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METHOD FOR ALLOCATING PROTECTION
BANDWIDTH IN A
TELECOMMUNICATIONS MESH NETWORK

RELATED APPLICATIONS

The present application claims the benefit of Provisional
Application No. 60/291,508 filed May 16, 2001.

TECHNICAL FIELD OF THE INVENTION

The present invention relates in general to telecommuni-
cations network design and more particularly to a method
for allocating bandwidth in a telecommunications mesh
network.

BACKGROUND OF THE INVENTION

Modern optical networks carry large amounts of traffic, so
it is imperative that they be able to survive an accidental
failure such as a fiber cut or a node failure. The simplest way
to protect a light path against failures is to employ 1+1 or
dedicated protection. That is, in addition to the primary or
working path, one allocates a secondary or protection path
and transmits a duplicate copy of the traffic along the
protection path. If there is a failure on the working path, then
one switches to the protection path.

FIG. 1 shows an example of a square mesh network. The
square mesh network may have four nodes A-D, five physi-
cal links L, and two demands D1 and D2. Each demand is
allocated two disjoint routes, a working path W and a
protection path P. Note that on physical link AD, the
protection paths P of each demand overlap. On this physical
link, two units of capacity must be allocated.

Dedicated protection works well, but in many cases it is
overkill. The reason is that in many networks, the probability
of two or more simultaneous failures is so small as to be
negligible. Therefore, if two distinct working paths have no
common point of failure, then it makes sense for their
respective protection paths to share bandwidth, because the
probability that both working paths will request use of the
protection bandwidth at the same time is negligible. For
example, in FIG. 1, the two working paths are completely
disjoint from each other so it makes sense to allow them to
share protection bandwidth. If we allow sharing, then only
one unit of capacity is needed on link AD.

Shared protection requires more complex signaling and
therefore somewhat more expensive equipment than dedi-
cated protection, but the savings in bandwidth and equip-
ment that it provides makes shared protection an attractive
option to many carriers.

The choice between dedicated and shared protection is not
the only choice that must be made by the designer of a
survivable optical network. A choice must also be made
between link-based and path-based, or end-to-end, protec-
tion. In link-based protection, the nodes A and B at either
end of a failed link are responsible for detecting the failure
and re-routing on a protection path P around the failure. The
failed link may be utilized by a large number of different
light paths, each with a different source and destination.
After the failure, these light paths travel from their source
node to node A as before, then take the protection path P to
get to node B, then finally travel from node B to their final
destinations. For example, Synchronous Optical NETwork
(SONET) Bi-directional Line Switched Ring (BLSR) net-
works use a shared link-based protection. In path-based
protection, it is the source and destination nodes of each
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individual light path that are responsible for detecting the
failure and re-routing on a protection path. As in link-based
protection, a single failed link may cause many different
light paths to fail. Now, however, each one of these light
paths is free to travel on a completely different protection
path from source to destination. In particular, there is no
need for it to visit the nodes A and B at the ends of the failed
link. For example, SONET Unidirectional Path Switched
Ring (UPSR) networks use dedicated path-based protection.

There are several factors to consider when choosing
between link-based or path-based protection. Shared path-
based protection tends to use less total bandwidth than
shared link-based protection. One reason is that in link-
based protection, there is a backhaul problem. A protection
light path may travel to node A and then double back on
itself in order to get to node B. Shared link-based protection
tends to be faster than shared path-based protection. The
reason is that in link-based protection, the failure detection
and repair happens locally, whereas in path-based protection
the signals must travel all the way to the source and the
destination. Furthermore, as already mentioned, a single
fiber cut usually triggers a large number of alarms in a
path-based scheme and processing all these alarms simul-
taneously can bog down the network. It is difficult if not
impossible for a link-based scheme to protect against node
failures. Link-based schemes rely on the nodes on either end
of'a link to perform a protection switch. If one of these nodes
fails, then it cannot perform the switch. A path-based scheme
can simply choose node-disjoint paths from end to end for
all its light paths and then node failures are automatically
survivable unless it is the source or destination node that
fails, but in that case it is impossible to recover from the
failure anyway.

It is well known that SONET rings provide fast protection
(50 ms for a ring of circumference at most 1200 km that
carries no extra traffic), even on a BLSR, which uses shared
protection. Conventional shared mesh protection networks
cannot match the speed of a SONET BLSR ring. In a
SONET BLSR network, only the nodes on either side of a
failure need to make a real-time switch. The rest of the
protection path is pre-cross-connected so that the interme-
diate nodes on the protection path simply pass through the
traffic without having to make a switching decision. By
contrast, in a shared mesh environment, every intermediate
node along the protection path may have to make a real-time
switch. This adds considerable delay to the protection
switching time.

FIG. 2 shows how the shared mesh network adds delay in
the protection switching time. The two working paths have
no common point of failure, so let us assume that they share
protection bandwidth on the link AE. Now, if the WDI1
working path fails, then node E must connect AE to EB,
whereas if the WD2 working path fails, then node E must
connect AE to ED. Therefore, node E must decide in real
time which switch to perform and then perform it. There is
no way that node E can be pre-cross-connected to pass
through all the protection traffic that it sees. Notice further
that this issue can arise regardless of whether one uses
link-based or path-based shared mesh protection.

Recognizing these issues, the concept of a “p-cycle” has
been proposed. The idea is to route the working traffic using
an arbitrary mesh routing algorithm, but to constrain the
protection paths to lie on certain predetermined “p-cycles”
or rings. These p-cycles are pre-cross-connected just as in a
SONET BLSR network. With p-cycles, the troublesome
multi-way “branch point” illustrated in FIG. 2 at node E
never occurs. When a failure occurs, the nodes at either end
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of the failure must react and perform a real-time switch, but
all the intermediate nodes on the protection path simply pass
through the traffic. Fast ring-like restoration speeds are
thereby achieved. The bandwidth efficiency of p-cycles is
high. Constraining the protection paths to lie on p-cycles
might seem to be a very stringent requirement that would
carry a high bandwidth penalty. In practice, however, this
bandwidth penalty has proved to be very small. More
importantly though, the p-cycle scheme is inherently link-
based. So it has all the usual pros and cons of link-based
schemes explained above. In particular, node failures cannot
be survived. To date, there has been no approach to provide
a mesh network with shared path-based protection that
provides bandwidth efficiency and retains the efficiency of
protection switching times of SONET rings.

SUMMARY OF THE INVENTION

From the foregoing, it may be appreciated by those skilled
in the art that a need has arisen for an ability to provide
protection path in a mesh network with fast protection
switching capabilities. In accordance with the present inven-
tion, a method for allocating protection bandwidth in a
telecommunications mesh network is provided that substan-
tially eliminates or greatly reduces disadvantages and prob-
lems associated with conventional bandwidth allocation
techniques.

According to an embodiment of the present invention, a
bandwidth efficient scheme to route the protection paths in
an arbitrary path-based protection mesh network is pro-
vided. The bandwidth efficient scheme is provided in such a
way that all the protection paths can be pre-cross-connected,
so that the switching time when a single network failure
occurs is as short as possible in order to match the SONET
BLSR switching time. According to one embodiment of the
present invention, this may be achieved by keeping track of
all possible pre-cross-connections, using pre-cross-connec-
tion trails (PXT) and a variant of Dijkstra’s algorithm coined
a constrained Dijkstra algorithm.

For example, a method for allocating protection band-
width in a telecommunications mesh network includes
receiving a demand to provide a protection path from a
source node to a destination node in the telecommunications
mesh network. The demand has a pre-determined working
path with a link of edges interconnecting the source node to
the destination node. One or more pre-cross-connected trails
of the telecommunications mesh network are subdivided
into one or more subtrails. Any subtrail that do not meet any
of one or more pre-determined conditions are discarded. A
logical graph representation of the telecommunications
mesh network is created from the subtrails that have not
been discarded. A shortest admissible protection path from
the source node to the destination node is identified from the
logical graph.

The present invention provides various technical advan-
tages over conventional mesh networks. For example, one
technical advantage is to process the mesh network one
demand at a time to allocate disjoint end-to-end working and
protection paths. The protection path is chosen to maximize
sharing and minimize bandwidth usage, subject to the con-
straint that no “branch points” are created. Another technical
advantage is that switch completion times are much faster
than those of any conventional shared mesh network algo-
rithm. Approximately two to three milliseconds of switching
time per node on the protection path is saved by establishing
pre-cross-connections. Yet another technical advantage is
that there is a 20% to 40% total bandwidth savings over
dedicated protection. This saving is of the same order of
magnitude as that of competing shared link-based mesh
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algorithms using the p-cycle approach. Still another techni-
cal advantage is that dynamic traffic is handled without
difficulty. One weakness of p-cycles is that maximum band-
width efficiency is achieved with large p-cycles, and if traffic
demands are arriving gradually over time, then the carrier
must choose between allocating small p-cycles that meet
current demand cheaply but are inefficient over the long run,
and allocating large p-cycles that may eventually be cheaper
but require large capital expenditure up front. The PXT
algorithm, on the other hand, is based on trails rather than
cycles, which grow smoothly along with the traffic. Further,
node protection is easily provided due to the path-based
protection implementation.

Conventional link-based networks provide some band-
width efficiency and a quick restoration capability but can-
not handle dynamic traffic nor recover from node failures.
Conventional path-based networks provide bandwidth effi-
ciency and recovery from node failures but cannot handle
dynamic traffic nor provide a quick restoration capability.
Utilizing the conventional p-cycle approach only enhances
the restoration capability of a link-based network but does
not address dynamic traffic situations or node failures. On
the other hand, the present invention with its pre-cross-
connection technique in a path-based mesh network pro-
vides all four of bandwidth efficiency, a fast restoration
capability, node failure recovery, and dynamic traffic han-
dling not capable of being provided in conventional network
schemes. Other examples of advantages may be readily
ascertainable by those skilled in the art from the following
figures, description, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference is now made to
the following description taken in conjunction with the
accompanying drawings, wherein like reference numerals
represent like parts, in which:

FIG. 1 illustrates a block diagram of an example of a
square mesh network;

FIG. 2 illustrates a block diagram of how the shared mesh
network adds delay in the protection switching time;

FIG. 3 illustrates a block diagram of an example of an
arbitrary mesh shared path-based protection telecommuni-
cations network;

FIG. 4 illustrates a block diagram of an example of a
generic graph G used to provide a summary of some
graph-theoretic terminology FIGS. 5A-C illustrate block
diagrams of physical and logical graphs of a sample network
n;

FIG. 6 illustrates a block diagram of the final result of
running Dijkstra’s algorithm on a particular digraph G;

FIGS. 7A-B illustrate block diagrams of how node-
disjoint paths are obtained;

FIGS. 8A-C illustrate block diagrams for determining a
pair of edge-disjoint paths total length is as small as pos-
sible;

FIGS. 9A-B illustrate block diagrams of an example
implementation of the constrained Dijkstra algorithm;

FIGS. 10A-B illustrate block diagrams for providing a
budget-constrained minimum-cost-path determination;

FIG. 11 illustrates a block diagram of an example of a
pre-cross-connected trail;

FIGS. 12A-C illustrate block diagrams of an example
implementation of the PXT algorithm;

FIG. 13 illustrates a block diagram of why primary and a
secondary routing methods are used;
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FIGS. 14A-B illustrate block diagrams of an example of
a routing for a demand using the ROUTEDEMAND sub-
routine;

FIGS. 15A-D illustrate block diagrams of the secondary
routing method for inter-mesh demands requiring dedicated
mesh protection only.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 3 is an example of an arbitrary mesh shared path-
based protection telecommunications network 10. Telecom-
munications network includes a collection of geographically
dispersed network elements, called nodes ABCDE, con-
nected by communication links e (e.g., fiber, wireless links).
The topology of the telecommunications network 10 may be
represented by an undirected graph G. In operation, succes-
sive requests are made for a bi-directional demand D1 to be
routed between two nodes C and D and a bi-directional
demand D2 to be routed between nodes A and B in graph G.
After a request is received, two interior-disjoint paths need
to be allocated for each demand: a working path WD1/WD2
and a protection path PD1/PD2. The purpose of protection
path PD1 and PD2 is to route the requested demand in case
of a single network failure in working path WD1 or WD2.
Working paths WD1 and WD2 need to allocate dedicated
bandwidth while protection paths PD1 and PD2 do not, i.e.,
it can be shared among different demands.

When a network failure occurs, the working paths of some
demands are broken. Each one of these demands has to be
switched to its corresponding protection path. Conventional
telecommunication networks typically desire the switching
time to be a short as possible. For example, in a SONET
BLSR the switching time has to be below 50 ms. It is
desirable to have a short switching time like this in an
arbitrary mesh network. To accomplish this, the present
invention contemplates determining specific pre-cross-con-
nections for telecommunications network 10.

FIG. 3 shows an example of how pre-cross-connection
can be applied in a mesh network. With working paths WD1
and WD2, there are respective protection paths PD1 and
PD2. On both AE and ED, protection paths PD1 and PD2
can share bandwidth. The important point is that the “branch
point” at node E has now been removed, so AE and ED can
be pre-cross-connected. Furthermore, despite appearances,
ED can be pre-cross-connected to DB as well. To see this,
note first that if working path WD1 fails, then the pre-cross-
connection between ED and DB is exactly what we want,
because it allows the intermediate node D to pass through
protection traffic without making a real-time switch. On the
other hand, if working path WD2 fails, then node D must
indeed break this pre-cross-connection, but the point is that
for this failure, node D is not an intermediate node on the
protection path but an endnode. Therefore it must perform a
real-time switch in any case, and no additional delay is
incurred by requiring it to break the cross-connection
between ED and DB.

FIG. 4 is an example of a generic graph G used to provide
a summary of some graph-theoretic terminology in order to
provide a better understanding of the present invention. By
a graph we mean an undirected multigraph, i.e., an undi-
rected graph that may have multiple edges. An edge is also
called a link connection. A link in a graph G is the set of all
edges between a given pair of nodes. (The terms “link” and
“link connection” are intended to be reminiscent of the ITU
terms “regenerator section link” and “regenerator section
link connection”; however, the reader should not take this
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similarity in terminology too literally.) Two edges that share
exactly one endnode v in common are said to be incident to
each other at v. Note that according to this convention, edges
on the same link are not considered to be incident. The
degree of a node v is the number of edges that have v as an
endnode. In graph G, there are two edges or link connections
on the link between nodes D and E, namely e and f. The
degree of node D is 4.

A walk in G is an alternating sequence of nodes and edges
(Vgs €15 Vs €55 Vo, . . ., V, 1, €,, v,) in G such that for all
i, the endnodes of e, are v,_, and v,. A trail is a walk whose
edges are all distinct and a path is a walk whose nodes are
all distinct. A walk is closed if v,=v,,. Note that a path cannot
be closed unless n=0. A subwalk of the walk W=(v,, e;, v,
€5, Vo, . .., V,_1, ©,,V,) 1s a walk that is either a consecutive
subsequence (Vis Cints Viwts Cons Vinos -+ -5 Vg1 Gy Vi+j)
or the reversal of such a consecutive subsequence. If W is
closed, then consecutive subsequences that “wrap around”
the ends of W are also considered to be subwalks. If a
subwalk of W is a trail (resp. path) then we call it a subtrail
(resp. subpath) of W (even if W itself is not a trail or a path).
Unless otherwise specified, a walk (trail, path) is considered
to be identical to its reversal. In graph G2, (C, d, D, f, E, e,
D, d, C) is a walk but not a trail because the edge d is
repeated. On the other hand, (C, d, D, f,E, e, D, ¢, B, b, C)
is a trail, in fact a closed trail, but not a path because the node
D is repeated. Finally, (D, d, C, b, B) is a subtrail of this trail,
and is in fact a path.

Two walks in G are link-disjoint if there is no link that
both of them traverse. The interior of a walk is the set {v,,
Vo -5 V1), 1€, the set of all of its nodes other than its
endnodes. Two walks are interior-disjoint if they are link-
disjoint and no node in the interior of one walk is a node in
the other walk. An edge e touches the interior of a walk if
either it shares a link with an edge of the walk or one of the
endnodes of e is in the interior of the walk. For example, in
the above graph, the paths (D, e, E) and (D, f, E) are
edge-disjoint but not link-disjoint, and hence they are not
interior-disjoint. The paths (A, a, B, ¢, D) and (C, b, B) are
not interior-disjoint, because B is an interior node of the first
path that is also a node of the second path. Note also that
edge b touches the interior of (A, a, B, ¢, D). In general, if
an edge of one path touches the interior of another, then the
two paths cannot be interior-disjoint. On the other hand, the
paths (A, a, B, b, C) and (E, e, D, d, C) are interior-disjoint,
because even though node C is on both paths, C is not an
interior node of either path. By a digraph we mean a directed
multigraph, i.e., a multigraph whose edges are directed from
one endnode to the other. These are needed in some low-
level subroutines. Walks, trails, and paths in digraphs are
required to be directed; i.e., if (vg, €, Vi, €55 Vo, « . ., V1,
e,, v,,) is a walk in a digraph, then e, must point from v,_; to
v,. Walks in digraphs are therefore not identical to their
reversals.

The fundamental components of the networks we con-
sider are the topology, the traffic demands, the allocation
plan for these traffic demands, and the cross-connection
table for the topology. The physical topology is represented
by a graph G. Associated with each edge in G is a capacity
(either OC-48 or OC-192) and a length. The default length
is 1. The logical topology is also represented by a graph,
which we call H. The graph H is a duplicate of the graph G,
except that some of the OC-192 edges in G are replaced by
a set of four OC-48 edges in H, each with the same endnodes
and length as the original edge in G. Such edges are called
OMUX edges (both in G and in H); the remaining edges are
called standard edges.
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A traffic demand consists of a set of terminal nodes, a
capacity, a level of service, a sharing type, an optional set of
edges and nodes in logical graph H. For the capacity,
examples are OC-48 and OC-192 with OC-48C and
OC-192C being allowed but the present invention treats
them exactly like a standard OC-48 or OC-192. The level of
service can have one of four values, namely extra traffic,
non-preemptible unprotected traffic, mesh protection only,
and both mesh and span protection. The sharing type has one
of two values, namely 1:N or shared protection and 1+1 or
dedicated protection. For OC-192 demands, the traffic
demand also includes an indication that there are 0, 1, 2, or
3 OC-48 timeslots of spare capacity.

Traffic demands are of two types: intra-mesh and inter-
mesh. An intra-mesh demand has exactly two (distinct)
terminal nodes, called the source and destination (all
demands are required to be bi-directional and symmetrically
routed so it does not matter which node we call the source
and which we call the destination). An inter-mesh demand
has three terminal nodes, an access node and an unordered
pair of homing nodes. The homing nodes must be distinct
from each other; however, an access node may coincide with
one of the homing nodes. One homing node is designated the
primary node and the other is designated the secondary
node; it does not matter which one is called which.

The value of N for demands whose sharing type is 1:N
must be the same for all demands in the network; this
number is called the sharing limit of the network. The
default value of N is 16. The sharing type of traffic demands
whose level of service is extra traffic or non-preemptible
unprotected traffic is not meaningful; in these cases we
automatically set the sharing type to 1:N. Alternatively, the
sharing type could be omitted entirely in these cases. It does
not really matter as a globally consistent convention is
chosen. Single homing between mesh subnetworks is also
permissible, but such demands should be given as intra-
mesh demands for discussion purposes. The level of service
of an inter-mesh demand may be contemplated as being
either mesh protection only or non-preemptible unprotected
traffic. A list of traffic demands may contain multiple copies
of the same demand, in order to indicate, for example, that
the demand between two nodes consists of several OC-48’s
with the same level of service and sharing type.

An allocation plan for a set of traffic demands consists of
two components, a muxing plan and a routing plan. For
muxing plans, two demands are equivalent if their terminal
nodes, level of service, and sharing type are the same.
Terminal nodes are the same when they are either both
intra-mesh or both inter-mesh, and moreover if they are both
inter-mesh then the access node of one must be the access
node of the other and the homing nodes of one must be the
homing nodes of the other. However, the designations of
which node is the source and which is the destination, or
which homing node is primary and which is secondary, do
not have to agree, since these designations are arbitrary
anyway.

A muxing plan is a family M of disjoint subsets of the set
of traffic demands wherein traffic demands in the same
subset are be equivalent, each subset contains at most four
members, each subset contains at most one OC-192 demand,
and, if a subset contains an OC-192 demand, then the
number of OC-48 demands in that subset cannot exceed the
spare capacity of the OC-192. The members of a group are
said to be muxed together.

A muxing plan may be used to construct a list of adjusted
traffic demands as follows. Traffic demands that do not
belong to any member of M are left unchanged. Each
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member of M is replaced by a single traffic demand whose
terminal nodes, level of service, and sharing type are inher-
ited from the original traffic demands, whose set of forbid-
den nodes and edges is the union of the sets of forbidden
nodes and edges of the original demands, whose capacity is
0OC-192, and whose spare capacity is either the spare capac-
ity of the OC-192 demand minus the number of OC-48’s in
the subset (if there exists an OC-192 in the subset) or four
minus the number of OC-48’s in the subset (if there is no
OC-192 in the subset). It should be emphasized that when
constructing adjusted traffic demands, the original traffic
demands are not deleted. The list of adjusted traffic demands
should be thought of as an additional object that exists
alongside the list of original demands, not as something that
supersedes it. In particular, after processing has been per-
formed, the user still has full access to the unadjusted traffic
demands as well as the information about how they have
been muxed.

A routing plan consists of a routing of some or all of the
adjusted traffic demands. Thus, some of the demands may
not be routed. Specifically, a routing of an (adjusted) intra-
mesh demand d consists of a working path w(d) in graph H
between the source and the destination, a mesh protection
path p(d) in graph H between the source and the destination
if the level of service requires mesh protection, and a span
protection path s(d) in graph H between the source and the
destination if the level of service requires span protection. A
routing of an (adjusted) inter-mesh demand d consists of two
working paths w,(d) and w,(d) in graph H, one between the
access node and the primary node and one between the
access node and the secondary node, and two mesh protec-
tion paths r,(d) and r,(d) in graph H, one between the access
node and the primary node and one between the access node
and the secondary node if the level of service requires mesh
protection.

The term protection path refers to either a span protection
path or a mesh protection path. An edge that does not appear
in any working or protection path is called an unused edge.
Usually the adjective “adjusted” is dropped as routings,
protection paths, etc., are assumed to be of adjusted traffic
demands. Although when describing or specifying an allo-
cation plan, muxing is preferably performed prior to routing,
this does not mean determining an allocation plan must first
fix all its muxing decisions before making any routing
decisions. A muxing plan may first be performed and then
later backtrack if a satisfactory routing plan cannot be found
or the muxing and routing may be optimized simultaneously,
provided that its final output is an allocation plan that can be
described by a muxing plan followed by a routing plan for
the adjusted demands.

The cross-connection table for a logical topology speci-
fies, for each pair of incident edges in the logical graph H,
whether the connection between the edges is intact, pre-
cross-connected, or not connected. Exactly one of these
three possibilities must be true for every pair of incident
edges in graph H. The default value is “not connected.” If
either the connection between the edges is intact or pre-
cross-connected, then the edges are connected. It would
consume a lot of memory to explicitly allocate space for
each pair of incident edges in graph H. There is no require-
ment to implement the cross-connection table in this way, as
long as the information above is somehow contained in the
table. For example, one could store a list of which pairs of
incident edges are intact and which are pre-cross-connected,
with the understanding that all other pairs of incident edges
are not connected.
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Not all allocation plans and cross-connection tables as
defined above for a given topology and set of traffic demands
are actually feasible, because nothing ensures, for example,
that the routings of different demands are mutually consis-
tent. For an allocation plan to be feasible, the following
consistency conditions should be satisfied. If the capacity of
a demand is OC-192, then the capacity of all edges in all of
its paths, both working and protection, must be OC-192. In
particular, an OC-192 demand is not allowed to be inverse
muxed over an OC-192 OMUX link connection. If the
capacity of a demand is OC-48, then the capacity of all edges
in all of its paths, both working and protection, must be
OC-48. In particular, an OC-48 is to use a standard OC-192
timeslot, then it must use an OC-192 timeslot from end to
end and this must be specified in the muxing plan. If an edge
e appears in a working path of some demand whose level of
service is not extra traffic, or if e appears in a protection path
of a demand whose sharing type is 1+1, then ¢ may not
appear in any path, either working or protection, of any other
demand. In particular, stub release is not permitted, the use
of the working bandwidth of failed demands to protect other
demands. If an edge e appears in a working path of a demand
whose level of service is extra traffic, then e may not appear
in a working path of any other demand. None of the working
or protection paths for a demand can contain an edge or a
node from its list of forbidden edges and nodes. If an
intra-mesh demand d has a mesh protection path r(d), then
the working path w(d) must be interior-disjoint from r(d). A
similar condition holds for inter-mesh demands: w,(d) and
r,(d) must be interior-disjoint and W,(d) and r,(d) must be
interior-disjoint. If an intra-mesh demand d has both span
and mesh protection, then s(d) must be edge-disjoint from
w(d) and s(d) must be edge-disjoint from r(d) If w, and w,
are two distinct working paths that are not interior-disjoint,
then their corresponding mesh protection paths r; and r,
must be edge-disjoint. The two working paths of an inter-
mesh demand must be interior-disjoint. Every edge that
appears in the working path of a traffic demand whose level
of service is extra traffic must also appear in a mesh
protection path of a demand whose sharing type is 1:N. The
number of protection paths containing a particular edge e
must not exceed the sharing limit N. If several OC-48’s are
muxed into an OC-192 from end to end in the muxing plan,
then they collectively count as only one entity as far as the
sharing limit is concerned.

For a cross-connection table to be feasible, it must satisfy
the following two conditions. An OC-48 edge must never be
connected to an OC-192 edge. If e, and e, are incident at a
node v and the connection between them is either intact or
pre-cross-connected, and e is an edge different from e, that
is incident to e, at v, then the cross-connection table must
indicate that e and e, are not connected (and similarly with
the roles of e, and e, reversed). We call this condition the
matching condition.

For an allocation plan and a cross-connection table (con-
sidered together) to be feasible, each of them must be
feasible by itself, and they must also satisfy some further
conditions so as to be consistent with each other. If e, and e,
are consecutive edges in the working path of a traffic
demand whose level of service is not extra traffic, orif' e, and
e, are consecutive edges in the span protection path of a
traffic demand, or if e, and e, are consecutive edges in the
mesh protection path of a traffic demand whose sharing type
is 141, then the cross-connection table must indicate that the
connection between e, and e, is intact. If e, and e, are edges
that are incident at v, and if the cross-connection table
indicates that the connection between them is intact, then if
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one of e, and e, appears in any path P in the routing plan,
then both edges must in fact appear in P, and moreover e,
and e, must appear in consecutive positions. In particular, it
follows that no working or protection path can begin with (v,
e,) or (v, e,) and no path can end with (e, v) or (e,, v). The
cross-connection table must indicate that the connection
between any two consecutive edges in the working path of
any demand whose level of service is extra traffic is either
intact or pre-cross-connected. If v is the first (resp. last) node
of the working path of some demand or of the mesh
protection path of a demand whose sharing type is 1+1, if e,
is the first (resp. last) edge of that path, and if e, is any edge
that is incident to e, at v, then the cross-connection table
must indicate that e, and e, are not connected. Further, span
protection paths must be co-routed with their corresponding
working paths, i.e., the sequence of nodes and links tra-
versed by a span protection path must be identical to the
sequence of nodes and links traversed by its corresponding
working path.

From now on, whenever allocation plan and/or a cross-
connection table is referred, it is assumed that they are
feasible unless explicitly stated otherwise. A network is an
ordered quintuple X=(G, H, S, A, T) consisting of a physical
graph G, a logical graph H, a set S of traffic demands, an
allocation plan A for S, and a cross-connection table T.
Sometimes a subset S' ¢ S will be specified X or A will be
restricted to S'. This just means that we delete all traffic
demands except those in S'. The topology and cross-con-
nection table remain unchanged. As for the allocation plan,
the only tricky part is the muxing plan. If several demands
are muxed together in the original then they must remain
muxed together upon restriction. In particular, an OC-48 that
was muxed together with 1, 2, or 3 other OC-48’s must still
be muxed up to an OC-192 timeslot even if none of the other
OC-48’s are in S'.

FIGS. 5A-C show an example of a sample network n.
FIG. 5A is an example of a physical graph Gn for
network n. FIG. 5B is an example of a logical graph Hn for
network n. FIG. 5C is an example of a routing plan Rn for
network n. There are seven nodes. Thin lines or curves
represent OC-48 edges and thick lines represent OC-192
edges. One of the OC-192 edges in graph Gn is an OMUX
edge, as indicated; the rest are standard edges. Notice that
the OMUX edge turns into four OC-48 edges in graph Hn.
The edges in graph Gn are not labeled as reference will be
made to edges in graph Hn.

The demands in this example are as follows. Demand a is
an inter-mesh OC-192 with access node vs, primary homing
node v,, and secondary homing node v,, requiring shared
mesh protection. No forbidden nodes or edges, and no free
timeslots. Demand b is an intra-mesh OC-192 with source
and destination nodes v; and v, requiring shared mesh
protection. No forbidden nodes or edges, but two free OC-48
timeslots of spare capacity. Demand c¢ is an intra-mesh
OC-48 with source and destination nodes v, and vs, requir-
ing shared mesh protection. Node v, is a forbidden node.
Demand d is an intra-mesh OC-48 with source and desti-
nation nodes v, and v,, requiring dedicated mesh and span
protection. No forbidden nodes or edges. Demand e is an
intra-mesh OC-192 with source and destination nodes v and
v, whose level of service is extra traffic. No forbidden nodes
or edges, and no free timeslots.

We now specify a sample allocation plan for these
demands. Importantly, this allocation plan is not what the
algorithm of the present invention described later would
actually produce. It has been artificially constructed for
illustrative purposes only. The muxing plan muxes demands
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b and c together into an adjusted OC-192 demand refer to as
demand f. Notice that it is permissible to mux demands b and
¢ together even though they do not have identical lists of
forbidden nodes. However, once the decision to mux is
made, then demand f must avoid node v,. No other muxing
is done. In routing plan Rn, Demands a, d, e, and f are
illustrated in routing plan Rn with working paths, mesh
protection paths, and span protection paths. After the mux-
ing is done, (adjusted) OC-192 demands travel on OC-192
edges and OC-48 demands travel on OC-48 edges pursuant
to the feasibility conditions specified above for every
demand in routing plan Rn. Note that the span protection
path of demand d is routed on the same links as the working
path, as required by the feasibility conditions. In fact, on the
OMUX link between v, and v,, the two paths use the same
physical OC-192 edge. Most edges in this example are used
by at most one demand. By the feasibility conditions, this is
necessarily true if the edge is used by a working path of a
demand that is not extra traffic (e.g., edge e,,) or by a
protection path of a demand that requires dedicated protec-
tion (e.g., edge e,,). Protection edges in general may be
shared, but in our example this occurs only on edge e,.
Notice that, in accordance with the feasibility conditions, the
working path of demand {f is interior-disjoint from the
primary working path of demand a in spite of the common
node vs

Finally, the following is a sample pre-cross-connection
table for this network. Again, note that this is just an
illustration and is not what the algorithms of the present
invention described later would actually produce. Intact
connections are (e, €;5), (€, €13), (€3, €12). (€5, €14), (€14,
e59), and (e, o, ;). Pre-cross-connected connections are (eg,
e;-)and (e, g, e,,). All the intact connections except for (e,,,
e,,) are mandatory to satisty the feasibility conditions. The
connection between edges e, and e, could be pre-cross-
connected and could even be not connected, but there is
nothing to prevent making it intact, and making it intact
improves the switching speed. According to the feasibility
conditions, the connection (e,g, €,,) is pre-cross-connected
and not intact because for example if e, fails then e, must
be connected to e, and it cannot be not connected because
of the extra traffic. The connection (e, e,,) could be not
connected but it cannot be intact by the feasibility conditions
because for example if e, fails then traffic on e,, must be
dropped at v;.

Notice that once we pre-cross-connect (€5, €,,), We
cannot pre-cross-connect e, 4 or e,, to any other edge (such
as e,,) by the matching condition. Notice also that the extra
traffic could not have been routed on the edges e,, and e,,
even if demand d had required shared protection rather than
dedicated protection, because e,, has a mandatory intact
connection to e;. At v4 we have a branch point, where two
protection paths share an edge (namely e,,) and then diverge
onto separate edges (e, and e,,). Although this is legal, it is
an undesirable situation from the point of view of fast
switching speed because even if demand e were not present,
it would be impossible to pre-cross-connect both protection
paths. The situations at v, and v, on the other hand, are fine
as they are ring-like in the sense that all the protection paths
that pass through the node can be pre-cross-connected and in
some cases even made intact. The PXT algorithm described
later ensures that no branch points are created. Sometimes,
branch points can be avoided only at the cost of reduced
bandwidth efficiency, but experimental tests have shown that
the efficiency loss is small.

In determining the appropriate protection paths in a mesh
network, the algorithm of the present invention requires as
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an input the network X=(G, H, S, A, T) and a set D of traffic
demands (the new traffic) with no allocation plan. The set S
may be empty; we call this the greenfield case. In the
greenfield case, the logical graph H may be omitted from the
input, in which case the algorithm will assume that it is
identical to the physical graph G. In general, H will indicate
which OC-192 link connections in the network are already
configured as OMUX. The output is a network X'=(G', H',
SUD, A', T') such that the physical graph G' and the logical
graph H' are duplicates of the input graphs G and H, except
that some OC-192 edges that were unused in the original
allocation plan A may have switched status from standard to
OMUX or vice versa, and the allocation plan A' for SUD,
when restricted to S, coincides with A.

Informally speaking, the algorithm uses a cap-and-grow
strategy, i.e., when new traffic is added, existing traffic is not
disturbed. So for example, edges that are in use are not
allowed to be changed from standard to OMUX because this
would require either rerouting an existing OC-192 or break-
ing it into four separate OC-48’s from end to end. However,
a strict cap-and-grow strategy is not adopted as a new OC-48
is allowed to use a spare timeslot of an existing OC-192.
Moreover, T' is allowed to be quite different from T. Notice
that, strictly speaking, deletion of existing demands has not
been addressed. However, deletion is a straightforward
process that is essentially the same as restriction. Any
deletions should simply be made prior to running the main
algorithm. Finally, the output may optionally specify what
changes can be made to T' without resulting in invalid
output. For example, some intact connections on mesh
protection paths in the cross-connection table might be
optional, and could be changed to pre-cross-connected.
Conversely, there might be some pre-cross-connected con-
nections that can be changed to intact connections.

The PXT algorithm of the present invention is described
from the bottom up. Shortest-path subroutines of one kind or
another form the backbone of the PXT algorithm. The
shortest-path subroutines are described with reference to
digraphs rather than for graphs. This is no real restriction
because given a graph, each undirected edge of the graph
can be replaced by a pair of directed edges, one pointing in
each direction, with each directed edge having the same
length as the original undirected edge. The shortest-path
subroutine can then be applied to the resulting digraph.

An example of a shortest path subroutine is Dijkstra’s
algorithm. Dijkstra’s algorithm is a standard subroutine for
finding shortest paths in a weighted digraph. Dijkstra’s
algorithm takes as input a weighted digraph G (ie., a
digraph each of whose edges has a length) and a node u of
G. It then computes a shortest-path tree T that is rooted at u,
i.e., a tree whose edges are all directed away from u and that
contains all nodes that are reachable from u via some
directed path and, with the property that for every v in T, the
length of the (unique) path from u to v in T is minimal
among all paths from u to v in G.

FIG. 6 shows the final result of running Dijkstra’s algo-
rithm on a particular digraph G. Digraph G consists of eight
nodes and twelve directed edges with lengths as indicated.
The top node is the root node u. The shortest-path tree
consists of the thick edges. For every node v in G, the
shortest path from u to v consists entirely of the thick edges.
Note that Dijkstra’s algorithm computes the shortest path
from u to every other reachable node of G. In some
situations, the shortest path from u to a particular node v of
G may be of interest. If this is the case, then Dijkstra’s
algorithm may be exited early as soon as v is annexed to the
shortest-path tree T. This early-exit policy does not improve
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the worst-case complexity but speeds things up on average.
Of course, v may not be reachable from u, in which case
Dijkstra’s algorithm should report a failure.

If G has n nodes, then we may compute the shortest
distances between all pairs of nodes of G by running
Dijkstra’s algorithm n times with a different node of G as the
source node each time. There is a potential pitfall with this
idea if G is obtained from an undirected graph by replacing
each undirected edge with a pair of directed edges: The
shortest path between two nodes of G may not be unique.
Therefore, depending on the tie-breaking method selected,
the shortest path from u to v as computed by Dijkstra’s
algorithm may not be the exact reversal of the shortest path
from v to u. This is not a serious difficulty since one of the
two paths may be arbitrarily discarded. However, it is
important for the programmer to be aware of the issue of
tie-breaking or else errors may result. A deterministic tie-
breaking method should be used so that, if the code is run
more than once with the same input, the output will always
be the same. At each stage of Dijkstra’s algorithm, a priority
queue of nodes is maintained that are not yet part of T but
that are all potential candidates for being the next node to be
added to T. There are many ways of implementing priority
queues, e.g., using a binary heap or using a Fibonacci heap.
Roughly speaking, binary heaps work well if the degrees of
the nodes of G are low while Fibonacci heaps work well if
the degrees are high.

Another example of a shortest path subroutine is the
Suurballe-Tarjan disjoint pairs algorithm. The Suurballe-
Tarjan disjoint pairs algorithm is a fast and simple algorithm
that may be used in any situation when disjoint working and
protection paths are needed. It can be used regardless of
whether there is 1+1 or shared protection and is not known
to be implemented within the telecommunications industry.
First, given two distinct nodes u and v in a weighted digraph
G, find a pair of edge-disjoint paths between u and v whose
total length is as small as possible. Second, given three
distinct nodes u, v, and w in G, find a pair of edge-disjoint
paths, one from u to v and the other from u to w, whose total
length is as small as possible. If we have a solution for the
first problem, then we can easily solve the second problem
by adding a new node v' to G along with an edge of zero
length from v to v' and an edge of zero length from w to v'.
Applying the solution to the first problem with u and v' in
place of u and v, the desired paths for the second problem
can be obtained. Thus, only the first problem is considered.

Although the first problem discussed above specifies
edge-disjoint paths, it is straightforward to adapt the Suur-
balle-Tarjan disjoint pairs algorithm to find node-disjoint
paths (i.e., paths that have no nodes in common except the
source and destination). Begin by creating an auxiliary
digraph G' as follows. For each node v in G, create two
nodes v and v in G' and create a zero-length edge from
v to v°*. For each edge e in C from u to v, create an edge
in G' from u°* to v"” with the same length as e. Now compute
a pair of edge-disjoint paths in G' from u®* to v. Finally,
translate these paths in G' back into paths in the original
digraph G in the obvious way. These paths in G will be
node-disjoint because edge-disjoint paths in G' cannot both
traverse the edge from v to v°* and therefore cannot both
visit v in the first place.

FIGS. 7A-B show how node-disjoint paths are obtained.
In FIG. 7A, assume that in digraph G all edges have length
one. There are two possible pairs of edge-disjoint paths from
vy 10 v, namely Py=(vy, 1, Vo, €5, V) Pa=(vy, €3, V3, €6, V),
and P3=(vy, e}, v, €3, Va, €5, V4), Py=(Vy, €5, V3, €4, Vo, €,
v,). Note that P, and P, are node-disjoint, while P; and P, are
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not. FIG. 7B shows the auxiliary digraph G'. Each node is
split in two and four new zero length edges are added. In the
auxiliary digraph G, there is only one pair of edge-disjoint
paths from v,°* to v,”, namely (v, e,, v,”, &g, v,", €5,
v,y and (v,°, €5, v3°*, v, e, v,™), corresponding to the
node-disjoint pair of paths P, and P, in the original digraph.
The other pair of paths, P; and P,, has no edge-disjoint
counterpart in the auxiliary digraph G' because the edges eq
and e, would have to appear in both paths. So node-disjoint
paths in the original digraph G correspond to edge-disjoint
pairs in the auxiliary digraph G'. The terms “node-disjoint™
and “interior-disjoint” are not synonymous. If e; and e, are
two edges on the same link and u and v are the endnodes of
the link, then the paths (u, e;, v) and (u, e,, v) are node-
disjoint but not interior-disjoint. However, this case cannot
occur in a graph or digraph that has no multiple edges.

FIGS. 8A-C show how the solution to the first problem is
obtained. Use Dijkstra’s algorithm to compute a shortest-
path tree T in G rooted at u. If T does not contain v, then exit
and report that there is no path from u to v in G. For each
node x in G, let d(x) be the length of the shortest path from
u to x. Change the lengths of the edges. If e is an edge from
node x to node y and its original length is I(e), then its new
length is I'(e)=l(e)+d(X)-d(y). This adjustment does not
change any of the shortest paths from u, so that T is still a
shortest-path tree in the adjusted digraph. In fact, all the
edges in T will have new length zero. Let P be the unique
path from u to v in T and let H be the digraph that is identical
to G except that the direction of the edges in P are reversed.
Use Dijkstra’s algorithm to find a shortest path Q from u to
v in H. If there is no path from u to v in H, then exit and
report that there is no pair of edge-disjoint paths from u to
v in G. Discard all edges in P whose reversals are in Q and
discard all edges in Q whose reversals are in P. The remain-
ing edges of P and Q will collectively form two edge-disjoint
paths from u to v in G. To construct these paths explicitly,
we begin by following P one edge at a time. If at some point
we cannot proceed because the next edge has been discarded
from P, then there must be an edge in Q emanating from the
current node. So we switch over to following edges in Q and,
if we run into a discarded edge, we switch back to P and so
on. Return these paths.

Using the weighted digraph G of FIG. 6, the result of
finding the shortest-path tree is already illustrated therein.
FIG. 8A shows the result of changing the lengths of the
edges. The shortest path P from u to v is indicated by dashed
lines. For instance, the new length of the curved edge is
3+9-2=10. FIG. 8B shows the result of reversing the edges
of' the shortest path P. The resulting shortest path Q is shown
by dashed lines. The shortest path Q contains the reversal of
one of the edges of the shortest path P. FIG. 8C shows the
result of combining the shortest-path P and the shortest-path
Q and eliminating the reversal edges. This yields the desired
pair of edge-disjoint paths indicated by dashed lines. Natu-
rally, if the shortest pairs of paths between many pairs of
nodes is to be computed, the solution can be run for each pair
of nodes. The same warnings about tie-breaking mentioned
for Dijkstra’s algorithm also apply here.

In the present invention, a novel subroutine labeled as a
constrained Dijkstra algorithm is used. As its input, a
digraph G has edges e of non-negative weight (or length), a
list of edges of digraph G called the rival edges of e, and a
distinguished node v of digraph G called the source node.
The output is, for each node u of G, the shortest admissible
path from v to u. A path p is admissible if, for all edges e in
p, no rival edge of e is in p. A partial path P in G is an ordered
quadruple (p, 1, F, s), where p is a (directed) path in G, 1 is
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the length of the path, i.e. the sum of the lengths of its edges,
F is a set of edges of G called the forbidden edges of P, and
s is the state of the path which takes one of two values:
penciled in or inked in. We use the letters p, 1 and F to denote
“coordinate functions,” i.e., F(P) is the set of forbidden
edges of P, and so on. A partial path P, is said to dominate
a partial path P, if 1(P,)=1(P,) and F(P,)cF(P,). Intuitively,
this means that P, is at least as good as P,.

During the course of the constrained Dijkstra algorithm,
each node u maintains a list of partial paths from v to u. We
say that a node is black if there exists an inked-in partial path
in its list and we say that it is white otherwise. Initially only
v is black. As the constrained Dijkstra algorithm runs, more
and more white nodes become black. Once a node becomes
black it stays black permanently. If a node u is black, it has
at most one inked-in partial path. This represents the shortest
admissible path from v to u. If u is white, its penciled-in
partial paths represent paths that are potential shortest paths
to u. If u is black, its penciled-in partial paths represent
initial segments of potential shortest paths to other nodes.
Like Dijkstra’s algorithm, the constrained Dijkstra algo-
rithm is a breadth-first search subroutine. At each step, one
of'the nodes u is designated to be the active node and one of
the partial paths of u is designated to be the active partial
path. Partial paths are extended one node at a time at the
active node. Again like Dijkstra’s algorithm, the constrained
Dijkstra algorithm keeps the partial paths in a heap, so that
it can quickly find the shortest partial path when it needs to.

As a pre-processing initialization step, we examine each
edge e of G in turn; for each rival edge f of e, we add e to
the list of rival edges of f if e is not already on that list. We
are free to do this since it does not change the admissibility
or length of any path in G and it is convenient for our
purposes. The source node’s list of partial paths is initialized
to contain a single entry P: p(P) is the path consisting solely
of the source node v itself, 1(P)=0, F(P) is the empty set, and
s(P) has the value “inked in.” Thus v is black. We also
designate v to be the active node and its (unique) partial path
to be the active partial path. At every other node the list of
partial paths is empty, so they are all white. The partial path
P is put on a heap.

During processing, the constrained Dijkstra algorithm
probes forward from the active node. That is, suppose that
u is the active node and that P is the active partial path. We
consider in turn each edge e that emanates from u. If e is
forbidden, i.e., if eeF(P), then we ignore it and move on to
the next edge. Otherwise, let w be the node that e points to.
We let P' be the partial path obtained from P by appending
w to p(P), adding the length of e to 1(P), and adding the rival
edges of e to F(P). If P' is dominated by some partial path
in w’s list, then we forget about it and move on to the next
edge emanating from u. Otherwise, we add P' to the list of
partial paths at w, penciling it in. We also add it to the heap.
We then delete any penciled-in partial paths in the list at w
that are dominated by P'. These partial paths are also deleted
from the heap. We repeat this process until all the edges
emanating from u have been exhausted. We then remove P
from the heap but do not delete it from the list of partial
paths at u. The shortest partial path Q is extracted from the
heap and is designated as the new active partial path. A node
x is designated as the new active node where the shortest
partial path Q is found. The constrained Dijkstra algorithm
terminates when either a partial path is extracted from the
heap but is empty or when all nodes have been closed,
whichever occurs first.

FIGS. 9A-B show an example implementation of the
constrained Dijkstra algorithm. In FIG. 9A, digraph G is
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shown with edges having labels indicating the name of the
edge, the length of the edge, and the set of rival edges
corresponding thereto. The distinguished node is v, which is
the first closed node blackened in. Observe that if we ignore
the constraints given by the rival edges, then the shortest
path from v, to v5 is (v, e,, Vs, €4, V2, €5, V5). However, this
path is not admissible because it contains both e, and e,
which are rivals of each other. Initially v, is the active node.
In FIG. 9B, if we probe forward then we obtain three partial
paths. The partial path at v, is the shortest so we ink it in,
making vs black. These become the new active partial path
and active node.

We now probe forward from vs. At v,, the new partial path
is dominated by the existing partial path so it is not added.
We cannot probe forward to v, because e, is forbidden.
Probing forward to v is all right and we add a new partial
path there: ((v, e4, Vs, €1, Vo), 2, {e,, es, €s}). This,
however, does not become the new active partial path,
because the penciled-in partial path at v, is shorter. We ink
in the partial path at v,, make v, black, and probe forward
from v,. The only new partial path created at this stage is at
vs: (Vi €3, V4, €6, Vs), 1, { }). Even though vy is black, we
retain this new partial path because it is not dominated by the
existing partial path at v,. The existing partial path is shorter
but has forbidden edges that are not forbidden in the new
partial path. In fact this becomes the new active partial path,
although we do not ink it in because vy is already black.
Continuing in this way, we find that the remaining shortest
admissible paths are (v, e5, V,, €5, Vs, €, V), (V}, €3, V4, €0,
Vs, €, Vs, €, V3), and (v, e,, Vs, €,;, V4). Notice that these
paths do not arrange themselves into a tree; this is one
difference from Dijkstra’s algorithm.

The running time of the constrained Dijkstra algorithm is
exponential in the worst case. As an example of this,
consider the “grid graph” G, whose nodes are the points in
the plane whose coordinates are integers with absolute value
at most n. Give each edge of G,, one rival edge, namely its
image under reflection in the line x+y=0. It is not hard to
show that if the node with coordinates (n, n) is the source
node, then by the time the constrained Dijkstra algorithm
first reaches the line x+y=0 it will be keeping track of about
2" partial paths. Because of this potentially exponential
consumption of resources, it is important that the actual
implementation of the constrained Dijkstra algorithm con-
tain parameters that allow the constrained Dijkstra algorithm
to exit gracefully and report failure if it exceeds a certain
amount of time or memory. In practice, however, the con-
strained Dijkstra algorithm runs fast on the examples that
arise in the subroutines.

If two demands between the same terminal nodes use the
same (shortest) path, then they cannot share protection
paths. Distributing the demands across different paths is
therefore more conducive to sharing. A form of load bal-
ancing is performed to achieve such a balanced distribution.
Initially, a problem called the budget-constrained minimum-
cost-path problem is described. For inputs, there are a
digraph G whose edges has a cost c(e) and a length 1(e), two
distinguished nodes s (the source node) and d (the destina-
tion node) of G, and a number D being the distance budget.
As an output, a path P from s to d is obtained of minimum
cost with respect to the costs c(e) among all paths that satisfy
the budget constraint X, ,l(e)=D, or else a report that no
such path exists.

The budget-constrained minimum-cost-path problem
reduces to an ordinary minimum-cost-path problem as fol-
lows. Let V be the set of nodes of G and let n be the number
of'nodes in V. Construct an auxiliary digraph H whose nodes
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are all the ordered pairs (u, 1) such that ueV and i is an
integer between 0 and D inclusive. In particular, H has
n-(D+1) nodes. There is an edge in H from (u, 1) to (v, i+1)
if u=v and 0=1=D; the cost of such an edge is zero. There
is also an edge in H from (u, 1) to (v, j) if there is an edge
e from u to v in G and i+l(e)=j; the cost of such an edge is
c(e). It is now not hard to show that the desired budget-
constrained minimum-cost path in G can be obtained by
finding the (ordinary) minimum-cost path in H from (s, 0) to
(d, D) and converting this to a path in G by discarding the
length coordinate.

FIGS. 10A-B provide an example of this determination.
FIG. 10A shows a digraph G with distance budget D=3.
Node u is the source and node v is the destination. FIG. 10B
shows the auxiliary digraph H with costs. There is just one
path from (u, 0) to (v, 3). It has cost 3 and uses the full
distance budget D=3. The direct route from u to v in the
original graph does not even appear in H because it exceeds
the distance budget. One weakness here is that the number
of nodes in H is proportional to the distance budget. If the
distance budget is large, then running Dijkstra’s algorithm
on H will consume a lot of time and memory. If an exact
solution is not needed but only an approximation, then this
weakness can be circumvented by first dividing all the
lengths and the distance budget by some constant scale
factor and then rounding up to the nearest integer. For
example, this might be chosen if D>5 using the scale factor
D/5, thereby ensuring that the distance budget never exceeds
5.

A way of finding a path, the load balanced path, from a
given source node s to a given destination node d in a
digraph G that takes into account the existing usage of the
links in G will now be described. To apply the method, each
edge e in G must have both a length [.(e) and a usage fraction
U(e). The usage fraction should be thought of as the per-
centage of the capacity of the edge that is used for existing
working or protection paths. Let L be the length of the
shortest path from s to d in G. The load-balanced path from
s to d is defined to be the budget-constrained minimum-cost
path from s to d, where the cost of edge e is 29®, the length
of edge e is L(e), and the distance budget is 2L. In other
words, an edge whose capacity is almost exhausted costs
almost twice as much as a totally unused edge, and the
length of the load-balanced path is never allowed to exceed
twice the length of the shortest path. The decision to make
the cost 299 and the distance budget 2D, rather than AY
and pl respectively for some other constants A and p, was
made on heuristic grounds. Different values of A and p may
also be used.

One reason the switch completion time of SONET BLSR
protection is fast is that the link connections of the protection
path are pre-cross-connected if there is no extra traffic. In
contrast, pre-cross-connection of all protection paths is not
always possible in a mesh protection scheme, because a
mesh protection scheme may contain branch points. The
PXT algorithm is a mesh protection scheme that avoids all
branch points and thereby permits switch completion times
that are comparable to that of SONET BLSR. The PXT
algorithm has precursors, notably the p-cycle technique, but
it involves several new and novel ideas.

A cross-connection table indicates how to link up various
edges with each other. The matching condition forces the
edges to link up into a disjoint union of trails some of which
may be closed trails. This motivates the following crucial
definition. Given a cross-connection table for a logical
graph, a pre-cross-connected trail or PXT is defined to be a
trail (vo, €y, Vi, €5, Vo, - . ., V,,_1, €, V,,) such that for all i
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from 1 to n-1, the connection between e, and e,,, is either
intact or pre-cross-connected and such that either (a) v,=v,,
and the connection between e, and e, is intact or pre-cross-
connected or (b) e, is not connected to any edge at v, and e,
is not connected to any edge at v,,. If case (a) holds, then the
PXT is said to be a closed PXT. Note that a PXT may fail
to qualify as being closed even if v,=v,. The importance of
the PXT concept is that if a mesh protection path is a subtrail
of' a PXT, then its switch completion time will be fast. The
goal of the PXT algorithm is to ensure that this happens for
all mesh protection paths.

FIG. 11 shows an example of a PXT. A logical graph is
illustrated with all edges being OC-48. Suppose that there is
an associated cross-connection table in which the connec-
tions between the following pairs of edges are either intact
or pre-cross-connected: (e,, &), (€5, €4), (€, &), (e}, e5), (e4,
es). Then there is just one PXT in this graph, namely (v,, e,,
V3, €65 Vas €3, Vi, €], Vo, €5, Va4, €4, V;). This is not a closed
PXT. If however the edges e, and e, were connected, then
this would be a closed PXT. As another example, suppose
that there were no intact connections and no pre-cross-
connected connections at all in the cross-connection table,
Then there would be six PXT’s, each containing a different
edge.

It becomes also beneficial to initially determine whether
an allocation plan is pre-cross-connectable. For a given
network X=(G, H, S, A, T), denote S* the set S with extra
traffic demands deleted and denote A* as the allocation plan
restricted to S*. Allocation plan A is a pre-cross-connectable
allocation plan if there exists a feasible cross-connection
table consistent with A* such that every mesh protection
path is a subtrail of a PXT. For example, the allocation plan
associated with FIGS. 5A-C is not pre-cross-connectable.
Note that with the given cross-connection table, (v, e, Vs,
e, Vg)and (vs, e, Vg, €,,, V) are PXT’s, and for example
the mesh protection path (v,, €4, Vs, €;7, Vg, €5, Vs5) 1S NOt
a subtrail of either of these PXT’s or of any other PXT in the
network. However, this observation does not in itself prove
that the allocation plan is not pre-cross-connectable. First,
the property of being pre-cross-connectable depends on
whether there exists a feasible cross-connection table with a
certain property. Just because the actual cross-connection
table for a network may not be a suitable one does not prove
that no other cross-connection table is suitable since in
general there are many different cross-connection tables that
are consistent with a given allocation plan. Second, the
restricted allocation plan A*, i.e. ignore the extra traffic,
rather than the full allocation plan A. Therefore e,, and e,
may be pre-cross-connected if desired. However, even with
this extra flexibility, the branch point at v is an insurmount-
able problem no matter what feasible cross-connection table
is used. Either the mesh protection path (v,, e4, Vs, €5, Vg,
€5, Vs) or the mesh protection path (v5, €5, Ve, €325 V5, €10,
v,) will fail to be a subtrail of a PXT.

To determine whether a given allocation plan is pre-cross-
connectable, an subroutine identified as FINDPXT is imple-
mented. For an input network X, FINDPXT determines a
cross-connection table T that is feasible for X restricted to
S* though it may not be feasible for X itself if X has extra
traffic. FINDPXT constructs T by starting with the minimum
connections required for feasibility and then changing cer-
tain connections from “not connected” to “pre-cross-con-
nected” one at a time. To state the subroutine precisely we
need some definitions. A sharable protection path is a mesh
protection path or a span protection path of a traffic demand
in S* whose sharing type is 1:N. A sharable protection edge
is an edge that appears in some sharable protection path. If
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e is a sharable protection edge and v is an endnode of e, then
an edge ¢' is an extension of e at v if there exists a sharable
protection path containing both e and e'.

Cross-connection table T is determined as follows. At step
(1), initialize T by examining A* and making the intact
connections demanded by the first feasibility condition
required for both an allocation plan and a cross-connection
table previously discussed above. All other connections are
set to not connected. At step (ii), the initial cross-connection
table results in a certain set of PXT’s. Let r be the subset of
these PXT’s that consist entirely of sharable protection
edges. Pick any PXT Per and pick one end of it. At step (iii),
let v be the last node at the chosen end of P and let e be the
last edge at the chosen end of P (so in particular v is an
endnode of e). Find all extensions of e at v. If there are no
extensions of e at v or if there is more than one extension of
e at v, then mark this end of P as dead and skip to step (vi).
At step (iv), let €' be the unique extension of e at v. If there
exists an extension of e' at v other than e, then mark this end
of P as dead and go to step (vi). At step (v), it must be the
case that e' is at the end of a PXT P'ex. Modify T by making
the connection between e and €' pre-cross-connected. This
will modify & either by merging P and P' into a single PXT
or (if P=P') by making P into a closed PXT. At step (vi), find
a PXT Per and pick an end of P that is not dead. If
successful, return to step (iii) and repeat. Otherwise, if there
is no such P, then terminate FINDPXT. The allocation plan
is pre-cross-connectable if and only if in the course of
running FINDPXT, there is no more than one extension of
an edge at a node. Notice that even when the allocation plan
is not pre-cross-connectable, FINDPXT still produces a
cross-connection table T.

As an example, the FINDPXT subroutine is applied to the
network of FIGS. 5A-C. Step (i) of FINDPXT is straight-
forward. The set in step (ii) consists of seven PXT’s, each
containing just one edge: (v,, eq, V3), (V3, €7, Vi), (Vs, €15,
Vo), (Ves €22, V7), (Vs €19, V7), (Vo €10, Vs), and (v, €11, V7).
In general some of the initial PXT’s might contain more than
one edge if there are sharable span protection paths since
these have mandatory intact connections. At step (iii), take
P=(vy, €,,, v;) and pick the v, end of P. There is exactly one
extension of e,, at v, namely e, .. Proceed to step (iv) and
look for extensions of e, at v,. There are two extensions of
e,, at Vg, namely e,, and e, 4, so the v end of P is marked
as dead. Notice what has happened here: FINDPXT has
detected a branch point and therefore refuses to try to extend
any PXT’s through the branch point. Similarly, if the v, end
of P=(v,, e,,, ;) is taken, then it will end up being marking
dead. Next, returning to step (iii), take P=(v,, e, v;) and
select the v; end of P. There is exactly one extension of eg
at v, namely e, -, and there is exactly one extension of e,
at v,, namely e,. Therefore, the process proceeds to step (v)
and the connection between e, and e,, is made pre-cross-
connected. This merges the two PXT’s (v,, e, v;) and (v;,
€y, Vs). The v end remains dead, of course. If the rest of the
FINDPXT subroutine is followed, then (v,, €,,, v5), and (v,,
e,;, vV,) merge into a single PXT, as do (v, €55, v,) and (vs,
€5, V5). Four PXT’s are obtained consisting of sharable
protection edges. Since two extensions of e,, at v, were
found, the allocation plan is not pre-cross-connectable.

In order to allocate a new mesh protection path, the PXT
algorithm is performed. In response to a network X=(G, H,
S, A, T) such that S has no extra traffic and a traffic demand
d€S that is intra-mesh, mesh protection level of service,
sharing type 1:N, and pre-determined working path w(d) and
span protection pat s(d), a mesh protection path r(d) and a
new cross-connection table T' is obtained or else a report
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stating that no mesh protection path could be found. In fact,
the PXT algorithm finds the mesh protection path that uses
as few formerly unused edges as possible, subject to the
constraint that none of the edges that were connected in T are
not connected in T'. Informally, the idea is to minimize
bandwidth usage while retaining pre-cross-connectability.

Initially, a set of paths is obtained from the set of PXTs in
cross-connection table T. This is coined subdividing PXTs.
PXTs are subdivided by the following steps for a source
node u and a destination node v of a demand d. At step (i),
omit all PXT’s except those consisting entirely of sharable
protection edges. At step (ii), omit all PXT’s whose capacity
does not match that of d. At step (iii), omit all closed PXT’s
except those that contain at least one occurrence of u and at
least one occurrence of v. At step (iv), pick a PXT and find
all occurrences of u and v on it. These occurrences subdivide
the PXT into subtrails. A subtrail may “wrap around” the end
of the PXT if and only if the PXT is a closed PXT. At step
(v), Discard any such subtrails that are not paths. At step (vi),
if there is an intact connection between the edges in the PXT
immediately preceding and following a particular occur-
rence of u or v, then discard the subtrails immediately
preceding and following this occurrence of u or v if they
have not already been discarded. At step (vii), if all PXT’s
have been processed, then terminate. Otherwise go back to
step (iv).

After the subdivided paths are determined, further prun-
ing is performed to obtain shortcut paths. The subdivided
paths obtained above are potential segments of r(d). Some of
them must be disqualified because using them would cause
unfeasibility. Specifically, a path P is omitted if it contains an
edge e with any of the following properties—(1) e is a
forbidden edge of d or one of the endnodes of e is a
forbidden node of d, (2) e touches the interior of w(d), (3)
e is contained in a mesh protection path of a demand d'=d
whose working path w(d') is not interior-disjoint from w(d),
(4) ees(d), and (5) e is already contained in N protection
paths, where N is the sharing limit. The paths that remain
after this elimination process are the shortcut paths. These
shortcut paths are now used to create a graph H* on which
the constrained Dijkstra algorithm is run to find r(d).

The nodes of H* are the same as the nodes of H. If v, and
v, are nodes in H and there exists one or more edges ¢'in H
between v, and v, such that ¢' has the same capacity as d, ¢'
does not appear in any working or protection path of A* or
in w(d), and e' does not have any of the properties in the list
(a) to (e) just given for shortcut paths, then an edge e is
created in H* between v, and v,. Only one such edge is
created in H* between v, and v, even if there are many edges
¢'in H between v, and v, with the necessary properties. e is
denoted as an unused edge. It has a length equal to that of
e'. Additionally, for each shortcut path P, we create an edge
in H* of zero length between the endnodes of P. Such edges
are denoted as shortcut edges. The only edges in H are the
unused edges and shortcut edges just described. To complete
the description of H*, rival edges are also specified. Two
shortcut edges in H* are rivals of each other if either shortcut
path contains an edge that touches the interior of the other
shortcut path. Similarly, a shortcut edge s and an unused
edge e in H are rivals of each other if e touches the interior
of'the shortcut path of s. Unused edges in H* are never rivals
of each other. This completes the description of H*. The
final step is to run the constrained Dijkstra algorithm on H*
to find the shortest admissible path in H* between the source
and destination of d. By replacing each shortcut edge in H*
with its shortcut path in H and each unused edge in H* with
a corresponding unused edge in H, we obtain the desired
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mesh protection path r(d). Finally, the output cross-connec-
tion table T' is obtained from T by making any previously
not connected cross-connections in r(d) into pre-cross-con-
nected connections.

FIGS. 12A-C show an example implementation of the
PXT algorithm. FIG. 12A is a logical graph H whose edges
all have capacity OC-48 and length of 1. We assume that the
sharing limit N has its default value of 16. There are six
demands, all intra-mesh with capacity OC-48 and no for-
bidden nodes or edges. Five of the demands require shared
mesh protection only and their source and destination nodes
are respectively (1) v, and vs, (2) v, and v, (3) v, and vy,
(4) vg and v, and (5) v; and v,. Demand (6) requires shared
span and mesh protection and its source and destination are
vs and vg. No muxing is done. The routings of all the
demands except demand (5) are shown in FIG. 12B. The
conventions described with respect to the sample network of
FIGS. 5A-C also apply here.

If FINDPXT is run on this network (with demand (5)
omitted), then the sharable protection edges arrange them-
selves into three PXT’s.

PXTI: (V7s €4, V1, €6, V3, €15, Vs, €33, Vg, €165 V35 €175 Vo, €205
Vi €135 V3, €5, V)

PXT2: (Vls €2, Vo, €11, V4, €31, V9)
PXT3: (v, €35, Vs, €27, Vo)

The connection between e, ; and e, is intact, because of the
span protection path of demand (6). The remaining connec-
tions between consecutive edges in these PXT’s are pre-
cross-connected.

Suppose now that by some means that the working path
of demand (5) has been determined to be (v;, €4, V5, €54,
V,). We now use the PXT algorithm to find a mesh protection
path. The first step is to subdivide the PXT’s. PXT2 and
PXT3 are unchanged, but PXT1 is subdivided into five
subtrails: (v, e, Vi, €4, V3), (V3, €5, Vs, €33, Vg, €16, V), (V35
€17, Vo), (Vo €50, Va, €135 V3), (V3, €5, V,) . The second subtrail
is discarded because it is not a path. The third subtrail is
discarded because of the intact connection between e, ; and
e,,. The remaining three subtrails, together with PXT2 and
PXT3, comprise five paths. This is the output of the subdi-
vision stage of the PXT algorithm.

Next, this set of paths undergoes the elimination process
to identify shortcut paths. The path (v, e,, v, e, V3) is
eliminated because it contains the edge e,, which touches the
interior of the working path (v, e,4, V5, €4, Vo). The path
(Vo, €50, V4, €3, V3) 1s eliminated because it contains the
edge e,,, which is contained in the mesh protection path of
demand (1) whose working path is not interior-disjoint from
the working path (v, €4, V,, €55, Vo). This leaves us with
three shortcut paths that survive the elimination process: (v5,
€5, Va), (V1. €3, Va, €11, Vi, €51, Vo), and (Ve, €25, Vg, €37, Vo).
With the new definition of “interior-disjoint,” the second of
these shortcut paths would also be eliminated, because the
working paths of demands (2) and (6) are not interior-
disjoint.

The next step is the construction of the auxiliary graph
H*. FIG. 12C shows the auxiliary graph H*. There is an
unused edge of length 1 between each of the following pairs
of nodes: {v, v;}, {v,, v,}, and {v,, v,}. For convenience,
the names e, ey, and e, are continued to be used for these
edges. There is a shortcut edge, denoted s,, between v, and
V3, a shortcut edge, denoted s,, between v, and v,, and a
shortcut edge, denoted s;, between v, and v,. The shortcut
path (v;, eg, Vv,) contains the edge e; which touches the
interior of s, and the unused edges e, and e, also touch the
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interior of s,. Using the constrained Dijkstra algorithm, the
shortest admissible path from v; to v, is (v, €5, V|, 5,5, V).
This corresponds to the path (vs, e5, V|, €5, Vo, €4, Va4, €57,
Vy) in the original graph H. Observe that if the other
admissible path from v; to v, in H* had been chosen, then
a shorter mesh protection path would have been obtained but
it would have used two previously unused edges instead of
just one. The path chosen by the PXT algorithm maximizes
sharing. The final step is the cross-connection table update.
The only change in this example is that a pre-cross-con-
nected connection is formed between e5 and e,, extending
PXT2 by one edge.

A higher level subroutine, ROUTEDEMAND, may be
used to determine a routing for a demand d from a network
X=(G, H, S, A, T), a traffic demand dé&S, and a secondary
cross-connection table T *. T* must have the property that
if all extra traffic is deleted from X, then replacing T with
T * results in a feasible network. Consistent with its name,
ROUTEDEMAND does no muxing. The behavior of
ROUTEDEMAND varies depending on the properties of d.
The general pattern is that ROUTEDEMAND first tries a
primary routing method. If the primary routing method
succeeds, then its results are used. If it fails, ROUTEDE-
MAND next tries a secondary routing method. If the sec-
ondary routing method succeeds, then its results are used. If
the secondary routing method also fails, then ROUTEDE-
MAND reports a failure and moves on.

FIG. 13 shows why a primary and a secondary routing
method are used. The edge labels shown are lengths. Typi-
cally, a primary routing method proceed by finding a work-
ing path first using some kind of shortest-path subroutine
and then using some other subroutine to find a protection
path that is interior-disjoint from the working path. The
shortest path from v, to v, is the Z-shaped path passing
through v, and v;. If this is chosen as the working path, then
it is impossible to find a protection path that is interior-
disjoint from it, no matter how much capacity one adds to
the edges. On the other hand, if there were indeed plenty of
capacity, it would not be very satisfactory for a routing
method to report that it could not route any demands
between v, and v, since it is obvious that by using the
perimeter of the square instead of the Z-shaped path two
interior-disjoint paths between v, and v, can be found. A
secondary routing method can avoid these kinds of embar-
rassments by finding the working and protection paths
simultaneously. Secondary routing methods are carefully
designed so that as long as there are plenty of unused edges
on every link a routing for the given demand can be found
unless the graph has so few links that disjoint paths between
the terminal nodes do not even exist. It is difficult to create
a single routing method that guarantees that a routing will be
found while simultaneously achieving high bandwidth effi-
ciency. Therefore, it is preferable to try the efficient primary
routing method first and to fall back on the guaranteed but
inefficient secondary routing method only if the primary
method fails.

FIGS. 14A-B provide an example of a routing for a
demand using ROUTEDEMAND. A variety of subgraphs of
H are used and identified as H, [PIP,, P,, . .., P,], where n=1
or2and P, P,, P,, ..., P, are paths in H. The nodes of this
subgraph are the nodes of H minus the nodes that are in the
list of forbidden nodes of d and also minus the nodes in the
interior of P. If P is only one link long then there are no edges
in the subgraph between the endnodes of P. Apart from this
exceptional case, there is an edge in the subgraph between
u and v if and only if there are at least n unused edges in H
between u and v that have the same capacity as d and that
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are not in the list of forbidden edges of d, where “unused”
here means that it is not used by any demands in S nor by
any of the paths P,, P,, . . . , P,. Note that H,[PIP,,
P,, ..., P.] never has multiple edges. This is important, as
mentioned earlier, because it implies that the Suurballe-
Tarjan disjoint-pair algorithm, which a priori finds paths that
are only node-disjoint, will in fact find paths that are
interior-disjoint. Some or all paths are sometimes omitted
from the notation, e.g., H,[IP,, P,, .. ., P,], H [PIl], or H,.
To interpret this, simply omit all clauses from the definition
that refer to the omitted paths. So, for example, H; is the
subgraph that has an edge between two (non-forbidden)
nodes u and v if there exists at least one non-forbidden
unused edge in H between u and v with the same capacity
as d. In FIG. 14A, the thick line shown is an OC-192 edge;
the remaining lines are OC-48 edges. It is assumed that there
are no demands in the network other than the demand d that
we want to route. It is also assumed that d is an OC-48
demand with forbidden edge .e, and forbidden node v;. The
remaining properties of d are irrelevant for this example. Let
P, be the path (v, e, Vg, €55, V). If P is the path (vs, e,,,
Vs, €215 Vo), then H,[PIP, | is as shown in FIG. 14B. Node v,
is omitted because it is forbidden and node v, is omitted
because it is an interior node of P. All edges incident to these
omitted nodes disappear along with the nodes. Then, on each
link, a determination is made as to whether there are at least
two edges remaining in H after we disregard (a) edges used
by existing demands (of which there are none here), (b)
forbidden edges of d (i.e., e,), (c) edges of the wrong
capacity (i.e., e5), and (d) edges in P,. If so, then we have an
edge in H,[PIP,]. As another example, if we were to redefine
P to be the path (vg4, e,;, v5) (Without redefining P,), then
H,[PIP,] would be the same except that v, would be present
and there would be an edge between v, and v¢. There would,
however, be no edge between v, and v,.

It dedicated protection is required then the secondary
cross-connection table T* is ignored. If d is an intra-mesh
demand requiring dedicated mesh and span protection, then
the primary routing method begins by using Dijkstra’s
algorithm to find a path between the source and destination
of'd in H,. Both w(d) and s(d) are co-routed along this path,
each using a different unused edge in H on each link along
the way. ROUTEDEMAND then uses Dijkstra’s algorithm
on H, [w(d)I] to find r(d). The secondary routing method uses
the Suurballe-Tarjan disjoint-pairs algorithm on H;, using
one of these paths for w(d) and s(d), if there is enough spare
capacity, and the other path for r(d). If d is an intra-mesh
demand requiring dedicated mesh protection only, then the
primary routing method uses the shortest-pair subroutine to
find interior-disjoint paths in H, between the source and the
destination of d. The shorter of these paths is designated
w(d) and the other path is designated r(d) If both paths are
of equal length then either one may be designated w(d).
There is no secondary routing method performed. If d is an
inter-mesh demand requiring dedicated mesh protection
only, then the primary routing method uses the shortest-pairs
subroutine to find interior-disjoint paths in H; from the
access node to each of the homing nodes. These are used for
the working paths w,(d) and w,(d). Next, Dijkstra’s algo-
rithm is used on H,[w, (d)iw,(d)] to find r, (d). Finally, to find
r,(d), Dijkstra’s algorithm is used on H,[w,(d)w,(d), r,(d)].

FIGS. 15A-D show the secondary routing method for
inter-mesh demands requiring dedicated mesh protection
only. This is quite complicated since it is not so simple to
guarantee that a feasible routing will be found. Let A denote
the access node, P denote the primary homing node, and S
denote the secondary homing node. At step (i), use the
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Suurballe-Tarjan disjoint-pair algorithm to find a pair of
interior-disjoint paths p, and p, in H, between P and S.
Together, these paths form a cycle, i.e. a closed trail with no
repeated nodes, denoted as c. If p; and p, cannot be found,
then use the Suurballe-Tarjan disjoint-pair algorithm to find
a pair of interior-disjoint paths in H, between A and P, and
use the Suurballe-Tarjan disjoint-pair algorithm to find a pair
of interior-disjoint paths in H; between A and S. Use these
for the required working and protection paths. If in either
case the Suurballe-Tarjan disjoint-pair algorithm fails to find
the desired pair of paths, then the secondary routing method
reports failure and exits. At step (iii), if the cycle ¢ contains
A, then we may route the working and protection paths as
shown in FIG. 15A. At step (iv), if ¢ does not contain A, then
anode X is temporarily added to H, and connected to every
node in ¢ with zero-length edges. The Suurballe-Tarjan
disjoint-pairs algorithm is used to find a pair of interior-
disjoint paths q, and q, between A and X as shown in FIG.
15B. If no such paths can be found then the secondary
routing method reports failure and exits. Each of q; and q,
intersects the cycle ¢ in exactly one node; denoted as nodes
Q; and Q, respectively. Note that one or both of Q, and Q,
may, but need not, coincide with P or S. At step (v), delete
the temporary node X and its incident zero-length edges to
obtain the routing diagram of FIG. 15C. At step (vi), if Q,
and Q, both lie on p,, then the paths q, and q, minus the
deleted temporary zero-length edges, together with the arc of
¢ containing Q,, Q,, P, and S, form a cycle in H, containing
A, P, and S. The routing method described in step (iii) above
may be used using this cycle. Similarly, if Q, and Q, both lie
on p,, the method is done. At step (vii), if Q, and Q, do not
both lie on p, and do not both lie on p,, the result is use of
the routing diagram shown in FIG. 15D.

For an intra-mesh demand that requires shared protection,
the primary routing method begins by finding the working
path using load balancing. More precisely, it constructs an
auxiliary load-balancing graph L as follows. The nodes of L.
are the nodes of H, excluding the forbidden nodes of d.
There is an edge in L. between two nodes and only if there
is at least one non-forbidden unused edge in H between
those nodes that has the same capacity as d. Up to this point
L is the same as H,. Each edge in [ has a length and a usage
fraction. The length of an edge is the same as the length of
the corresponding edge in H. The usage fraction is the
number of used edges, i.e. used by some other working or
protection path, in H on this link with the same capacity as
d divided by the total number of edges in H on this link with
the same capacity as d. Forbidden edges of d are used in the
calculation of the usage fraction. Then the load-balanced
path in L between the source and destination of d is used for
the working path w(d) of d.

Next, if d requires span protection, then the primary
routing method continues by checking if any existing
demands with sharing type 1:N whose working path is
co-routed with w(d) has a span protection path that may be
shared with d, i.e. the span protection path contains no
forbidden nodes or edges of d and has not reached the
sharing limit N. If so, the primary routing method chooses
one such path to be s(d). If not, then it constructs s(d) by
allocating one unused edge if such an edge exists on each
link that w(d) traverses.

The final step of the primary routing method is to invoke
the PXT algorithm to find the mesh protection path. Let X,
be the network X with extra traffic deleted and with T *
instead of T. ROUTEDEMAND passes X, and d, along with
w(d) and, if span protection is required, s(d) to the PXT
algorithm. The mesh protection path r(d) found by the PXT
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algorithm is combined with w(d) and, if span protection is
required, s(d) to form the output of ROUTEDEMAND.
Notice that ROUTEDEMAND outputs only a routing. The
cross-connection table returned by the PXT algorithm is
discarded. The secondary routing method simply uses the
Suurballe-Tarjan disjoint-pair algorithm on H,. If a span
protection path is required, it is co-routed with the working
path.

For an inter-mesh demand, the primary routing method
begins by using the Suurballe-Tarjan disjoint-pair algorithm
on H; to find working paths w,(d) and w,(d). ROUTEDE-
MAND cannot invoke the PXT algorithm directly to com-
pute the mesh protection paths since the PXT algorithm
expects an intra-mesh demand as input. So, roughly speak-
ing, ROUTEDEMAND “breaks” d into two intra-mesh
demands d, and d,, that are destined for the primary and
secondary homing nodes respectively and routes d, and d,
one after the other. More precisely, ROUTEDEMAND
passes X, [iw,(d)], that is the graph X, minus the edges used
by w,(d), and d, along with w, (d) to the PXT algorithm. The
PXT algorithm finds a mesh protection path for d, and also
returns a new cross-connection table T'. This gives an
allocation plan for d;, where no muxing is done. ROUTEDE-
MAND now calls the PXT algorithm again, this time with
X, and d,, where X, is the network whose allocation plan is
A, updated to include the allocation plan for d,, and whose
cross-connection table is T'. Finallyy, ROUTEDEMAND
combines the information from the two calls to the PXT
algorithm into a routing for d. Note that although ROUT-
EDEMAND does not output a cross-connection table, it
must keep track of the cross-connection table from the first
call to the PXT algorithm so the second call to the PXT
algorithm will be consistent with the results of the first call.
The secondary routing method for inter-mesh demands is the
same as that described for inter-mesh demands with dedi-
cated protection.

Forunprotected demands, the secondary cross-connection
table T * is ignored. Non-preemptible unprotected traffic is
the easiest type of demand to route: ROUTEDEMAND
simply uses Dijkstra’s algorithm (for intra-mesh) or short-
est-pair (for inter-mesh) to find a working path in H,. It
might seem that extra traffic would be equally easy to route
as protection edges would be used rather than unused edges.
However, there is a complication because span protection
paths have mandatory intact connections. Assuming that the
user will not use dual homing for extra traffic; the discussion
below is confined to intra-mesh demands d. ROUTEDE-
MAND constructs a graph H* as follows. The nodes of H*
are the nodes of H minus the forbidden nodes of d. Each
edge e in H with the same capacity as d is carried over to H*
as long as e is not a forbidden edge of d, e lies in the mesh
protection path of some existing demand with shared pro-
tection, and e is not already used by some other extra traffic.
These edges are called the ordinary edges of H*. Span
protection paths are handled similarly to shortcut paths in
the PXT algorithm. Any span protection paths that belong to
demands with dedicated protection, that contain a forbidden
edge or node of d, that are already used by some other extra
traffic, or that contain either the source or the destination of
d as an interior node are ignored. For each remaining span
protection path P, we introduce a shortcut edge eeH*, whose
endnodes are the endnodes of P and whose length is the
length of P. Two shortcut edges are rivals if either one
contains an edge that touches the interior of the span
protection path of the other. A shortcut edge and an ordinary
edge are rivals if the ordinary edge touches the interior of the
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span protection path. To find w(d) we now run the con-
strained Dijkstra algorithm on H*.

An overview description of the allocation algorithm is
now provided. The allocation algorithm is essentially an
online algorithm where demands are allocated one at a time
and previous allocations chosen for previous demands are
not modified. However, the entire set of demands may be
examined when determining an order in which demands are
processed. More specifically, each demand is associated the
following vector: [sharing type, level of service, capacity,
inter-/intra-mesh]. The demands are then ordered lexico-
graphically according to this vector. That is, to determine
which of two given demands should come first on the list,
their vectors are scanned to find the first coordinate in which
they disagree and the demand with the higher value takes
priority. For the purposes of this construction, inter-mesh is
considered to be higher than intra-mesh and extra traffic and
non-preemptible unprotected traffic are considered to have
sharing type 1:N. For example, an OC-48 demand requiring
1:N mesh and span protection will come before an unpro-
tected OC-192 demand, after an OC-48 requiring 1+1 mesh
protection only, and after an OC-192 demand requiring 1:N
mesh and span protection. This will be true regardless of
which of these demands are inter-mesh or intra-mesh. There
will often be demands whose vectors are identical. If this is
the case, then an arbitrary, but deterministic, tie-breaking
rule is used. Alternatively, if there is enough computer time
available, the user may invoke the option of running the
allocation algorithm several times, each time with ties
broken according to a random number generator. The allo-
cation algorithm will then select the best of these random
trials.

The allocation algorithm begins with the input network X
and runs FINDPXT to determine a cross-connection
table T * that is feasible for X with extra traffic deleted. Next,
the original cross-connection table T is modified as follows.
First, it is set to be equal to T *. Then we take each working
path w of each extra traffic demand and modify T so that
consecutive edges of w that are not already connected are
converted to pre-cross-connected. This may cause violations
of feasibility conditions, so we also break any existing
pre-cross-connected connections in T necessary to restore
feasibility. For example, in the sample network of FIGS.
5A-C, if T * has a connection between e,, and e, g, then
when the extra traffic is added e, ; and e,, must be connected.
Therefore, to maintain the matching condition the connec-
tion between e, , and e, 4 is broken. At all times, the alloca-
tion algorithm maintains two cross-connection tables T and
T * which are feasible for X with and without extra traffic
respectively. T * is used as the secondary cross-connection
table for ROUTEDEMAND. The reason for keeping two
cross-connection tables is that when shared protection paths
are routed, the extra traffic is not allowed to influence any
decisions. Therefore, T * is maintained. At the same time,
extra traffic is not entirely ignored lest illegal cross-connec-
tions are made in the final network. Thus, T is maintained as
well. The allocation algorithm next orders the demands as
described above. It then processes the demands one at a time
essentially by calling ROUTEDEMAND one or more times
to find a routing and updating the network X accordingly.

Essentially the function of finding a routing for a demand
is performed by ROUTEDEMAND but there are some
complications due to the existence of two different capaci-
ties. The allocation algorithm first checks the capacity of d.
If the capacity is OC-192, then the allocation algorithm calls
ROUTEDEMAND to find a routing and then moves on to
updating the network. If the capacity of d is OC-48, then the
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procedure is more complicated. The allocation algorithm
first tries calling ROUTEDEMAND. If a routing is found,
then the allocation algorithm takes it and moves on to
updating the network. However, if ROUTEDEMAND
reports a failure, then the allocation algorithm next examines
all already-allocated adjusted OC-192 demands with the
same terminal nodes, level of service, and sharing type as d.
If any of these adjusted demands has nonzero spare capacity
and contains no forbidden nodes/edges of d, then the allo-
cation plan is updated to mux d together with one such
adjusted demand. The routing plan for this adjusted demand
remains untouched. Since this is the only updating that needs
to be done, the allocation algorithm may now skip the update
network step and proceed directly to processing the next
demand. If the allocation algorithm has still not succeeded
in allocating d, then the next step is to make a network X,
which is just like X except that all the unused standard
0OC-192 edges are converted to OMUX. Actually, not all the
unused standard OC-192 edges need to be OMUXed. Only
non-forbidden edges need to be OMUXed and at most one
0OC-192 edge per link needs to be OMUXed. The allocation
algorithm then calls ROUTEDEMAND using X, and moves
on to updating the network.

At the point of updating the network, it may be that no
routing has been found. If so, then a warning is issued and
the allocation algorithm skips directly to the next demand. If
a routing has been found, then the allocation algorithm first
checks to see if the auxiliary network X, was created. If so,
then let E be the set of previously unused OC-192 edges that
the routing of d now uses. The physical graph of X must now
indicate that the edges of E are OMUX edges and the logical
graph of X must be changed so that each edge of E is
replaced with four OMUX OC-48 edges. Furthermore, the
lists of forbidden edges of all demands (not just d) must also
be updated. Any such list containing an edge of E must now
contain the OMUX replacements for E. After processing the
auxiliary network X, or if no auxiliary network X, was
created, the next step is to add the new demand d to the set
of traffic demands S and to add its routing to the allocation
plan A. The cross-connection tables T and T * are also
updated as follows. First, intact connections are added for
the span protection path(s) of d, for the working path(s) of
d unless its level of service is extra traffic, and for the mesh
protection path(s) of d if its sharing type is 1+1. For T *,
nothing further is done if the level of service of d is extra
traffic. However, if the sharing type of d is 1:N, then all
not-connected connections along the mesh protection
path(s) of d are converted to pre-cross-connected. The
modification for T is performed in the same manner as
described above. T is just T * modified to accommodate
extra traffic. When all the demands are processed, the
allocation algorithm checks each pair of consecutive edges
in each mesh protection path of demands with sharing type
1:N and tests all three values of intact, pre-cross-connected,
and not connected for each such connection, compiling a
table of which possibilities destroy feasibility and which do
not. This table becomes an optional output.

Certain other features may be included in the allocation
algorithm. The allocation algorithm assumes a fixed finite
number of edges on each link but a network may be
uncapacitated where there is unlimited bandwidth available
on every link. An uncapacitated option may be chosen to
generate new edges on a link if the capacity of the link is
nearly exhausted. All the subroutines become modified for
the uncapacitated option except for the load balancing
subroutine which is inherently capacitated. The load balanc-
ing subroutine is disabled if the uncapacitated option is
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selected. Extra traffic that could not be routed may either be
upgraded to unprotected traffic or discarded as desired. The
bandwidth used by upgraded extra traffic may not be usable
by future protection paths. A limit extra traffic option pre-
vents extra traffic from interfering with bypass opportunities
for other traffic at a node but does not prohibit extra traffic
from being upgraded to unprotected traffic. A limit port
count option may also be provided to constrain the alloca-
tion algorithm to find mesh protection paths that introduce
no more than two new ports into the network. If bypassing
at a node is possible, minimizing bandwidth is no longer an
accurate method of minimizing cost as port count also
becomes important. The shortest path subroutine may have
the option of using hop count or actual distance to measure
length. The constrained Dijkstra algorithm may have a time
limit. If the time limit expires before the constrained Dijkstra
algorithm terminates, the constrained Dijkstra algorithm is
interrupted and restarted with the source and destination
interchanged. The running time for the constrained Dijkstra
algorithm can vary dramatically depending on which vertex
is taken as the source and the destination.

The algorithms and subroutines described herein are
contemplated to be implemented and executed by software
programs at one or more nodes of the mesh network. Each
node includes one or more network elements for transport-
ing telecommunications traffic throughout the mesh net-
work. Subscribers, customer premises equipment, or other
nodes may be set up to communicate with a particular node
within the mesh network.

Thus, it is apparent that there has been provided, in
accordance with the present invention, a method of allocat-
ing protection paths for network demands in a mesh network
that satisfies the advantages set forth above. Although the
present invention has been described in detail, it should be
understood that various changes, substitutions, and alter-
ations may be readily ascertainable by those skilled in the art
and made herein. For example, though discussed in terms of
a path-based protection implementation, the present inven-
tion may also be used to replace the conventional p-cycle
approach in link-based implementations. Other examples
may be readily ascertainable by those skilled in the art and
made herein without departing from the spirit and scope of
the present invention as defined by the following claims.
Moreover, the present invention is not intended to be limited
in any way by any statement made herein that is not
otherwise reflected in the following claims.

What is claimed is:
1. A method for allocating protection bandwidth in a
telecommunications mesh network, comprising:
receiving a demand to provide a protection path from a
source node to a destination node in the telecommuni-
cations mesh network, the demand having a pre-deter-
mined working path with a sequence of edges inter-
connecting the source node to the destination node;
identifying a pre-cross-connectable protection path that
maximizes bandwidth sharing from the source node to
the destination node, wherein the pre-cross-connect-
able protection path does not include any multiple edge
branch point conditions within the telecommunications
mesh network, wherein the pre-cross-connectable pro-
tection path is identified by:
subdividing one or more pre-cross-connected trails of
the telecommunications mesh network into one or
more subtrails;
discarding any subtrail that does not meet any of one or
more pre-determined conditions;
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creating a logical graph representation of the telecom-
munications mesh network from subtrails that have
not been discarded.

2. The method of claim 1, further comprising:

identifying a failure in the working path;

switching traffic from the working path to the pre-cross-

connected protection path in response to the failure.

3. The method of claim 1, further comprising:

determining one or more pre-cross-connected trails asso-

ciated with the telecommunications mesh network,
each pre-cross-connect trail representing a connection
between two or more nodes in the telecommunications
mesh network with each node being connected by an
edge.

4. The method of claim 1, further comprising:

ordering a plurality of demands for processing;

selecting a particular one of the plurality of demands

having a highest priority.

5. The method of claim 1, wherein pre-cross-connected
trails are discarded if they do not have entirely sharable
protection edges.

6. The method of claim 1, wherein the pre-cross-connect-
able protection path is identified by probing forward from an
initial active node in the logical graph to identify allowable
partial paths therefrom.

7. The method of claim 6, wherein a partial path is an
ordered quadruple identifying the partial path, a length of the
partial path, forbidden edges associated with the partial path,
and a state of the partial path.

8. The method of claim 1, wherein the pre-cross-connect-
able protection path does not include any rivals to its edges.

9. The method of claim 1, further comprising:

updating the telecommunications mesh network in

response to the pre-cross-connectable protection path
associated with the demand.
10. The method of claim 1, wherein a pre-cross-connected
trail has connections between successive edges being intact
or pre-cross-connected with either its endnodes being iden-
tical or edges at the endnodes not being connected.
11. A computer readable medium having code for allo-
cating protection bandwidth in a telecommunications mesh
network, the code operable to:
receive a demand to provide a protection path from a
source node to a destination node in the telecommuni-
cations mesh network, the demand having a pre-deter-
mined working path with a sequence of edges inter-
connecting the source node to the destination node;

identify a pre-cross-connectable protection path that
maximizes bandwidth sharing from the source node to
the destination node, wherein the pre-cross-connect-
able protection path does not include any multiple edge
branch point conditions within the telecommunications
mesh network;

subdivide one or more pre-cross-connected trails of the

telecommunications mesh network into one or more
subtrails;

discard any subtrail that does not meet any of one or more

pre-determined conditions;

create a logical graph representation of the telecommu-

nications network from subtrails that have not been
discarded.

12. The computer readable medium of claim 11, wherein
the code is further operable to:

update the telecommunications mesh network in response

to the pre-cross-connectable protection path.
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13. The computer readable medium of claim 11, wherein

the code is further operable to:

insert unused, shortcut, and rival edges into the logical

graph.
14. The computer readable medium of claim 11, wherein

the code is further operable to:

generate a cross-connection table, the cross-connection
table including the one or more pre-cross-connection
trails.

15. The computer readable medium of claim 11, wherein

the code is further operable to:

identify a failure in the working path;

switch traffic from the working path to the pre-cross-
connected protection path in response to the failure.

16. A method for allocating protection bandwidth in a

telecommunications mesh network, comprising:

receiving a plurality of traffic demands, each traffic
demand specifying a source node and a destination
node, each traffic demand having a working path with
a sequence of edges interconnecting the source node to
the destination node through intermediate nodes;
ordering the plurality of traffic demands;
selecting a particular traffic demand having a highest
priority;
generating a cross-connection table for the telecommuni-
cations mesh network;
pre-cross-connecting un-connected consecutive edges in
the telecommunications mesh network;
breaking any pre-cross connections that violate a set of
pre-determined conditions;
performing a primary and a secondary routing routine to
identify a mesh protection path for the selected traffic
demand, wherein the mesh protection path does not
include any multiple edge branch point conditions
within the telecommunications mesh network, wherein
the primary routing routine includes:
subdividing one or more pre-cross-connected trails of
the telecommunications mesh network into one or
more subtrails;
discarding any subtrail that does not meet any of one or
more pre-determined conditions;
creating a logical graph from subtrails that have not
been discarded;
inserting unused, shortcut, and rival edges into the
logical graph;
identifying a shortest admissible protection path from
the source node to the destination node from the
logical graph.

17. The method of claim 16, further comprising:
creating an auxiliary network representation in the pri-
mary routing routine using a load balancing criteria.

18. The method of claim 16, further comprising:

determining one or more pre-cross-connected trails asso-
ciated with the telecommunications mesh network,
each pre-cross-connect trail representing a connection
between two or more nodes in the telecommunications
mesh network with each node being connected by an
edge.

19. The method of claim 16, wherein the shortest admis-
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ing in the telecommunications mesh network and does not
include any rivals to its edges.

20. The method of claim 16, further comprising:
adjusting an allocation plan for the telecommunications
mesh network in response to the mesh protection path.
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