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Introduction

What does it mean for a graded ring to be Cohen-Macaulay? In the literature one
finds many different answers to this question, and it can be rather difficult to prove (or
even to find proofs) that all the different answers are equivalent. The purpose of this note
is to rectify this situation by collecting all the different definitions and references together
in one place. The reader is advised not to skip over the list of definitions below since the
whole point of this note is to address subtle differences in terminology.

Basic definitions

Our main reference for basic definitions and terminology is [7]. For terms used but
not defined below, consult either [1] or [7]. All rings in this paper will be commutative
with identity.

Let A be a ring. A chain of ideals in A is a nested sequence of ideals Iy C --- C I,;
the integer n here is the length of the chain. The height of a prime ideal P (denoted
height(P)) is the maximum length of a chain of prime ideals contained in P. The Krull
dimension or simply the dimension of A (denoted dim(A)) is the supremum of the heights
of all its prime (or, equivalently, maximal) ideals. If M is an A-module then the dimension
of M (denoted dim(M)) is the dimension of the ring A/(ann(M)), where ann(M) is the
annihilator of M.

Let I be an ideal in A, and let M be an A-module. A sequence of elements a1,...,a,
in I is called an M -sequence in I if a; is not a zero divisor of M/(ay,...,a;—1)M for each
1€ {l,...,n},and M/(ay,...,an)M # 0. The maximum length of an M-sequence in I is
called the I-depth of M. In the case where M = A, which is the main case that we will
consider, the I-depth of A is simply called the depth of I (denoted depth(I)). If A is a
local ring and I is the maximal ideal of A then the I-depth of M is simply called the depth
of M.

If P is a prime ideal of A, we denote the localization of A at P by Ap and the
localization of an ideal I C A by Ip.

Graded rings

We say that a ring A is graded if it is supplied with a family (Ay)n>o of subgroups
of the additive group of A, such that A = @, ; A, and A,,A,, C Aypyy, for all m and n.
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An element a € A is said to be homogeneous if a € A,, for some n > 0; n is said to be the
degree of a. An ideal that is generated by homogeneous elements is called a homogeneous
tdeal. The notions of height, dimension, M-sequences and depth all have their obvious
graded analogues heightgr, dimgr, homogeneous M-sequences and depthgr. The irrelevant
ideal of A is defined to be the ideal M = @), -, An.

In this paper the graded rings that we shall be mainly concerned with will be finitely
generated graded k-algebras, i.e., graded rings A such that Ay is (isomorphic to) a field k&
and such that A is finitely generated as a k-algebra. Note that finitely generated graded
k-algebras are Noetherian ([7, remark after Theorem 3.3] or [1, Corollary 7.7]).

If A is a finitely generated graded k-algebra, then clearly each graded part A, is a
vector space over k; denote its dimension as a vector space by H(A,n). Because A is finitely
generated over k, H(A,n) is finite for all n. The Hilbert series or Poincaré series F(A, \)
of A is defined to be the formal power series

F(A,\) = iH(A, n)A™,

n=0

The following definition does not appear in [7] but is important in the theory of graded
rings. If A is a finitely generated graded k-algebra of Krull dimension d, then a homoge-
neous system of parameters or hsop of A is a set {hy,...,hq} of homogeneous elements
of A such that A is finitely generated as a module over the subalgebra k[h,...,hq]. (In
other words, A/(h1,...,hq) is a finite-dimensional vector space over k.)

Cohen-Macaulay rings

The definition of a Cohen-Macaulay ring that we will adopt is the one given in [7].
We say that a nonzero module over a Noetherian local ring is Cohen-Macaulay if its depth
equals its dimension. (By convention the zero module is defined to be Cohen-Macaulay.)
A Noetherian local ring is said to be Cohen-Macaulay if it is Cohen-Macaulay as a module
over itself. An arbitrary Noetherian ring is said to be Cohen-Macaulay if, for every maximal
ideal M, its localization at M is Cohen-Macaulay. Notice in particular that this definition
makes sense for both graded and non-graded rings.

We can now state the main theorem.

Theorem 1. Let A be a finitely generated graded k-algebra with irrelevant ideal M and
Krull dimension d. The following conditions on A are equivalent.

1. A is Cohen-Macaulay.

2. For every mazximal ideal I, depth(I) = height(I).
3. Apnr is Cohen-Macaulay.

4. depth(M) =d.



There exists an A-sequence in M consisting of d elements.

There exists a homogeneous A-sequence in M consisting of d elements.
depthgr(M) = d.

Some hsop of A is an A-sequence in M.
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Every hsop of A is an A-sequence in M.
10. For some hsop {h1,...,hq}, A is a free module over k[hy, ..., hg].
11. For every hsop {h1,...,hq}, A is a free module over k[hy, ..., hg).
12. For some hsop {h1,...,hq} with degree(h;) = f;,
F(A/(hl, ooy ha), )\)
y . )
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13. For every hsop {h, ..., hq} with degree(h;) = f;,

F(A,)\) =

F(A/(hy,....ha), A)
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The proof of Theorem 1 will require results from [3], [5], [6], [7], [8], [10] and [11]. We
first state a few of these as lemmas.
Lemma 1. If A is a Noetherian graded ring then dimgr(A) = dim(A).
Proof. [5, chapter VIII, section 6, no. 2, Theorem 1]
Lemma 2. Let A be a Noetherian ring and let I be a proper ideal of A. Then there exists
a mazimal ideal M containing I such that depth(I) = depth(Ips).

Proof.  Except for the condition that I C M, this is [6, Theorem 135]. (Note that
Kaplansky uses “grade” for depth and “rank” for height.) But if we look at the proof
given by Kaplansky we see that that the maximal ideal he constructs contains I, so our
lemma follows.

Lemma 3. Let A be a ring with prime ideal P. Then depth(P) < height(P) < dim(A).
Proof. This follows immediately from [6, Theorem 132].
Lemma 4. Let A be a finitely generated graded k-algebra with irrelevant ideal M . If every

homogeneous element in M 1is a zero-divisor, then there erists a monzero homogeneous
element u € M such that uM = 0.

Proof. [3, Lemma 2.2]

Lemma 5. Let A be a finitely generated graded k-algebra. Then any hsop of A is alge-
braically independent.



Proof. [10, Prop 6.2]
We are now ready for the proof of the main theorem.

Proof of Theorem 1. First let us make a few preliminary observations. Clearly dim(Ays) =
height(Mjs). Furthermore by well-known properties of localization (e.g., [7, section 4,
example 2] or [1, Corollary 3.13]), height(Mjs) = height(M). Now, since A is Noetherian,
by Lemma 1 dimgr(A) = d. Since all proper homogeneous ideals of A are contained in M,
we have dimgr(A) = heightgr(M). Thus

d > height(M) > heightgr(M) = dimgr(A) = d,

so height(M) = d. Also, from Lemma 2 it follows at once that depth(Axs) = depth(M),
since M is maximal. Summarizing,

dim(Aps) = height(M)=d  and  depth(Aps) = depth(M). (%)

Now let us proceed to the main part of the proof.
(1< 2)

This follows since localization at a maximal ideal preserves its height (as noted above)
and its depth (Lemma 2).

(1 = 3) Trivial since M is maximal.

(3 = 1) This is a special case of [8, Theorem 1.1].

(3 & 4) Immediate from ().

(4 & 5) Clearly 4 = 5 trivially, and 5 = 4 from Lemma 3.

(5=06)

By assumption there exists an A-sequence ai,...,aq in M of length d. If d = 0 there
is nothing to prove, so assume d > 0. Then a; is a non-zero divisor in M, so by Lemma 4
there exists a homogeneous non-zero divisor h; € M. Extend h; to a maximal A-sequence
hi,...,hqg in M (since A is Noetherian, all maximal A-sequences in M have the same
length, by [7, Theorem 16.7]). So we have effectively replaced the first element of the
A-sequence with a homogeneous element. Now note that ho, ..., hg is an A/(hy)-sequence
in M/(hy); an easy induction completes the proof.

(6 = 5) Trivial.

(6 & 7) Same argument as 4 < 5.

(7 < 9 < 11) This is [10, Proposition 6.8]. Note that Smoke takes 7 as his definition
of Cohen-Macaulay.

(9 = 8 = 6) Trivial.

(11 = 10 = 8) Clearly 11 = 10 trivially, and 10 = 8 by the same argument Smoke
gives for 11 = 9 in his proof of [10, Proposition 6.8]: since an hsop is algebraically
independent (Lemma 5), S = k[hq,...,hq] is a polynomial ring. Considering S as an
A-module, we see that {hi,...,hg} is an S-sequence in M and hence an A-sequence in M
since A is free over S.



(8 & 12,9 < 13) This is proved in [11] in the discussion following Corollary 3.2.
Corollary 3.2 is slightly misstated; in the notation of [11], one needs the condition that 6;
is nonzero in R/(61,...,60,). However, for the purpose at hand this causes no problems,
since by Lemma, 5 every hsop satisfies this condition.

This completes the proof of Theorem 1.

Remarks

1. Condition 2 in Theorem 1 is the definition of Cohen-Macaulay given in [6]. As may
be seen from the proof, the equivalence of 1 and 2 holds for any Noetherian ring, not
just the special graded rings of Theorem 1.

2. Conditions 6-13 tend to be the ones used in the literature of graded ring theory and
combinatorics, and it is not too hard to locate alternative proofs of these cases, e.g.,
in [2] or [3] or [9]. The hard part is building the bridge between the usual definition
of Cohen-Macaulay found in texts on commutative algebra and algebraic geometry
(where the focus tends to be on local rings much more than on graded rings) and the
conditions 6-13. The crucial result is of course the main theorem of [8].

3. Reference [9] states Lemma 1 but its definition of Krull dimension appears to involve
chains of arbitrary ideals instead of just prime ideals.

4. To get a sense of how confusing the literature can be without knowledge of Theorem 1,
note that condition 7 is used as the basic definition in [10], condition 8 is used in [11],
[12] and [14], conditions 10 and 11 are used in [4], and condition 12 is used in [13]
and [15]. Hopefully Theorem 1 will put to rest any fears that the different definitions
are inconsistent.
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