
This paper was written in the late 1990s and was even accepted for publication, but
at the last minute, I discovered that the results had largely been superseded by Miklós
Ruszinkó’s paper, “On the upper bound of the size of the r-cover-free families,” J. Combin.
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available online in case anyone finds it interesting.
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Abstract. Call a family N of subsets of a given finite set F k-Sperner if, given any k+1
distinct members N1, N2, . . . , Nk+1 of N , there exist k + 1 elements x1, x2, . . . , xk+1 of F
such that xi ∈ Nj if and only if i = j. The problem of maximizing the cardinality of
k-Sperner families (or the equivalent dual problem of minimizing the cardinality of “k-
separating” families) arises in electrical engineering, in the theory of all-optical networks.
For k = 1 the problem is solved by the famous Sperner theorem, but for general k the
problem is unsolved. We obtain upper and lower bounds.
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1. Introduction

Call a family N of subsets of a finite set F k-Sperner if, given any k+1 distinct members
N1, N2, . . . , Nk+1 of N , there exist k + 1 elements f1, f2, . . . , fk+1 of F such that fi ∈ Nj

if and only if i = j. The k-Sperner problem is the problem of finding the maximum
cardinality of a k-Sperner family, given F and k.

We can obtain a “dual” formulation of the k-Sperner problem by interchanging the
roles of sets and elements. Call a family F of subsets of a finite set N k-separating if, given
any k+1 distinct elements n1, n2, . . . , nk+1 of N , there exist k+1 members F1, F2, . . . , Fk+1

of F such that ni ∈ Fj if and only if i = j. It is easy to check that the k-Sperner problem
is equivalent to the problem of finding the minimum cardinality of a k-separating family,
given N and k.

A 1-Sperner family of subsets of F is just a family of subsets of F , none of which
is contained in another. In other words, it is an antichain in the Boolean algebra of all
subsets of F . The 1-Sperner problem is therefore completely solved by the famous Sperner
theorem (see [6]): if f = |F |, then the desired maximum cardinality is

(

f
⌊

f/2
⌋

)

.

That the dual problem of 1-separating families is equivalent to Sperner’s theorem was first
observed by Spencer [8].

The k-Sperner problem is very natural, but it does not seem to have been studied
before, even though entire books [1][2] have been written about generalizations of Sperner’s
theorem. (In [2] the term “k-Sperner” is used, but for a concept different from ours.) This
paper is a first attempt at writing this missing chapter.

We were led to consider the k-Sperner problem as a result of a problem in electrical
engineering: wavelength assignment in an all-optical network. The interested reader should
see [5, Chapter 8] for more details. Here we will just say that F may be thought of as a
set of frequencies and N as a set of transmitters. If the k-Sperner condition is satisfied,
then any k + 1 transmitters may operate simultaneously: for each transmitter there is a
frequency on which it may be heard without noise from any of the other transmitters.

Unless otherwise stated, F will always denote a finite set, k a positive integer, N a
k-Sperner family of F , f the cardinality of F , and n the cardinality of N .

2. An Upper Bound

In this section we obtain an upper bound for n (given f and k).
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Definition. IfM is any family of subsets of F , then the k-wise union ofM is the multiset

{

M1 ∪M2 ∪ · · · ∪Mk | {M1,M2, . . . ,Mk} is a set of distinct members of M
}

.

By “multiset” we mean that we keep track of multiplicity, so that the cardinality of the
k-wise union is exactly

(

m
k

)

(where m = |M|). We say that the k-wise union is multiplicity-

free if all
(

m
k

)

members are actually distinct subsets of F .

Theorem 1. A family M of subsets of F is k-Sperner if and only if its k-wise union is
multiplicity-free and 1-Sperner.

Proof. Assume that M is k-Sperner. Let

X
def
= M1 ∪M2 ∪ · · · ∪Mk and X̃

def
= M̃1 ∪ M̃2 ∪ · · · ∪ M̃k

be any two distinct members of the k-wise union of M. (They might be equal as subsets
of F since the k-wise union is a multiset.) Then at least one of the M̃ ’s is not equal to
any of the M ’s. Without loss of generality, assume that M̃1 has this property. Applying
the k-Sperner property to the k + 1 distinct sets

M1,M2, . . . ,Mk, M̃1,

we conclude that there exists x̃ ∈ M̃1 ⊆ X̃ such that x̃ /∈ X. Similarly, there exists x ∈ X
such that x /∈ X̃. Therefore, X and X̃ are distinct as subsets of F , and moreover neither
is contained in the other. This proves one direction of the theorem.

Conversely, assume that the k-wise union of M is multiplicity-free and 1-Sperner.
Given any k + 1 members M1,M2, . . . ,Mk+1 of M, let

X
def
= M1 ∪M2 ∪ · · · ∪Mk and X̃

def
= M2 ∪M3 ∪ · · ·Mk+1.

By assumption, X 6⊆ X̃, so there exists x1 ∈ M1 such that x1 /∈ X̃. By repeating this
argument with suitable redefinitions of X and X̃, we can find, for each i, an xi that is
in Mi but not in any Mj with j 6= i. Hence M is k-Sperner.

Corollary 1. For any k-Sperner family N of subsets of F ,
(

n

k

)

≤

(

f

⌊f/2⌋

)

.

Proof. This follows immediately from Theorem 1 and Sperner’s theorem.

3. A Lower Bound

In this section we give a lower bound for the optimal value of n. The idea is not original
with us; it is implicit in the electrical engineering literature, and it was independently
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communicated to the first author by Peter Bro Miltersen. We include the argument here
because of its importance.

Theorem 2. Assume that f ≥ 4. Let q be the largest prime power such that q2 ≤ f . Then
there exists a k-Sperner family of subsets of F of cardinality q1+⌊(q−1)/k⌋.

Proof. The assumption that f ≥ 4 ensures that q exists. Let Fq be the finite field with q
elements. Given a polynomial p with coefficients in Fq, define

N(p)
def
= {(x, y) ∈ Fq × Fq | p(x) = y}.

Thus N(p) is the “graph” of p. Since q2 ≤ f , we may identify Fq ×Fq with a subset of F ,
and so we may regard N(p) as a subset of F .

Now let d = ⌊(q − 1)/k⌋ and define

N
def
= {N(p) | p has degree at most d}.

We regard the zero polynomial as having degree zero. Two distinct polynomials of degree
at most d over any field agree on at most d points of their domain, because their difference
is a nonzero polynomial of degree at most d and hence has at most d zeroes. Since q > d,
it follows that all the N(p) listed in the definition of N are distinct, so the cardinality of N
is qd+1. Therefore, to prove the theorem, it suffices to show that N is k-Sperner.

The argument we just gave implies that the intersection of any two distinct members
N(p) and N(p̃) of N has cardinality at most d. Suppose we are given k + 1 members
N(p1), N(p2), . . . , N(pk+1) of N . We claim that there exists x1 ∈ N(p1) such that x1 /∈
N(pi) for any i 6= 1. For directly from its definition, N(p1) contains q elements, and
it intersects each of the other N(pi) in at most d elements. But q − kd ≥ 1 because
d = ⌊(q − 1)/k⌋, so there must be some x1 ∈ N(p1) that is not in any of the other N(pi).
Similarly, for each j there exists xj ∈ N(pj) such that xj /∈ N(pi) for any i 6= j. This
shows that N is k-Sperner.

Since squares of prime powers are rather sparsely distributed, f may be considerably
larger than q2, and then the construction of Theorem 2 is rather wasteful. This can be
remedied somewhat by taking the elements of F in excess of Fq × Fq and finding a k-
Sperner family of subsets of this excess. Combining this family with the k-Sperner family
of subsets of Fq ×Fq gives a larger family that is still k-Sperner. However, this procedure
does not substantially improve the bound of Theorem 2.

4. A Limitation of the Method of Theorem 2

Let us shift to the dual perspective for a moment and think in terms of minimizing f given
n and k. Using a few crude approximations, we find that Corollary 1 and Theorem 2 give
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lower and upper bounds (for the optimum value of f) of roughly k log(n/k) and k2 log2 n
respectively. For a fixed value of k, the gap between these bounds is not all that large,
but it turns out that for the application to electrical engineering that we have in mind,
we need to consider the case when k is fairly large compared to n—say k = n1/3 or even
k = n1/2. In this situation, the gap between our bounds is considerable.

It would be good news for our engineering application if k log(n/k) were closer to the
truth than k2 log2 n. Thus it is natural to try to sharpen the method used in proving
Theorem 2. We will say a little more about this later, but here we wish to point out an
inherent limitation.

Theorem 3. Let N be a family of subsets of F such that |N | ≥ k + 1. Suppose there
exists a positive integer d such that (a) the intersection of any two distinct members of N
has at most d elements, and (b) every member of N has more than kd elements. Then
f ≥

(

k+1
2

)

.

Proof. Let N0, N1, . . . , Nk be distinct elements of N . Let m = kd. Then |N0| ≥ m by
assumption (b). Also, by (a), N1 intersects N0 in at most d elements, so by (b), N1

contains at least m− d elements that are not contained in N0. Continuing in this way, we
see that each Nj contains at least m − jd elements that are not contained in any of the
preceding Ni. Therefore

f ≥ m+ (m− d) + (m− 2d) + · · ·+ (m− kd)

= (k + 1)m−
dk(k + 1)

2

=
dk(k + 1)

2

≥

(

k + 1

2

)

.

Intuitively, Theorem 3 says that any construction that is based on the idea of control-
ling only pairwise overlaps cannot hope to reduce the exponent of k in the k2 log2 n bound.
If we want to improve this bound substantially for the case when k is large compared to n,
then we need a new idea.

5. 2-Sperner Families

It is easy to check that a family M of subsets of F is 2-Sperner if and only if no member
of M is contained in the union of two other members of M. In this form, the 2-Sperner
condition has been defined before, but little seems to be known, e.g., Erdős and Kleitman [3,
§5] say only that 2-Sperner families are exponentially small compared to 2f (a fact that
follows immediately from our Corollary 1).
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In this section we give a bound for this special case that beats the general bound of
Theorem 2. The idea is that since the k-Sperner condition has a lot of symmetry, choosing
a random family of equal-sized subsets of F ought to be a good way of generating a k-
Sperner family. In principle this approach should work for arbitrary k, but only for the
case k = 2 have we been able to surmount the technical difficulties.

We outline the calculation before plunging into the details. Define a 2-Sperner viola-
tion of a family M of subsets of F to be a collection of three distinct members of M that
fails to be 2-Sperner. First we estimate the probability P (r) that a randomly chosen col-
lection of three distinct subsets of size r fails to be 2-Sperner. By linearity of expectation,
the expected number of 2-Sperner violations in a randomly chosen family of m subsets of
size r is

(

m
3

)

P (r). This means that there exists a family of m subsets of size r that has

no more than
(

m
3

)

P (r) 2-Sperner violations. Such a family may be made 2-Sperner by
discarding one member of each 2-Sperner violation. Thus there exists a 2-Sperner family
with m −

(

m
3

)

P (r) members. Empirical testing or first-year calculus then tells us which
value of m to choose to maximize the size of the 2-Sperner family.

Proposition 1. The number of 3-tuples (M1,M2,M3) of distinct r-element subsets of F
such that {M1,M2,M3} is 2-Sperner is

(

f

r

)

∑

i

(

r

i

)(

f − r

r − i

)

[

(

f

r

)

− 2

(

f − r + i

i

)

−

(

2r − i

r

)

+ 2

(

r

i

)

+

(

f − 2r + 2i

2i− r

)

−

(

i

2i− r

)

]

.

Proof. (Sketch.) The subsetM1 may be chosen in
(

f
r

)

ways. For each i from 0 to r−1, there

are
(

r
i

)(

f−r
r−i

)

ways to choose an M2 that overlaps with M1 in exactly i elements. Given a
pair (M1,M2) that overlaps in exactly i elements, the number of ways to choose an M3

so that {M1,M2,M3} is 2-Sperner is easily computed by an inclusion-exclusion argument
to be the expression in brackets. Finally, the sum may be taken over all i, because the
summand vanishes for i outside the range 0 ≤ i ≤ r − 1.

Empirically, it seems that r = ⌊f/4⌋ yields large 2-Sperner families, so let us set f = 4r
from now on. If we divide the quantity in Proposition 1 by the total number of 3-tuples
of distinct r-element subsets then we obtain

∑

i

(

r

i

)(

3r

r − i

)[(

4r

r

)

− 2

(

3r + i

i

)

−

(

2r − i

r

)

+ 2

(

r

i

)

+

(

2r + 2i

2i− r

)

−

(

i

2i− r

)]

[(

4r

r

)

− 1

][(

4r

r

)

− 2

] ,

which is the probability that a randomly chosen set of three distinct r-element subsets is
2-Sperner. In the notation of our discussion preceding Proposition 1, this is just 1−P (r).
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These large expressions are cumbersome, so we seek an approximation.

Lemma 1. For r > 2, P (r) ≤ r/(2.749)r.

Proof. We are looking for an upper bound for P (r), or equivalently a lower bound for
1− P (r). Now

2

(

r

i

)

+

(

2r + 2i

2i− r

)

−

(

i

2i− r

)

≥ 0,

so we may discard these terms. By Vandermonde summation,

∑

i

(

r

i

)(

3r

r − i

)(

4r

r

)

=

(

4r

r

)2

,

and

1−

(

4r

r

)2

[(

4r

r

)

− 1

][(

4r

r

)

− 2

] =

2− 3

(

4r

r

)

[(

4r

r

)

− 1

][(

4r

r

)

− 2

] ≤ 0,

so this may also be discarded, leaving us with

P (r) ≤

[

2
∑

i

(

r

i

)(

3r

r − i

)(

3r + i

i

)]

+

[

∑

i

(

r

i

)(

3r

r − i

)(

2r − i

r

)]

[(

4r

r

)

− 1

][(

4r

r

)

− 2

] .

Define

W1(r)
def
=

∑

i

(

r

i

)(

3r

r − i

)(

3r + i

i

)

and W2(r)
def
=

∑

i

(

r

i

)(

3r

r − i

)(

2r − i

r

)

.

Thanks to the Wilf-Zeilberger method [7], estimating these quantities is straightforward.
The method yields the recurrence

c2W1(r + 2) = c1W1(r + 1) + c0W1(r)

where

c0 = 9(3922r4 + 24804r3 + 58711r2 + 61650r + 24236)(3r + 2)2(3r + 1)2(r + 1)2,

c1 = 93390664r10 + 1057586168r9 + 5283851606r8 + 15310447400r7

+ 28439712648r6 + 35318120852r5 + 29640802742r4 + 16573519332r3

+ 5902638604r2 + 1208994384r + 108297072,

c2 = 9(3922r4 + 9116r3 + 7831r2 + 2952r + 415)(3r + 5)2(3r + 4)2(r + 2)2.
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Remarkably, W2(r) satisfies exactly the same recurrence. Now divide both sides of the
recurrence by c2. One checks by direct computation that

c1
c2

=
23812

729
−R1(r) and

c0
c2

= 1−R2(r),

where R1(r) and R2(r) are proper rational functions of r with nonnegative coefficients.
This means that any function W (r) that satisfies the recurrence

W (r + 2) =
23812

729
W (r + 1) +W (r) (∗)

and that equals or exceeds 2W1(r) +W2(r) at r = r0 and r = r0 + 1 will equal or exceed
2W1(r) +W2(r) for all r ≥ r0.

Let α be the larger root of the quadratic equation

x2 −
23812

729
x− 1 = 0,

so that

W (r)
def
=

αr

5

satisfies the recurrence (∗). By direct computation one checks that αr/5 ≥ 2W1(r)+W2(r)
for r = 4 and r = 5, so this inequality holds for all r ≥ 4.

By Stirling’s formula or a direct elementary argument one can show that

1

5r

(

44

33

)2r

≤

[(

4r

r

)

− 1

][(

4r

r

)

− 2

]

for r ≥ 4. Combining this with the inequality of the previous paragraph we obtain

P (r) ≤
αr/5

1

5r

(

44

33

)2r ≤
r

(2.749)r

for r ≥ 4. Direct computation shows that the inequality of the theorem happens to hold
for r = 3 as well.

Theorem 4. Assume that f ≥ 12 and let r = ⌊f/4⌋. Then there exists a 2-Sperner family
of subsets of F with cardinality

⌈

2

3

⌊

√

2(2.749)r

r

⌋

⌉

.
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Proof. We may assume that f is a multiple of 4, for if f is not a multiple of 4 then we can
simply ignore f − 4⌊f/4⌋ elements of F . Let

m =

⌊

√

2(2.749)r

r

⌋

.

If we randomly choose a family of m distinct r-element subsets of F , then the expected
number of 2-Sperner violations is

(

m
3

)

P (r), so there exists a family M with at most this
many 2-Sperner violations. Pick such anM and let v be the number of 2-Sperner violations
of M. By Lemma 1,

v ≤

(

m

3

)

P (r) ≤

(

m

3

)

r

(2.749)r
≤

m3

6

r

(2.749)r

≤
2(2.749)r

6r

√

2(2.749)r

r
·

r

(2.749)r
=

1

3

√

2(2.749)r

r
.

Therefore

v ≤

⌊

1

3

√

2(2.749)r

r

⌋

≤
1

3

⌊

√

2(2.749)r

r

⌋

=
m

3
.

We go through each 2-Sperner violation of M in turn, discarding one of the three subsets
involved in the violation (if none of the three subsets has already been removed by previous
discards). The remaining family N of subsets is 2-Sperner by construction, and it has at
least m− v ≥ 2m/3 members.

From the dual perspective, Theorem 4 gives an upper bound of about 8 log n for f ,
which improves the O(log2 n) bound of Theorem 2 significantly and comes quite close to
the lower bound of Corollary 1.

In principle there is no obstruction to applying our method with arbitrary k. The
only problem is that we have not been able to prove that doing so actually improves the
bound of Theorem 2. It is not difficult to generalize the exact formula of Proposition 1,
but multiple summations arise that are not amenable to the Wilf-Zeilberger method.

6. Three Promising Constructions

Here we present three ideas for improving our lower bounds for n. As they stand, the ideas
do not work, but we feel that they are promising nonetheless, and we hope that others will
find ways to modify them so that they do work.

The first idea is that the construction in the proof of Theorem 2 makes use only of
curves in the plane, so perhaps considering higher-dimensional varieties will yield better
constructions. In higher dimensions the extra geometry may make it easier to say some-
thing about intersections of three or more varieties, thus circumventing the limitation
described in Theorem 3.
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We should mention, however, that merely moving to higher dimensions without any
other new idea is unlikely to yield any improvement. Here is a heuristic calculation that
illustrates the difficulty. Consider r-dimensional varieties in the projective space P

2r(Fq).
Think of each such variety as being defined by r homogeneous polynomials of homoge-
neous degree d and thus having degree dr. By Bézout’s theorem, we expect their pairwise
intersections to have at most d2r points. Each variety may be thought of as having about
qr points (e.g., Theorem 1 of [4]). If we follow the approach of the proof of Theorem 2 and
choose our parameters so that

qr − kd2r ≥ 1,

then this family of varieties will be k-Sperner. To estimate the number of varieties, note
that the number of monomials of degree d in 2r + 1 variables is

(

d+2r
2r

)

. So the number of
nonzero homogeneous polynomials is

q(
d+2r

2r ) − 1

and the number of varieties is about

qr(
d+2r

2r ).

If we combine the equations qr = kd2r, n = qrd
2r/(2r)!, and f = q2r, then we obtain a

rough estimate of
f ≈ C(r)k2 log2 n,

where C(r) is some constant depending only on r. This is essentially the same bound as
that of Theorem 2.

The second idea is that one can sometimes prove that distinct binary strings are
indeed distinct by revealing rather small subsets of their bits. More precisely, we have the
following proposition.

Proposition 2. Given F and k as usual, let m be the largest integer such that

2k
(

m

k

)

≤ f.

Then there exists a k-Sperner family of subsets of F of cardinality 2m.

Proof. For each positive integer d, let Bd be the set of all binary strings with exactly d
digits. Let S be the set of all k-element subsets of {1, 2, . . . ,m}. By choice of m, we may
identify Bk × S with a subset of F . For each element b ∈ Bm, let N(b) be the set of all
elements (a, s) ∈ Bk × S such that a is the substring of b consisting of the bits in the
positions specified by S. For example, if m = 3, k = 2, and b = 101, then

N(b) =
{(

10, {1, 2}
)

,
(

11, {1, 3}
)

,
(

01, {2, 3}
)}

.
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The family N of all such N(b) has cardinality 2m, so it remains to show that N is
k-Sperner. Given any k+1 members N(b1), N(b2), . . . , N(bk+1) of N , we claim that there
exists a k-element subset T of {1, 2, . . . ,m} such that no two of the bi’s agree in all the bits
in the positions specified by T . This may be proved by induction on k. The case k = 1 is
clear. If k > 1, use induction to find k − 1 bit positions that distinguish the first k binary
strings b1, b2, . . . , bk. We are done if these positions are already enough to distinguish bk+1

from all the other bi’s. Otherwise, bk+1 agrees in all k − 1 positions with at most one of
the other bi’s—say b1. Then we need to pick just one more bit position to distinguish bk+1

from b1, completing the induction.

If we now let ai be the substring of bi specified by T , then (ai, T ) ∈ N(bi) for all i and
(ai, T ) /∈ N(bj) for all j 6= i because of the choice of T . This shows that N is k-Sperner.

The bound of Proposition 2 is fairly good for very small k, but it quickly becomes
bad as k increases. However, there may be a way to improve the construction because
usually one does not need anywhere near as many as k positions to distinguish between
k + 1 binary strings.

The third idea is to look for properties of sets that are not exactly the same as the
k-Sperner condition but that are in some sense “close approximations.” To illustrate the
idea, call a family M of subsets of F k-critical if the union of any k + 1 members of M
equals all of F but the union of any k members of M is a proper subset of F . It is easy
to see that k-critical families are k-Sperner, and k-critical families have the advantage of
being much easier to handle than k-Sperner families, as the following proposition shows.

Proposition 3. Let N be a k-critical family of subsets of F . Then f ≥
(

n
k

)

, and this
inequality is sharp.

Proof. Consider the incidence matrix whose rows are indexed by the members of N and
whose columns are indexed by the elements of F . That is, the (i, j) entry of this matrix
equals one if the jth element of F lies in the ith member of N , and equals zero otherwise.
We claim that no column can contain more than k zeroes. For suppose there were; then
there would exist k+1 rows that all had a zero in this column, and the union of the members
of N corresponding to these rows would not be all of F , contradicting k-criticality.

Next we claim that given any set R = {R1, R2, . . . , Rk} of k rows, there must exist a
column C(R) with zeroes in all these rows. For otherwise, the union of the members of N
corresponding to these k rows would be all of F , contradicting k-criticality. Since there are
at most k zeroes in each column, C(R) must have ones in every other row. This implies
that if R and R̃ are two distinct k-element sets of rows, then C(R) and C(R̃) must also
be distinct. Hence there are at least

(

n
k

)

columns.

This proves the inequality; to see that it is sharp, simply check that the incidence
matrix with exactly the

(

n
k

)

columns of the form demanded by the argument in the previous
paragraph defines a k-critical family.
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Unfortunately, k-criticality is not a good enough approximation the the k-Sperner
property to yield good bounds for the latter, but we are hopeful that some similar idea
will work.
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