1, and
S =S-1+ S-2 forn > 2. Then S is uniquely avoidable.
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One might hastily conclude from the scarcity of general theorems in this area that the
topic of avoidable sets is not very fruitful. We hope to show in this paper that in fact the
subjectis deeper than it appears at first glance and that much more remains to be discovered.
Our main evidence for this claim lies in the following two theorems.

Theorem 2. Leta be an irrational number betweehand?2, and define

Ay gef {n € N | the integer multiple ok nearest n is greater thanjn

B, gef {n € N | the integer multiple of nearest n is less than}n

Let S be the set of all positive integers avoided by the partifidp, B,}. Then $ contains
all numerators of continued fraction convergentsof

Theorem 3. Leta, A,, By, and § be as in Theorer. Then every element of & either
the numerator of a convergent®f the numerator of an intermediate fracticor twice the
numerator of a convergent.

In the next three sections we prove these theorems and show how they significantly
generalize many previous results. The reader is expected to be familiar with the elementary
theory of continued fractions as given in, for example, [8, chapters | and II] or [9, chapter 7].
However, we will give explicit references for some of the less trivial facts. We also use the
notation| x| and{x} for the integer and fractional parts »frespectively.

In the remaining sections we investigate some other questions connected with avoidable
sets and present some open problems.

2. Proof of Theorem 2

Lemmal. Leta be apositive real numberand lef@ be a continued fraction convergent
ofw. Then|na] = |np/q] for all integers n lying strictly betweeband g.

Proof: Sincep/q is a convergentp — p/q| < 1/92 [8, Eq.(30)], so
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forO < n <q. Now(p,qg) =1, so for O< n < g we have
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or

|, 2o || 0t
q q q q q

Combining this with (2.1) yields

and solne| = [np/q] for0 < n < q. O

Lemma2. Leta be apositive real number and lef g be a continued fraction convergent
of. Thenfor0 < n < q,

{na}<%:>{r;—p}§

P
2

o]

and

np p o
{q}<2q:>{n(x}< >
Proof: We prove only the first implication; the proof of the second implication follows a
similar line of reasoning in reverse.
The lemma is trivial ift = p/q, so assume from now on that# p/q.
Assume thafna} < «/2. We wish to show thainp/q} < p/2q. By Lemma 1, ha| =

Lnp/q]. Therefore
|2

and hence
np np np np o p p@2n—-1 a(2n-1)
—i=——|—|<—=-ne+5=_—+ - :
{q} q {QJ q 2 2q 2q 2
ie.,
np p p o
— —+@Cn-D——-=). 2.2
{q}'<2q4_(n )<2q 2) @2

If p/g < a then we are done. Otherwisp/q > « because by assumptien# p/q.
Sincep/q is a convergent of, we havel p/q — «| < 1/92, and therefore (2.2) implies

np p+2n—1
npL_ P
q 29 29?
LS 2.3)

29 q
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We now split into two cases.

Casel. pisevensSincepis even{np/q} < p/2q if and only if

and we are done, by (2.3).

Case2. p is odd.Sincep is odd,{np/q} < p/2q if and only if
{ np} p+1
— < —.

q 2q

Hence, in light of (2.3), it suffices to show thiaip/q} # (p + 1)/2q.
Suppose towards a contradiction tiiap/q} = (p + 1)/29. Sincep/q > «, p/q must
be theith convergent of for some odd numberby [8, Theorem 4]. Now

Pidj-1— Pj-10; = (=1’
forall j > 1 by [8, Theorem 2]. By taking = i we deduce that
pg ;=1 (modq)
sincei is odd. By assumptiofnp/q} = (p + 1)/2q, so
np_|np|y _ P+ 1)
qq‘l( g { q J) qq‘1< 2q )

If we multiply this out and reduce modutpwe obtain

1
n= qi_1<pJ2r ) (mod q).

Hence
n=qg-1(p+=1+¢g-1 (modq)
or
2n—1=q_1 (modq).

Since O< n < q, this congruence implies thah2- 1 equals eitheg_; orq + gj_1.
Leta;,; denote thei + 1)st partial quotient of, which exists because# p/q. Then
Oi+1 = &+10 + gi—1 by [8, Theorem 1], and
1 1
ol < =
T 044 9@4+19+0i-1)

‘E_
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by [8, Theorem 9]. Combining these facts with (2.2) yields
[}z -0(x%-3)
<o T 0 +Qi—1)<% - %)

=£+Q+qi1(E_a)

2q 2 q

< P n q+ag-1 1
2q 2 q(@+19 + di-1)
p 1 q+0-1

=4 - —
20 29 &419+0i-1
p 1

= 2 + 2q°

This contradictgnp/q} = (p + 1)/2q, as desired. O

Lemma 3. Leta be an irrational number betweehand 2 and let /q be a convergent
of « that is greater tharr. Then{qu} > «/2 provided g 1.

Proof: We first prove the lemma for the case in whipjq is the first convergent af.
Let a; denote the first partial quotient afand letp;/q; denote the first convergent. We
need to show thap; — qua < 1 — «/2. Sincep; = a; + 1 andq; = ag, this is equivalent
to

at+l1l—aoa< 1—0[/2,

or

1
231—1'

o>1+

But this holds, becauss = qu =q#1so2&; — 1> a;.
In general, our goal is to show that- qo < 1 —«/2. Now sincep/q > «, p/q cannot
be the zeroth convergent, and hence

O0<p—Qu < p1 —qiex,

so the general case follows from the special case proved above. O

Proof of Theorem 2: Fix a convergentp/q of «. We begin by showing that no two
distinctintegers imA, sum top. First, we may assume thait4 1, sinceg=1and 1< o <2
together implyp=1 or p=2, and no two distinct positive integers can sumto 1 or 2. For
the rest of this proof we assume thipg 1, p#£ 1, andp # 2.
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Assume now thak andy are integers i, that sum top; we shall show thax = vy.
Let ma be the positive integral multiple of neares. Then sincex € A,, ma > X, and
moreovema < X+ 1 for otherwisgm — 1)« would be closer tx thanme. Therefore, we
may writex = |me ], and similarly we may writgy = | n« | for some positive integen.

We claim thatm < q. First of all, m < q, for if m were larger tham thenx = [m«|
would be at leasp (since|qa — p| < 1), butx is necessarily less thgmsincex +y = p.
The remaining possibility is thah = g andx = p — 1, but then Lemma 3 tells us that
(m — 1)« would be closer tox thanma would be. Thusn < g, and similarlyn < q.

By Lemma 1, it follows thak = |mp/q] andy = |nhp/q]. Now since O< m < g and

0 < n < q, we have
[al=a = {514
q q q q

for some integers andswith0O <r < qand O< s < q. Fromx + y = p it follows that
m n r+s
mp.mp_ TS
q q q
Multiplying both sides byg, we see that + s = kp for some positive integek. Now
l<a<2,501<p/g<2,0rg=<p=<2g.Since0<r <qgandO< s < q, it follows
thatO<r +s<2q<2p,sok=1,i.e.,r +s=p.
Now x andy are inA,, so{ma} < «/2 and{na} < «/2. By the first part of Lemma 2,
this implies

Sincer + s = p, these inequalities forae= s = p/2. Thus

mp {mpJ np {an

q q q ql
somp= np(modq). Since(p, g) = 1, thisimpliesm = n (mod ), and since < m < q
and O< n < ¢, we must haven = n. This proves thax =y, as required.

Now there are exactly(p — 1)/2] pairs of distinct positive integers whose sumpis
To finish the proof, it suffices to show tha{, contains exactly one integer from each of
these pairs (for theB, cannot contain two distinct integers that sunpjo To show this, it
suffices to show thad, contains| (p — 1)/2] integersother than p2 that are less thap,
since we have already shown th&t cannot contaitbothintegers from a “bad” pair.

The arguments we gave for showing tliat |ma | for somem with 0 < m < g show
that the elements oA, less tharp are in one-to-one correspondence with integersthe
range O< n < g such thafna} < «/2. Thus, from the second part of Lemma 2, it suffices
tofind [ (p — 1)/2] integersn in the range O< n < q such that

{np} p
np{ _ P
q 2q

and|na| # p/2.
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Let npmodq denote the remainder whepis divided byq. We are seeking integens
such that O< n < q and
np p
np q{ a J <3

The left-hand side lies between 0 agdand it is congruent tap moduloq, so it equals
np modqg. Now p andq are relatively prime, so asranges from 1 tg — 1, np modq also
takes on each value from 1d¢o- 1 exactly once. Therefore we can indeed find— 1)/2]
integersn with the desired property: simply take thép — 1)/2] integersn such that
npmodq < p/2. It remains only to show that for no sunltan|n« | equalp/2.

Suppose to the contrary that some sodatisfies ne| = p/2. By Lemma 1, na| =
Lnp/q]. Therefore

ap _p

np—7< E,

i.,e,n<(@+1)/2o0rn < (q—1)/2. We therefore have

-1
—anaf(q 2)017

or p < (q — Do, which is not possible. O

Remark Michael Bennett (personal communication) has suggested the possibility that a
positive integep is avoided by(A,, B,) if and only if p is the numerator of a fractiop/q
satisfying 1< p/q < 2, (p, q) = 1, and the properties listed in Lemmas 1, 2, and 3. He
has made considerable progress towards a proof.

3. Proof of Theorem 3
We begin with a careful statement of a well-known fact that is sometimes sloppily stated.

Lemmad4. Letw beapositiverealnumberandletpn/qn—1and p,/q, be two consecutive
convergents of the continued fraction representatios,afith n > 0. Then

|Oha — Pnl < [Oh-10¢ — Pn-al,

with equality if and only if n= 1 anda = ag+ 1/2 for some integer@ On the other hand
if c/d is a fraction withO < d < g, then

|dor — €| = [On-10t — Pn-1l-
Proof: This is essentially [9, Theorems 7.12 and 7.13], except that we have stated the

theorem for arbitrary real instead of only for irrationat. The proofs are easily modified to
coverthe general case. (We remarkthatthe lemmaalsofollows from [8, Theorem 17], butthe
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statement of this latter theorem is slightly incorrgmt;/qo fails to be a best approximation
of the second kind whenever> ag + 1/2.) O

Lemmab5. Letabeapositiverealnumberandletp/q.—1and g/, betwo consecutive
convergents of the continued fraction representation,ofvith n > 0. Suppose p is an
integer such that

[One — P| < |On—10¢ — Pn-1].
Then p= py.

Proof:
Casel. |gh_1@ — pn_1| < 1/2. Then by Lemma 4,

|Oher — Pl < [Gh-100 — Pn-a] = 1/2,
and therefore)« is at least 12 away from any integer other tham. Thus if p satisfies
[Ohe — Pl < |On-100 — Pn-1] < 1/2,
we must haveg = py.
Case2. |gn_1a — pn—1| > 1/2. Then repeated application of Lemma 4 implies thgd —
Pol > 1/2, wherepg/qp is the zeroth convergent. Nogg = 1 andpg = |« ]; therefore

the fractional part ofr exceeds A2, forcing the first partial quotierd; to equal one.
Thenp; = o] +1andg; =1, so

|qir — p1l = 1~ |Qox — pol < 1/2.

This shows us that Case 2 arises onlyg i 1 ande — |«] > 1/2. When this happens,
the only integerp # p; that has a chance of satisfying

|gi — p| < |dox — Pol
is the integer on the other side @fc from p;. But for this p,
|ie — pl = 1— |qi — P1| = Qo — Pol,

so the desired inequality cannot in fact be satisfied even fopthikis proves the lemma.
O

Lemma 6. Leta be a positive real number and let 3 /0n-1, Pn/0n, @and phi1/0ns1 be
three consecutive convergents of the continued fraction representatiowath n > 0.
Let ¢/d be a fraction whose denominator satisfigsig< d < Qny1. If

|Gn—10¢ — Pn_1| > |da — C, (3.1)
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then either ¢d is in lowest terms and is an intermediate fraction having a denominator
between gand g1, or ¢/d = p,/0s. (In the latter casec/d is not necessarily in lowest
terms.

Proof: Assume that there existandd satisfyingg,_1 < d < gny1 and (3.1) but such
thatc andd are not the numerator and denominator of an intermediate fraction (in lowest
terms) having a denominator betwegnandq,1. We will show thatc/d = p,/gn in
several steps. First we construct a fraciignd’ satisfying (3.1) and,_; < d’ < gn +0n—1-
(When we say that’/d’ satisfies (3.1) we mean of course (3.1) witandd replaced by
¢’ andd’ respectively.) We then show theltd’ = p,/g,, and finally we show that this in
turn implies that/d = p,/qn.

Let an 1 be the(n + 1)st partial quotient ofr. By definition [8, equation (20)], the
intermediate fractions with denominators betwegrandg,., are (in lowest terms) the
fractions of the form

Pn—1 + Kpn

where O< k < .
1 + K i

Letp=c— pp_1andletq =d —qg,_1. Then 0< g < an;10s, SO there exist unique
integerskg and j with 0 < j < g, and 0< ky < an,1 such thatg = ko, + j. Let

i = p— kopn. By assumption¢ andd are not simultaneously equal to the numerator and
denominator of any one of the above intermediate fractionsgagd, soi andj cannot
both be zero. Also by assumptiaryd satisfies (3.1), so

|On—10¢ — Pr-1| > [(Gn—1 + D — (Pr—1 + P)]
= [On-10 — Pn-1 + Ko(COhet — pn) + ja — . (3-2)

The quantities),_ 1o — pn_1 andgn 1o — pn1 lie on the same side of zerowith 1ot — Pny1

being closer. (I is rational andpn,1/0n1 is the last convergent of, thengn 1 — pni1

is actuallyequalto zero, but this does not invalidate the argument in the next sentence,
which is all that we use the observation in the previous sentence for.) Note that since
0 < kp < any1, the quantity

X dZEf On—1¢ — Pn—1 + Ko(Gnot — Pn)

lies betweemny,_1o — pn_1 andgn, 1 — pny1; in particular, X lies betweeny,_1o — pn_1
and zero. (It could equal the former; this will not be a problem.)
We now claim that

l[joo —i] > |On—100 — Pn—1l. (3-3)

If j # 0, then this follows from Lemma 4 becauge< q,. If | = 0, theni # 0, and
the left-hand side is a positive integer whereas the right-hand side is at most one. This
establishes (3.3).

Now (3.3) forcesjo — i andgn_10c — pn—1 to have opposite sign. For if they had the
same sign, then (3.3) together with the fact tKalies betweerg,_1¢ — p,—1 and zero
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would imply that adding « — i to X would result in a number with absolute value greater
than that ofg,_1o — pn_1, contradicting inequality (3.2).
Next we claim that

|Qn—la — Pn—1+ jOl - || < |Qn—105 - pn—1|-

To see this, consider firstthe case wigpre o — pn_1 < 0. Thenja—i > 0 andg,a— p, > 0,
and in light of (3.3) we have

0<0n10t — Pr-1+ jo —i < Q1o — Pn—1+ Ko(Gher — Pn) + jor — i
|Gn—10¢ — Pn—1 + Ko(Qnet — Pn) + jor —i|

|On—10¢ — Pn-1l,

A

where the last inequality follows from (3.2). This establishes the claim in this case, and the
same argumenhutatis mutandisovers the case, 1o — pn_1 > O.

This last claim, however, just says that if we et p,_1 +i andd’ = g,_1 + j, then
c//d’ satisfies (3.1), and since® j < gy, we haveg,_1 < d’ < g, +0n_1. This completes
the first step of our argument. We now wish to show ttyat' = p,/qn.

We may assume thal > qn, by (3.1) and Lemma 4. Let us now assume towards a
contradiction thatd’ > ¢,. For simplicity we shall assume thgt_;a — ph_1 < O; the
reader can check that the argument is easily modified to handle thg.case- p,_1 > 0.

Using this assumption, we hagge — p, > 0 and

da—Cc =gp10@ — pn_1+ ja—i > 0.

Since O< d’ < On + On—1 < Ons1, by Lemma 4d’« — ¢’ must be further away from zero
thanghe — pn, i.€.,

da—c >qgna— py>0.

Therefored'a — ¢’ — (gha — pn) is closer to zero thad'a — ¢ is, andd’« — ¢ is in turn
closer to zero thag,_1a — pn_1 IS, sincec/d’ satisfies (3.1). This means that the fraction
¢’ — Pn
d—an

is a better approximation of the second kindxtthan p,_1/g,—1 is. Butd’ — gy < Qn_1,
so this contradicts Lemma 4.

Therefored’ = g,. By Lemma 5, the inequality (3.1) implies thelt= p,. It remains
to show that/d = p,/q,. This is straightforward:

C_ Poiti+kopn € +kopn _ Pnt+koPn _ Pn

d ™ o1+ +kon o +keGn  Gn+KoGn  Gn

This completes the proof. O

Remark In fact, the converse of Lemma 6 holds, but we do not need this fact.



ADDITIVE PARTITIONS AND CONTINUED FRACTIONS 65

Proposition 1. Leta be an irrational number such thdt < « < 2. Let ¢ be a positive
integer that is neither the numerator of an intermediate fraction nor the numerator of a
convergent. Then there exists a convergeftf guch that p and e p are either both in 4

or both in B,.

Proof: Choosed to minimize the quantityda — c|. We now wish to len be the largest
positive integer such thag, < d, but we must first check that such amxists. Since is
between 1 and 2, its zeroth convergent equals one and its first convergent(agudls/a;

for some intege; > 0. From the definition of intermediate fraction we see that every
fraction of the form(i + 1)/i with 1 <i < a; is an intermediate fraction or a convergent.
Sincec is not the numerator of any of these> a; + 2. In particularc > 3 sod > 2.
Therefore there exist integehé > 0 such thatjy < d. Letn be the largest such integer.
We claim thaih > 1. Forifn = 0, thend < q; = a;, and sincex < (a; + 1)/a;, we have

do < a3 + 1, contradicting: > a; + 2. It therefore makes sense to speak of the convergent
Pn-1/0n—1, and we shall do so.

By our choice ofn, g, < d < gny1. NOow gha — pn andgn_10¢ — pp_1 have opposite
signs. Letm be the element of the s@t, n — 1} such thagmwa — pm has the same sign as
da — ¢. We shall argue thap,, andc — py, are in the same set (i.e., they are either both
in A, or both inB,). We claim that to prove this it suffices to show that

[Gme — Pml < |dor — c]. (3.4)
To see that this does indeed suffice, begin by noting that
(d - gm)a — (€ — pm) = (da — €) — (Om* — Pm)-

Now in view of (3.4) and the fact thalx — c andgma — pm have the same sign, this implies
that(d — gm)x — (¢ — pm) has the same sign d& — ¢; moreover(d — gm)a is closer to
C — pmthanda istoc, so(d — gm)« is the multiple ofx closest tac — pp,. It follows that
C— pmisinthe same set @&s From (3.4) we see thaf,« is the multiple ofx closest topy,
so the fact thatle — c andgmae — pm have the same sign implies thais in the same set
aspm. Hencec — pny, and pp, are in the same set, as required.

We are reduced to proving (3.4). We handle first the special case wherg,,;. By
assumptionc # pn.1, SOC must be the integer on the opposite sidedaffrom pn;.
Therefore

|dor — €| = 1 — [Ons10r — Pnsal
andm = n. We need to show that
1—|Gnt100 — Pntal = [Oher — Pnl-
But this follows from the inequalities

[On+10 — Pnt1] < [Ohe — Pnl < 1/2,

which hold because > 1.
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If d # Qgny1, SO thatg, < d < gn.1, then Lemma 6 provides the key to proving (3.4).
Forifc/d = pn/0n, thenda — cis just a multiple ofg,a — p, and hencen = n, and (3.4)
is obvious. Otherwise, Lemma 6 (together with Lemma 4) tells us that the only way for
(3.4) to be violated is fom to equaln — 1 and forc/d to equal an intermediate fraction
in lowest terms. But this contradicts the fact thas not the numerator of an intermediate
fraction. This completes the proof. O

Theorem 3 follows immediately from Proposition 1.

4. Relationship of Theorems 2 and 3 with prior work

Theorem 1 subsumes several earlier results: the gasel ands, = 2 was first posed
by Silverman [12] and solved independently by numerous people, and thg,caskand

s, arbitrary was proved by Alladi, Ea$; and Hoggatt [1]. Evans [4] also showed that if
S = {s,} satisfies 2 51, (51, ) = 1, ands, = $,-1 + Si—2 for n > 2, thenSis uniquely
avoidable, but that i, > s, and 2 5,5, thenSis not avoidable.

Our results do not completely subsume Evans'’s results, because our theorems say nothing
about unigueness. However, our results do generalize Evans'’s in the following sense: given
any setSthat Evans has shown to be (uniquely) avoidable—i.e., a set of the form specified
in Theorem 1 or in the previous paragraph—we can find an irrational numbetween 1
and 2 such thatA,, B,} avoidsS. To see this, consider first the cage< s,. If 5 # 1,
setsg = s, mods;. If 5 # 1, sets_; = s, modsy. Continue in this way untis_, = 1 for
somek > —1; this must happen at some point sirisg s;) = 1. Now leta be the number
whose partial quotients are

S_ S_
1’S—k+1_l,\\ WJ,LﬂJ,...,FJ,LLLLL...
S_k+1 S_k+2 S

It is easy to see that the numerators of the convergentsavés , S ki1, S k42, ..., SO
by Theorem 2{A,, B,} does indeed avoi8.

If s; > s and 2| 15, then applying the above argument withands; in place ofs;
ands, shows that for a suitable choice ef {A,, B,} avoids every element d except
possibly fors,. Infact,{A,, B,} must avoids, as well. For Theorem 1 asserts that,, B,}
is theonly partition avoiding(s;, s, . . . }. But the partition avoiding all 08is also unique
and ita fortiori avoids{s,, ss, ...}. Hence{A,, B,} must coincide with the partition that
avoids all ofS.

We remarkthatif; = 1 ands, = 2, so thaSSis the set of Fibonacci numbers, thenitturns
outthatx = v = (1++/5)/2, anditis well known that the numerators of the convergents of
are the Fibonacci numbers. In general, for any of Evans’s sets, the associated irtational
is some element dD(v/5).

The relevance of continued fractions to the theory of avoided sets has not been noticed
explicitly before, but it is implicit in [3]. To explain the main result of [3], we must first
recall Beatty's theorenfi2]. Beatty’s theorem states thatdfand g are positive irrational
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numbers such that/t + 1/8 = 1, then the sets
{lna] |ne N} and {|ng]|neN}

partitionN into two disjoint sets. As Beatty partitions arise naturally in many contexts, it

is natural to ask for the connection between Beatty’s theorem and the theory of avoidable
sets. In [1] it is proved that the partitions in Theorem 1 cannot be Beatty partitions.
(They actually only showed this for the case=1 but their argument extends easily to

the general case.) However, Hoggatt and Bicknell-Johnson [7] and the second author have
independently noticed that there is actually a close relationship between Beatty's theorem
and avoidable sets. L€tA;, B,} denote the partition avoiding the Fibonacci numbers.
Observe that Air + 1/72 = 1, so that if we set = 7 in Beatty’s theorem thep = 2.

The observation of Hoggatt-Bicknell-Johnson and the second author is that

A.C{lnt]|neN} and B,2{|nt?]|n e N}.

Thus, we can obtaifiA;, B, } from a Beatty partition by transferring some elements from
one half of the partition to the other.

The main result of [3] is that the elements that need to be transferred have a simple
description:

A; ={Int]|neN}\{|nt]|neNand{nt} > t/2}
and (4.1)
B, = {|nt?] In e N}U{|nt]|n e Nand{nt} > 7/2}.

Now, it is not hard to see that the right-hand sides of these equations are equivalent to
the definitions ofA, and B, given in Theorem 2. Thus, Theorem 2 may be regarded as
generalizing the main result of [3] from the case-= t to the case of arbitrary irrational

Incidentally, the reason we say that continued fractions are “implicit” in [3] is that
the key lemma in that paper is really a well-known fact about continued fractions, but at the
time, the author was unaware of the theory of continued fractions, and hence did not state
the lemma in that language. In fact, only after we proved the main theorems of the present
paper did we notice the implicit continued fractions in [3].

One paper whose results we feel should be closely related to Theorems 2 and 3 is Zhu
and Shan [13], but so far we have had only partial success in establishing a connection.
([13] is in Chinese, but an English translation is available: [11].) Zhu and Shan consider
setsS = {s,} that are defined by a recurrence of the form

S =S-1+S-2+KkK
for some fixed nonnegative integer Note that if we set, = s, + k, then
tn = tn—l + tn—Z,

so the Zhu-Shan sets may be regarded as “shifted Evans sets.” Noig #gven, with
k = 2k’ for somek’, and if{ A, B} is a partition avoiding the s¢t,}, then we may subtract
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k’ from each element oA and from each element &, discarding any nonpositive integers
that result. This produces a partition that avdgls {s,}. This establishes a connection in
the case of evek, but we are not sure about o&d

5. Saturated sets

Following [1] we say that a s C N is saturatedf it is avoidable and it is maximal (with
respect to set inclusion) among all avoidable sets. In [1] it is asked if a saturated set is
necessarily uniquely avoidable. Although it might seem plausible to conjecture that the
answer is yes, Evans [4] exhibited a saturated set that is avoided in two different ways.
In this section we strengthen this result by showing that there exist saturated sets that are
avoided by arbitrarily large numbers of partitions.

To state our results more precisely, we first recall another definition from [§ dfN,
then thegraph G(S) of Sis the graph whose vertex setisand whose edges are the sets
{X, y} suchthak # yandx+y € S. Itis easily seen theis avoidable if and only i (S)
is bipartite and thaS is uniquely avoidable if and only iG(S) is bipartite and connected.
Moreover, ifG(S) hask connected components, then the number of partitions avolling
is 21,

We also say that a s&C N is doubly uniquely avoidabliéit is uniquely avoidable and
there exists a unique partition of the odd positive integers into two disjoint/satsd B
such that no two distinct elements Afsum to twice an element & and no two distinct
elements oB sum to twice an element @&.

The main result of this section is

Theorem 4. Let S be a doubly uniquely avoidable set that is maxigwéh respect to set
inclusion among all doubly uniquely avoidable sets. Fork3, let

S =1{1,232%282 . . . 2hu{2s|seS.
Then g is saturated and G&,) has k connected components.

That Theorem 4 is not vacuous is guaranteed by the following result.

Proposition 2. There are uncountably many distinct doubly uniquely avoidable sets that
are maximal among all doubly uniquely avoidable sets.

Proof: LetS = {5} U {1, 2} be any set that satisfies the following conditioss:= 3,
s, = 5, ands, 1 equals either® — 1 or 25, — 2 for alln > 1. We claim thatSis doubly
uniquely avoidable.

One of the simplest general methods for demonstrating unique avoidability is induction
onn (cf. [6]). Forexample, to show th&tis uniquely avoidable, use the inductive hypothesis
thatthere is a unique partition (into two sets) of the positive integers less ttiaat avoidsS.

If this is true for alln, thenS must be uniquely avoidable. Here the inductive hypothesis is
easily checked for smatl. To pass frorm to n + 1, we just need to consider the integers
m in the ranges, < m < s,,1 in succession. Providesl,; is less than &,, uniqueness
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is guaranteed, because therands,,; — m are distinct and must be placed in opposite
sets, buts,;1 — mis less thars, and it is therefore already determined which half of the
partitions,.; — m must be in. In the case at haggl; = 25, — 1 0ors,.1 = 25, — 2 so
unigueness follows. To show existence, observe that we just need to ensurectirabe
placed in such a way as to avoid all elementSdfat are less tham2. In the case at hand,
there is only one such element®&fnamelys,, 1, and hence it suffices to patinto the set
opposites, 1 — m.

The same idea works to show that there is a unique way to partition the odd integers so as
to avoid{2s | s € S}. We begin by placing 1 and 3 in opposite sets so as to avei®®4 2.
The induction argument proceeds as before, with only one additional subtlety: when we are
showing existence, there are two elementSdbr which we need to check avoidability:
25,1 and &,,,. Conceivably, we might not be able to avoid both of these simultaneously
when placing the odd integers in the range & < m < 2s,;1. Actually, this potential
problem arises only for the numbers,2; — 1 and &,,; — 3, which may sum to®,, if
Sht2 happens to equals?,; — 2. However, this is not a problem, because 1 and 3 are in
opposite sets, and hence the process of avoiding 2vill force 2s,,1 — 1 and &,,; — 3
into opposite sets (providex] > 3, so that 8, — 3 is distinct from 3; but one can check
that no problems occur fay, = 3 either), thus automatically avoiding.2, as well. This
proves the doubly unique avoidability &f

We now “saturate” eacB by taking a doubly uniquely avoidable sthat is maximal
among all doubly uniquely avoidable sets and that con@ifie seSexists and is unique:
the integers that we must add $are precisely those integemsthat are avoided by the
unique partition avoiding andwhose doubles are avoided by the unique partition of the
odd numbers avoidinggs | s € S}. There are clearly uncountably many distiisd, and
distinctS's are avoided by distinct partitiofé\, B}, so distinctSs have distinct saturations.
This completes the proof. O

We remark that the set of Fibonacci numbers is doubly uniquely avoidable, but we do
not need this fact so we omit the proof.

Proof of Theorem 4: We claim that the connected component$gt) are as follows.

W={meN|m=0 (mod %)}

X={meN|m=+21 (mod Z*1)}

Y=meN|m=156 (mMod8}u{meN|m=-1 -5 -6 (mod 8}
Zi=fmeN|m=4 (mod16}U{meN|m=—-4 (mod 16}
Zo=fmeN|m=8 (mod33}Uu{meN|m=-8 (mod 33}

Zies={meN|m=2? (mod X)}U{meN|m=—-2? (mod %)}

(If k = 3 then there are nd’s.) Moreover, we claim that all these connected components
are bipartite. The bipartitions fof and for theZ'’s are the ones suggested by their definitions
above, and the bipartitions f&¥ and X are the ones forced on them by the doubly unique



70 CHOW AND LONG

avoidability of S: take the unique partition of the positive integers avoidiand multiply
each number by*2o obtain the correct partition fa, and take the unique partition of the
odd integers avoiding2s | s € S} and multiply each number by2! to obtain the correct
partition for X.

To prove these claims, let us begin by observing that two nuntbarsdm’ from distinct
components cannot sum to an elemenaf (Here “component” just means one f,

X, Y, or Z; as defined above; we use the term “component” for convenience and its use
should not be construed as presupposing that thesthie components d&(S) since we

have not shown that yet.) To see this, writeandm’ in binary notation and note that their
rightmost 1's cannot be in the same position. Therefore they cannot sum to a power of 2.
Moreover, at least one of them has its rightmost 1 in one oktleast significant bits, and
hencem + m’ cannot be divisible by'2 Finally, m + m’ # 3.

Next, let us show that if the components are partitioned in the way we described, then
two distinct numbersn andm'’ from the same half of ainglecomponent cannot sum to
an element of. In the case o%Z;, m+m = 2'~1 (mod 2) for somer < k and hence
cannot be divisible by'2 moreover it is clear thah + m’ cannot equal a power of 2 since
m # m'’. A similar argument covers the componefitAs for W and X, the elements
are too large to sum to a power of 2 less thapehd they avoid2¥s | s € S} by the doubly
unique avoidability ofS. Finally, m+ m’ # 3 again.

Now observe thatV and X are connected because of the doubly unique avoidabili8y of
Proving that each of andZ; is actually connected can be done using aninductive procedure
similar to the one described in the proof of Proposition 2. The details are straightforward
and are left to the reader.

It remains to prove saturation. No integer of the forfa @ith s ¢ Scan be added t6,
by the maximality ofS. Integersm that are not multiples of eight cannot be addedtp
because they can be represented as sums of distinct elements from the sam& haff of
follows. Observe that modulo 8, we have

—-3=-5-6, -2=1+5 -1=1+46, 1l=-1-6,
2=-1-5 3=5+6, =-6-—06.

Except whemrm = 1, 2, 3, 4, these congruences can be converted into pairs of distinct
integers summing tm, e.g., ifm = 17 thenm = 1 (mod 8§, and 1= —1 — 6 so we can
write m as the sum of two integers, one congruenttomodulo 8 and the other congruent
to —6 modulo 8, i.e., 1= 7+ 10 or 17= 15+ 2.

It remains to show that integemsthat are congruent to 8 modulo 16 or 16 modulo 32 and
so on cannot be added &. But this is easily proved using the same kind of argument as
in the previous paragraph, e.g.=84+ 4 (mod 16, and this congruence can be converted
into a representation ofias a sum of two distinct integers from the same hali pf-except
whenm = 8, but 8 is already irg. O

6. Open problems

In an earlier version of this paper, we posed as an open question the problem of charac-
terizing §, precisely, since Theorems 2 and 3 provide only upper and lower bounds. We
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also conjectured tha, is always uniquely avoidable. Both of these problems have very
recently been solved by Grabiner [5]. In particular, Grabiner has proved the following.

Theorem 5. If p, is the numerator of a convergettien2p, € S, ifand only if p, is odd
and either(i) pny1isoddand a,1 > 3, or (ii) phrr1isevenand g, > 2, or (i) p, = 1.
If pn + Kpny1 is the numerator of an intermediate fractiothen it is in G if and only if
either (i) ppy1isevenor (i) k = 1and g, is odd or (iii) k = ay 2 — 1and p,.2 is odd.

To convince the reader that Grabiner’s results are definitely nontrivial, we remark that
it is natural to conjecture that the s8t consists precisely of numerators of “best approx-
imations” in some sense, but for the most natural notions of “best approximation’—e.g.,
best approximations of the first kind, or all fractiopgg such thate — p/q| < 1/g°—this
conjecture is false. Also, the simple inductive method that we used in the proof of Propo-
sition 2 does not suffice in general to prove the unique avoidabilify, plarge “gaps” can
occuring,.

One can ask more generally for a characterizatioallodvoidable sets, or all uniquely
avoidable sets, or all saturated sets, or all saturated sets whose graph has a given number
of connected components. The s&tsdo not exhaust the class of all saturated uniquely
avoidable sets. For example, the set

(3,4,8,12,17,22 43,85, ...}

(where each subsequent element is twice the previous element, minus one) is uniquely
avoidable but it can be shown that its saturation is not equal to any of ougsets

There are several results in the existing literature that can probably be generalized. For
example, in [3] it is proved that the séf defined by

A ={lnt] | neN}\ A
satisfies
A ={[n®||ne A}

We hope this result can be generalized, but we are not sure how. As another example, [6]
considers Tribonacci numbers, sequences in which each term is the sum of the previous
threeterms in the sequence. It is not even obvious whether this kind of avoidable set has
any connection with continued fractions.

Many variations on existing ideas are possible. What if we drop the word “distinct” from
the definition of avoidable set? What happens if we consider algebraic integers rather than
rational integers? Clearly much more remains to be done.

Acknowledgments

Before Theorem 3 was formulated and proved, Michael Bennett (personal communication)
suggested the possibility that every elementSpfmight be either the numerator of an
intermediate fraction or a multiple of a numerator of a convergent. Without this suggestion



72 CHOW AND LONG

we might never have been led to formulate Theorem 3. The first author is also grateful to
Michael Bennett for many stimulating discussions.

In a preliminary version of this paper, we formulated Theorem 2 using definitioAs of
andB, analogous to (4.1). Then Glen Whitney asked us about tBeappearing in (4.1),
wondering about its significance. His question helped us discover the elegant description
of A, andB, in Theorem 2.

The first author was supported by a National Science Foundation postdoctoral fellowship
and did part of the work for this paper while a general member of the Mathematical Sciences
Research Institute.

References

[N

. K. Alladi, P. Erdis, and V.E. Hoggatt, Jr., “On additive partitions of integeRiScrete Math.23 (1978),
201-211.
. S. Beatty, “Problem 3173&mer. Math. Monthly83 (1926), 159; solutionlpid. 34 (1927), 159.
. T. Chow, “A new characterization of the Fibonacci-free partitidiitfonacci Quart29(1991), 174-180.
. R.J. Evans, “On additive partitions of sets of positive integ®strete Math36 (1981), 239-245.
. D.J. Grabiner, “Continued fractions and unique additive partitidRarhanujan JournaB (1999), 73-81.
. V.E. Hoggatt, Jr., “Additive partitions of the positive integefafjonacci Quart.18 (1980), 220-226.
. V.E. Hoggatt, Jr. and M. Bicknell-Johnson, “Additive partitions of the positive integers and generalized
Fibonacci representationgstbonacci Quart.22 (1984), 2—-21.
. A.l. Khinchin, Continued Fractions3rd edition, University of Chicago Press, Chicago, 1964.
9. I. Niven, H.S. Zuckerman, and H.L. MontgomeAn Introduction to the Theory of Numbefth edition,
Wiley, New York, 1991.
10. A. Sirkdzy, “Finite addition theorems, I,J. Num. Theor2(1989), 114-130.
11. Z. Shan and P.-T. Zhu, “O@, b, k)-partitions of positive integersSoutheast Asian Bull. Mati.7 (1993),
51-58.
12. D.L. Silverman, “The Fibonacci split,” problem 567, “Problems and conjectureRgc. Math9 (1976-77),
298.
13. P.-T. Zhu and Z. Shan, “Qa, b, k)-additive partition of the set of natural numberSithuan Univ. J. Natural
Sci.26(1989), 140-144, special issue.

~NOoO o~ WN

o]



